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Abstract

The dopamine hypothesis is the longest standing pathoaetiological theory of schizophrenia. As it
was initially based on indirect evidence and findings in patients with established schizophrenia it
was unclear what role dopamine played in the onset of the disorder. However, recent studies in
people at risk of schizophrenia have found elevated striatal dopamine synthesis capacity, and
increased dopamine release to stress. Furthermore, striatal dopamine changes have been linked to
altered cortical function during cognitive tasks, in-line with preclinical evidence that a circuit
involving cortical projections to the striatum and midbrain may underlie the striatal dopamine
changes. Other studies have shown that a number of environmental risk factors for schizophrenia,
such as social isolation and childhood trauma, also impact on presynaptic dopaminergic function.

Advances in preclinical work and genetics have begun to unravel the molecular architecture
linking dopamine, psychosis and psychosocial stress. Included among the many genes associated
with risk of schizophrenia, are the gene encoding the DRD2 receptor and those involved in the up-
stream regulation of dopaminergic synthesis, through glutamatergic and gamma-aminobutyric acid
(GABA)-ergic pathways. A number of these pathways are also linked to the stress response. We
review these new lines of evidence and present a model of how genes and environmental factors
may sensitise the dopamine system so that it is vulnerable to acute stress, leading to progressive
dysregulation and the onset of psychosis. Finally, we consider the implications for rational drug
development, in particular regionally selective dopaminergic modulation, and the potential of
genetic factors to stratify patients.
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Introduction

The dopamine hypothesis has been the leading pathoaetiological theory of schizophrenia for
over four decades (1-3). Our understanding of schizophrenia has progressed through
advances in neuroimaging, epidemiology, and research into the prodromal phase that
predates the onset of the disorder in many patients. Meanwhile the role of genetic and
environmental risk factors for schizophrenia has been clarified. Studies of how these risk
factors impact on the dopamine system, coupled with longitudinal studies during the
prodrome allow for a more refined understanding of what leads to the onset of psychosis.
This review synthesizes the evidence on the nature of dopaminergic abnormalities in
schizophrenia and its prodrome, and how risk factors lead to illness, before considering the
implications for treatment and prevention.

The origins of the dopamine hypothesis

The origins of the dopamine hypothesis lie in two lines of evidence. First, clinical studies
established that dopaminergic agonists, and stimulants could induce psychosis in healthy
individuals, and worsen psychosis in patients with schizophrenia (4; 5). Second, was the
discovery that antipsychotic drugs affect the dopamine system (6). Later, the potency of
antipsychotics was linked to their affinity for dopamine D2 receptors - linking molecular
action to clinical phenotype (7).

Post-mortem studies provided the first direct evidence for dopaminergic dysfunction in the
brain and its anatomical localization. These showed elevated levels of dopamine, its
metabolites, and its receptors in the striata of people with schizophrenia (8; 9). However, the
studies were of patients who had received antipsychotics. Consequently, it was not clear if
the dysfunction was linked to onset, or an end-stage effect of the disorder, or indeed a
consequence of antipsychotics.

In vivo imaging of dopamine in schizophrenia

The development of positron emission tomography (PET) and single photon computed
tomography (SPECT) specific radiotracers enabled the dopamine system to be studied /in
vivo with high molecular specificity (10).

Studies of the dopamine transporter (DAT) (3; 11) and vesicular monoamine transporter
(VMAT) (12; 13) availability in the striatum show no abnormality either in chronic patients
or in drug naive first episode patients. Likewise, while meta-analysis has shown that there
may be a small elevation in dopamine D2/3 receptor availability in schizophrenia, it is not
reliably seen in antipsychotic-naive patients (3).
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Presynaptic dopaminergic function can be indexed using either radiolabelled I-
dihydroxyphenylalanine (+dopa), or one can measure the change in radiotracer binding to
D2/3 receptors following a challenge designed to stimulate dopamine release. A significant
elevation was reported in a meta-analysis of presynaptic dopaminergic function using these
techniques (cohen’s ¢=0.8) (3), and subsequent studies have reported even larger effect sizes
(14-16). Furthermore baseline occupancy of D2/3 receptors by dopamine has also been
found to be elevated, indicating higher synaptic dopamine levels at rest (17; 18). Striatal
dopamine release and baseline dopamine levels are closely correlated in schizophrenia (19),
suggesting that the same abnormality underlies both.

