
Models of spatial and temporal dimensions of memory

Michael E. Hasselmo, James R. Hinman, Holger Dannenberg, and Chantal E. Stern
Center for Systems Neuroscience, Boston University, 610 Commonwealth Ave., Boston, MA 
02215

Abstract

Episodic memory involves coding of the spatial location and time of individual events. Coding of 

space and time is also relevant to working memory, spatial navigation, and the disambiguation of 

overlapping memory representations. Neurophysiological data demonstrate that neuronal activity 

codes the current, past and future location of an animal as well as temporal intervals within a task. 

Models have addressed how neural coding of space and time for memory function could arise, 

with both dimensions coded by the same neurons. Neural coding could depend upon network 

oscillatory and attractor dynamics as well as modulation of neuronal intrinsic properties. These 

models are relevant to the coding of space and time involving structures including the 

hippocampus, entorhinal cortex, retrosplenial cortex, striatum and parahippocampal gyrus, which 

have been implicated in both animal and human studies.

Introduction

The coding of space and time is essential for a number of different memory phenomena, 

including episodic memory, which by definition involves coding of where and when an event 

occurs. Studies in humans have analyzed memory in humans for spatial trajectories to goal 

locations [1–3], and the spatial location of objects and landmarks [4–6]. Performance of 

spatial memory tasks involves interactions of neural activity in structures including the 

hippocampus, paraphippocampal gyrus, retrosplenial cortex and prefrontal cortex [1–5]. 

Studies have also analyzed memory for the temporal order of events in episodic memory [6–

8], showing involvement of the hippocampus and parahippocampal gyrus. Research has also 

examined the disambiguation of overlapping spatial and non-spatial representations in both 

humans and animals [1,7,9].

Consistent with the patterns of activity observed in humans using fMRI, neurophysiological 

studies have demonstrated neurons that respond on the basis of spatial location of an animal 

in foraging tasks or tasks that require a specific memory of spatial location such as spatial 

alternation. Neurons in the hippocampus fire as place cells coding location [10,11] or time 
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cells coding the time interval during a behavioral task [12–14]. Neurons in the entorhinal 

cortex code spatial features including location in the environment [15–18], distance to an 

environmental boundary [10,19], allocentric direction [10,17], and running speed [20,21]. 

Neurons with more complex firing patterns incorporating location and head direction appear 

in structures such as the basal forebrain [22], retrosplenial cortex [23], and parietal cortex 

[24]. For many years, computational models have attempted to describe the mechanisms and 

functional role of coding of space and time in these structures and their potential role in 

behavior. This review will provide an overview of recent work addressing the coding of 

space and time in these structures.

Modeling of spatial memory (grid cells, place cells and splitter cells)

Models have addressed the neural coding of spatial dimensions relevant to spatial memory. 

This includes models of spatial coding in foraging tasks. Foraging tasks may not be 

considered traditional memory tasks, but the capacity of neurons to respond in a stable 

manner across different trials requires memory of the overall configuration of cues in an 

environment. Models have also addressed the memory of specific behaviorally relevant 

locations within an environment.

Modeling neural responses based on spatial location

Many studies have addressed the response of place cells and grid cells to spatial location 

[25,26]. Models have addressed the generation of place cells and grid cells by both path 

integration or the angle of visual cues. This includes sophisticated models of physiological 

mechanisms for grid cells based on path integration. These models use different mechanisms 

that include interactions of oscillatory dynamics as initially proposed by Burgess, Barry and 

O’Keefe [27–29] or based on attractor dynamics as proposed by researchers such as 

McNaughton or Fiete [30,31]. Many properties of these two model classes are compatible, 

so features of these models can be combined [27]. Other models have addressed the 

response of grid cells based on self-organization of input from place cells [32] or as a result 

of a probabilistic learning process [33] or the eigenvectors of the normalized graph 

Laplacian [34].

The loss of grid cell spatial selectivity with the inactivation of input that provides coding of 

heading direction [17] supports models that use path integration in generation of grid cell 

responses. Extensive data supports a role for attractor dynamics in generation of grid cell 

firing, including the modular properties of distinct populations of grid cells that share 

properties such as spacing and orientation and the ellipsoid shape of firing fields [15,18], 

and the change in correlation of grid cell firing with different anatomical distances between 

grid cells [35]. The role of oscillatory dynamics in coding of grid cells is supported by 

evidence that the intrinsic rhythmicity of entorhinal neurons differs with spatial scale [36] 

and shifts with running speed [20,36], and that inactivation of the medial septum causes loss 

of grid cell firing properties [37]. The effects of medial septum inactivation could be due to 

loss of GABAergic input that can drive network theta rhythm activity [38], or to loss of the 

cellular effects of cholinergic modulation that normally shift network dynamics from sharp-

wave spiking to theta rhythm dynamics [38,39] and normally enhance the influence of 
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external sensory input [40]. The loss of spatial coding could also be due to the loss of 

glutamatergic input from the medial septum that contributes to coding of running speed in 

the hippocampus [41,42].

Modeling the influence of boundaries

Physiological studies in animals demonstrate that place cell firing depends on the position of 

environmental boundaries [11]. This led to models that coded location based on selective 

firing of boundary cells [10,43]. This prediction was later supported by experimental 

evidence of boundary cells [19,44]. Modeling demonstrated how egocentric visual input 

about boundaries could be transformed to code allocentric spatial location [45]. These 

models demonstrate how place cells can be driven without grid cell input, since inactivation 

of grid cells does not abolish place cell firing [46].

Alterations of visual boundaries also influence the location of grid cell firing fields. The 

spacing of grid cell firing fields is compressed or expanded by movements of the 

environment walls [18], and this change may be specific to grid cells with larger spacing 

while sparing smaller spacing [15] though the earlier study showed compression of cells 

with small spacing [18]. The response of grid cells to barrier movement has been modeled 

based on selective influences of the angle and optic flow of visual cues from different parts 

of the visual field [47]. The computation of location from visual angle is shown in Figure 1. 

The regular pattern of grid cell fields is lost when shifting from a rectangular environment to 

a trapezoid environment [16], and this has been modeled based on field boundary effects 

[48] or the normalized graph Laplacian [34].

Grid cells, head direction and boundary cells have all been shown to fire in a stable manner 

when an animal is removed from the environment and then returned to the environment. This 

requires anchoring of the neural responses to features in the environment, as utilized in 

models showing how sensory cues observed when re-entering an environment can allow the 

accurate firing of grid cells [27,45,47] and head direction cells [49]. Consistent with this, 

grid cells exhibit greater consistency in the location of spatial firing near an environment 

boundary, and poorer consistency at