While the striatum has received the greatest attention in PET studies, it has long been
hypothesized that alterations in the dopamine system extend to additional brain regions (20).
Dopaminergic hypofunction in the dorsolateral prefrontal cortex (DLPFC) has been
proposed to account for negative and cognitive symptoms. Recently people with
schizophrenia have been found to show reduced dopamine release in the DLPFC following
amphetamine challenge, and this release was shown to correlate with DLPFC activation
during a working memory task (21). Meta-analysis of studies that have examined extra-
striatal receptor densities indicate there are unlikely to be large differences in D2/3 receptors
and transporters in the regions studied, whilst the D1 findings are inconsistent, potentially
due to the effects of prior antipsychotic treatment (22).

In vivo imaging of dopamine in people at clinical high risk of psychosis

Presynaptic

The use of structured clinical assessments has made it possible to identify cohorts with
prodromal symptoms, in which the risk of transition to psychosis can be as high as 40%,
though recent studies have reported lower rates (23). Various studies have suggested that
dopaminergic abnormalities exist in people at clinical high risk (CHR) of psychosis.
Antipsychotic treatment trials have demonstrated efficacy of dopamine blockade in reducing
prodromal-type symptom severity (24; 25), and elevations in peripheral dopamine
metabolites have been observed in CHR cohorts (26). However, these findings cannot tell us
directly about central dopaminergic dysfunction, in this respect imaging has been
particularly useful.

Three studies have examined D2/3 receptor density in CHR populations; all showing no
differences between groups (see table 1) (27-29). In two studies this could conceivably have
been due to increased synaptic dopamine masking a difference in receptor densities (27; 28).
One study, however, addressed this with a dopamine depletion paradigm, and showed no
significant differences (29).

dopaminergic function

Initial research showed that dopamine synthesis capacity was raised in CHR individuals
(30), and positively associated with the severity of prodromal-type symptoms (see table 1).
This has subsequently been replicated (31), and found to be specific to prodromal
individuals who progress to psychosis (32). Furthermore, re-scanning subjects as they
developed psychosis showed that dopamine synthesis capacity increases further with the
development of acute psychosis (33). Additionally, greater dopamine release was found
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following psychological stress in CHR individuals compared to controls (15). The dopamine
dysfunction was localized to the dorsal striatum, particularly areas functionally linked with
the prefrontal cortex (PFC), and this was associated with altered function in frontal and
temporal cortical regions (34; 35). However, in contrast to findings in schizophrenia(17-19),
dopamine depletion did not reveal differences in baseline synaptic levels of dopamine
between at risk individuals and healthy controls, although at risk individuals reported
symptomatic improvement following depletion (29). These findings indicate that whilst
dopaminergic functioning is already dysregulated in those prodromal people who later
progress to schizophrenia, it is not as marked as in patients with the disorder, and there is
further dysregulation from the prodrome to psychosis.

Psychosocial stress and schizophrenia

In addition to genetic factors, neurodevelopmental hazards (36) and cannabis use (37);
chronic psychosocial stressors including childhood adversity (38), migration/ethnic minority
status (39), and urbanicity (40), have become accepted as increasing the risk of
schizophrenia. Furthermore, acute stress plays a role in triggering psychotic symptoms (41;
42), and impaired stress tolerance is associated with prodromal symptoms (43).

The effects of psychosocial stress on dopamine

Animal studies consistently show that acute stressors (psychosocial and physical) lead to
cortical dopamine release, and that this dampens striatal dopamine release (53; 54).
Dopaminergic inhibition of cortical glutamatergic neurons projecting to the striatum and
midbrain is one pathway that potentially accounts for this (see figure 1) (55). The effects of
chronic stress on the dopamine system vary by brain region and depend on the nature of the
stress. In animals exposed to chronic stress, baseline levels of frontal dopaminergic activity
are reduced, but responses to acute stress are elevated (56; 57). With regard to the
mesostriatal system, some studies suggest that chronic stress reduces dopaminergic
responses to later activating stimuli (58-60), while others show increased release in response
to subsequent amphetamine (61; 62). It seems that prior exposure to chronic or inescapable
stressors may down regulate the system, while intermittent and escapable stress is more
likely to have a sensitising effect (60; 63).

Studies of CHR individuals, individuals with schizophrenia and first degree relatives have
shown that they produce a greater peripheral homovanillic acid response to stress (26; 64;
65). Two healthy volunteer PET studies demonstrated more widespread cortical
displacement of a D2/3 radiotracer during a stress task relative to a control task (66; 67) (see
table 3). In one of these a positive correlation between childhood adversity and extent of
cortical dopamine release was observed (68). The authors interpret this as potentially a
resilience promoting mechanism. A study of first degree relatives of individuals with
schizophrenia showed less widespread cortical dopaminergic response to stress relative to
healthy controls (69), and this was related to subjective stress and increased psychotic-like
reactions to stress (70). Blunted cortical release of dopamine to amphetamine has been
found in schizophrenia (21). However, a study of individuals with schizophrenia found no
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difference in the regional extent of cortical dopaminergic response to stress compared to
controls, although the participants in this study had low symptom severity (71).

In the striatum, greater striatal dopamine release in response to acute social stress has been
observed both in individuals at risk for psychosis (15; 76) and those with schizophrenia (28).
Additionally, greater dopamine synthesis capacity (72), and release (in response to stress
(73) and amphetamine (74)) has been found in individuals exposed to childhood adversity.
Greater dopamine release to amphetamine was also seen in people exposed to social
isolation by virtue of hearing impairment (75).

mechanisms linking dopamine, stress and psychosis

A diathesis-stress model of schizophrenia proposes that the illness develops due to stress
exposure acting on a pre-existing vulnerability (secondary to genetic factors or early
environmental insults) (77; 78). However, the molecular architecture underlying this
relationship remains unclear. Genetic studies provide a means of identifying potential
molecular mechanisms that underlie the disorder without the risk of confounding by
treatment or other factors.

The genetics of schizophrenia and the dopamine system

Amongst the 108 loci associated with schizophrenia in the largest scale GWAS to date, one
was for the dopamine receptor 2 (D2) (79). Furthermore a recent systematic pathway
analysis of the Psychiatric Genetics Consortium’s enlarged sample (PGC2) GWAS findings
identified the top pathway for genes associated with schizophrenia as being that for
dopaminergic synapse (80) (Holmans P, personal communication). However, this is a large
set of genes, which includes many involved more widely in neurotransmission and
signalling, that impinge indirectly on dopaminergic transmission. For example both AMPA
and NMDA receptor subtypes are included. A more recent analysis of the PGC2 GWAS data
focussed on a set of 11 genes more directly related to dopamine synthesis, metabolism and
neurotransmission (81). This confirmed the association with SNPs in the vicinity of DRDZ,
but found no evidence for enrichment in the other genes, or in the set as a whole. While
these results do not add further support to the hypothesis that direct effects on dopaminergic
neurotransmission partially mediate genetic susceptibility to schizophrenia, they do not
exclude a role for rare variants in core dopaminergic genes, or other mutational mechanisms
such as repeat sequences that are poorly tagged in GWAS studies. It remains to be
determined whether there is enrichment of genetic signal in other restricted gene sets
relating to dopaminergic function, such as signal transduction and post-synaptic signalling.
It is also possible that dopaminergic genes play a more prominent role in clinical subsets of
schizophrenia or in cases defined on the basis of drug response.

The finding from PGC2 that SNPs at the DRDZ2 locus are associated with schizophrenia is of
great potential relevance to understanding the role of dopaminergic neurotransmission in the
disorder, and to identifying upstream and downstream mechanisms. However, it is possible
that the associated SNP(s) are modulating the function of another gene either in cis or trans
rather than DRDZ itself. There is thus a pressing need to determine how, where and at what
developmental stage(s) this association impacts mechanistically on gene function. As well as
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confirming an aetiological role for dopamine dysfunction this might be expected to provide
important new insights into the nature of dopamine system dysfunction in the disorder.

Genes involved in dopaminergic neurotransmission downstream of the synapse have also
been linked to an increased risk of schizophrenia. Post-synaptic dopamine neurotransmission
includes kinases such as the serine-threonine kinase Akt. Akt3 was associated with
schizophrenia in the GWAS described above (79), while Aktl has been linked to
schizophrenia in other studies (82; 83). Functional changes to post-synaptic signal
transduction could conceivably alter regulatory feedback onto presynaptic dopaminergic
neurons (84).

The genetics of psychosocial stress and the dopamine system

Gene-environment studies using epidemiological approaches have demonstrated interactions
between genetic and psychosocial risk factors for schizophrenia (85-87). The importance of
environmental effects may explain why the dopamine imaging evidence is inconsistent in
people who may carry genetic risk for schizophrenia, such as relatives of people with
schizophrenia, both in terms of dopamine synthesis capacity (88; 89), and D1 (90) and D2
(91; 92) receptor availability (see table 2). Below we discuss genes that may mediate the
relationship between stress exposure, dopaminergic functioning, and psychosis.

Catechol-O-methyltransferase (COMT, a major dopamine catabolic enzymes) was
implicated in early candidate gene studies, and is located within one of the strongest genetic
risk factors for schizophrenia, a 1.5-3 Mb deletion at 22q.11.2. (93) COMT contains a
functional polymorphism involving a valine (Val) to methionine (Met) substitution. The
functional consequences of variation at this locus have been widely studied, but it should be
born in mind that there was no evidence for association of the Val/Met variant with
schizophrenia in the PGC2 (95). The Met allele is associated with reduced catabolic activity,
and is linked to greater tonic and reduced phasic striatal dopaminergic transmission (96). In
the cortex, a PET study investigating D1 receptor density suggested that the Val allele was
associated with lower levels of baseline dopamine(99) (although no association was
observed in a study of cortical D2 receptors) (98). A study examining stress induced cortical
dopamine release suggested the Met allele was associated with reduced release (and a
greater subjective stress response) (99).

Stress induced catecholamine release can impair working memory (100). During acute
stress, Met homozygotes show impairments in working memory performance and reduced
PFC activation, while Val carriers show the opposite effects (101; 102). This has been
interpreted in terms of the inverted-U relationship between dopamine levels and cognitive
function — the greater level of dopaminergic function at baseline in Met carriers means an
increase impairs performance; whereas in the case of the Val allele, the increase is
beneficial.

In terms of chronic stress, Met homozygosity has been associated with a negative
relationship between the number of stressful life events and hippocampal volume, while the
opposite relationship is seen for Val homozgosity (103). In Val homozygotes increased
lifetime stress was found to correlate with reduced methylation which in turn correlated with
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poorer working memory performance (104). The Val allele has a methylation site absent on
the Met allele, it may be that increased methylation in Val homozygotes, leads to reduced
gene expression, leading to individuals’ COMT having activity similar to a Met carrier.

Similarly to COMT, brain-derived neurotrophic factor (BDNF) has a Val/Met functional
polymorphism. A PET study of BDNF polymorphisms showed that Met carriers had greater
striatal dopamine release in the context of a pain stressor (105). Consistent with this finding,
the Met allele has been associated with increased stress induced paranoia in healthy
individuals (106).

The expression and functioning of DRD?2 is affected by both genetic polymorphisms and
environmental factors. In a healthy volunteer study, heterozygotes for a DRD2 SNP showed
greater stress induced striatal dopamine release compared to homozygotes (107). An animal
study showed increased D2 receptor density in the nucleus accumbens following early life
maternal deprivation, but only in heterozygotes for a separate DRD2 polymorphism (108).

In contrast to studies of synaptic and post-synaptic dopamine genes, there have been fewer
for presynaptic genes, such as those for synthetic enzymes and proteins regulating
presynaptic storage of dopamine. Whilst the few published studies are inconsistent (109-
111), this is an area that warrants investigation given the imaging findings. Disrupted In
Schizophrenia (DISC1) is involved in a pathway that regulates presynaptic dopaminergic
function, is one of the best studied loci linked to an increased risk of schizophrenia (112),
and displays abnormal expression in induced pluripotent stem cells (IPSCs) from individuals
with schizophrenia (113). Animal models have demonstrated that alterations in DISC1 can
lead to both impaired development of mesocortical dopaminergic neurons, and increased
amphetamine induced striatal dopamine release (114). Adolescent isolation stress has been
shown to lead to behavioural abnormalities only in mice with DISC1 mutations, secondary
to glucocorticoid mediated changes to the functioning of mesocortical dopaminergic
pathways (115). DISC1 is also involved in anchoring phosphodiesterase 4A (PDE4A) next
to the spine apparatus (116). The gene coding for PDE4A has also been linked to
schizophrenia (117), and both DISC and PDE4A together modulate modulate stress
signalling pathways. Impairment of DISC1 reduces its ability to anchor PDE4A and this in
turn leads to a disinhibition of the stress response and accompanying PFC impairment (122).

The relationship between dopamine and other neurotransmitters

DISC1 is also involved in glutamatergic neurotransmission (112). Furthermore, both GWAS
and copy number variant (CNV) studies have implicated other genes involved in
glutamatergic neurotransmission, including N-Methyl-D-Aspartate (NMDA) and other
glutamatergic receptors (123). There is evidence that NMDA hypofunction disrupts the
inhibitory/excitatory equilibrium at interneurons and thereby leads to increased dopamine
release (see figure 1 and Abi-Dargham et al also in this issue) (124-126). Neurons derived
from IPSCs from patients with schizophrenia show greater basal and activity dependent
dopamine secretion (127), as well as reduced glutamate receptor and altered DISC1
expression (113). Glutamatergic neurotransmission is also mediates the effects of both acute
and chronic stress (128).

Biol Psychiatry. Author manuscript; available in PMC 2017 November 07.



s1duosnuBIA Joyiny sispund DN edoin3 ¢

s1dLIOSNUBIA JoLINY sispund DN 8doin3 ¢

Howes et al.

Page 8

Recent evidence from over 11,000 patients with schizophrenia and 16,000 controls has also
shown an enrichment of CNVs involving glutamatergic and GABAergic systems (129).
These systems have excitatory and inhibitory effects respectively on dopaminergic function,
suggesting that the genetic variants in these systems may alter the regulation of dopamine in
schizophrenia. Thus it is plausible that a number of the genetic risk variants in upstream
pathways modulate dopamine function. Future studies must first clarify the molecular
pathways, and links between the genetic variants and effects on glutamatergic and
GABAergic neuronal function, before the link to down-stream dopaminergic effects can be
tested.

Integrating the imaging, stress and genetic findings

Collectively the imaging findings identify increased striatal presynaptic synthesis and
release of dopamine, as the major locus of dopaminergic dysfunction in schizophrenia.
Furthermore, it appears this dysfunction is also present in the prodrome, and linked to the
clinical development of the disorder. This suggests that presynaptic striatal dopamine
dysfunction plays a causal role in the development of psychosis.

The genetic findings have not implicated genes directly involved in determining dopamine
synthesis or release, but instead point to up-stream and down-stream pathways linked to the
dopamine system. A number of the genetic risk factors converge on up-stream pathways,
particularly those involving glutamatergic systems. As glutamatergic projections to the
striatum and midbrain regulate presynaptic dopaminergic function, genetic variants affecting
glutamatergic function could alter the regulation of dopaminergic function. The net effect of
this may be to reduce the homeostatic control of midbrain dopamine neurons, making them
more vulnerable to sensitisation by the socio-developmental risk factors described above. In
addition, a number of other genetic risk factors impact on dopamine receptors and post-
synaptic signal transduction pathways, to modulate post-synaptic dopaminergic
neurotransmission. The net effect of this may be to increase the sensitivity of the medium
spiny neurons in the striatum to dopamine. This suggests that the genetic risk factors for
schizophrenia may play two roles: the up-stream factors render the dopamine neurons
vulnerable to dysregulation, whilst the down-stream factors amplify the effects of
dysregulation.

We have also discussed the effect of stress on the cortico-striatal dopamine system, and how
genetic and environmental influences moderate this. Recent studies in patients with
schizophrenia and their relatives show blunted cortical dopamine release to a challenge. This
is likely to reduce the inhibition of meso-striatal dopamine release, and result in augmented
stress induced striatal release of dopamine. The preclinical findings suggest that this
involves glutamatergic projections to the striatum and midbrain acting on GABAergic
interneurons, both of which may hypofunctional due to genetic risk variants affecting
glutamatergic and GABAergic receptors linked to schizophrenia. Thus blunted cortical
dopaminergic release to stress coupled with impaired glutamatergic regulation of dopamine
neurons may act on a sensitized mesostriatal dopamine system to result in increased striatal
dopamine dysfunction (see figure 2).
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Treatment Implications

Current pharmacological treatments for schizophrenia primarily operate as post-synaptic
D2/3 receptor antagonists (130). Whilst these bring symptomatic relief, they do not target
the underlying pathophysiology - even patients who have responded to antipsychotics show
elevated striatal dopamine synthesis capacity (131). Furthermore, antipsychotics show
limited effectiveness in targeting negative and cognitive symptoms.

Given the evidence that cognitive symptoms are linked to cortical hypofunction, including
reduced cortical dopamine release, it is unsurprising that dopamine blockade does not help
these symptoms. Furthermore, anti-dopaminergic blockade of ventral striatal regions may
impair motivation and affective processing, and so worsen negative symptoms. A clear
implication is that we need regionally selective treatments: dampening dopamine
neurotransmission in the striatum, specifically the dorsal striatum where dopamine elevation
is most marked, and augmenting it in the cortex. Animal studies suggest that some existing
pharmacological agents such as mirtazapine may be able to selectively augment cortical
dopamine transmission. Interestingly, mirtazapine is used as a treatment in stress related
disorders (133), and it may be an effective adjunctive treatment for negative symptoms in
schizophrenia (134).

Up-stream and down-stream genetic factors may have implications for treatment. Putatively
people with a high loading for up-stream genetic risk might show marked presynaptic
dopamine dysfunction, whilst those with a high loading for post-synaptic risk might show
minimal presynaptic dysfunction but would be highly sensitive to the effects of even small
amounts of dopamine release. There is evidence that a subgroup of individuals with
schizophrenia and co-morbid substance dependence (135) or cannabis-induced psychotic
symptoms (49) do not show increased dopamine synthesis or release, and that sensitivity to
the psychotogenic effects of cannabis is linked to these down-stream genetic risk factors.
Individuals predominantly affected by down-stream factors might be more sensitive to the
side-effects of D2/3 receptor blockade (136), but might tolerate partial agonists better.

Limitations

A number of the aspects of the model described await testing. It remains to be established if
genetic and environmental factors interact to sensitize the dopamine system, if there is
blunted cortical dopamine release in the prodrome, and if blunted cortical dopaminergic
function leads to striatal hyperdopaminergia. Moreover, whilst preclinical evidence supports
the glutamatergic circuit regulating dopamine, the specifics remain to be tested in humans
and reverse causality is yet to be excluded.

A number of the COMT findings are difficult to integrate into the model. There is no
evidence from GWAS supporting association with SNPs in COMT. In healthy individuals,
the Val allele is associated with increased social stress induced paranoia (106; 137). This
allele has also been associated with greater symptom severity in individuals with psychotic
disorders (138; 139). However, in individuals with a psychotic disorder, Met homozygotes
demonstrate increased psychotic reactivity to stress (140; 141). This does not fit with a
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model where reduced Met activity would be protective for individuals with a psychotic
disorder — where we propose a deficit of cortical dopamine. This inconsistency may be due
to the precise nature of the stressors under examination, or potentially due to gene-gene-
environment interactions.

Whilst glutamatergic and GABAergic alterations have been reported in neuroimaging
studies of schizophrenia (124; 142), and the prodrome (143), the precise molecular
abnormalities remain to be determined in vivo. The links between glutamatergic
dysregulation and dopaminergic signalling remain to be determined in schizophrenia (124),
although there is some evidence of this in the prodrome (144).

Conclusions

Altered presynaptic striatal dopamine synthesis and release is consistently seen in
schizophrenia. This is also seen to a lesser degree in the prodrome, and becomes worse as
frank psychosis manifests. Blunted cortical dopamine release has now been demonstrated in
schizophrenia, and there is increasing evidence that altered cortical function is linked to
striatal dopamine hyperactivity in people with prodromal symptoms, indicating a central role
for cortico-striatal dysregulation. Furthermore, it is now possible to begin to understand how
genetic and environmental risk factors may lead to striatal dopamine dysregulation by
impairing the cortical regulation of midbrain dopamine neurons. However, the precise
molecular mechanisms remain to be fully elucidated, and blunted cortical dopamine release
has yet to be investigated in the prodrome. Nevertheless, half a century on from the initial
formulations of the dopamine hypothesis, it is possible to see what we need to do in order to
rationally design medications that target the pathophysiology underlying the onset of the
disorder to treat it, or indeed potentially prevent it.
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Illustrating the normal mesocorticostriatal control of striatal dopaminergic function

A Dopamine
~ Glutamate
A GABA

Cortical dopamine acts on inhibitory D2
receptors (1) to limit the activity of excitatory
glutamatergic neurons projecting to the
midbrain (2), which limits striatal dopamine
release (5).

Glutamatergic (3) neurons acting on NMDA
receptors of GABAergic interneurons stimulate
GABA release (4) which limits striatal dopamine
release (5).

Illustrating the disrupted mesocorticostriatal control of dopaminergic function in schizophrenia,
ading to increased striatal dopa

A Dopamine
~ Glutamate
A GABA

Reduced cortical dopamine release (1) leads to
increased activity of excitatory glutamatergic
neurons projecting to the midbrain (2), which
increases striatal dopamine synthesis and
release (5).

Hypoactive NMDA receptors on GABAergic
interneurons (3) lead to reduced GABA release
(4) which also leads to increased striatal
dopamine synthesis and release (5).

Figure 1.

The regulation of mesostriatal dopaminergic function by cortical glutamatergic projections

and GABAergic interneurons
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Blunted

Figure 2.
Model integrating genetic and environmental factors, dopaminergic dysregulation and the

development of psychotic symptoms (DA=dopamine)
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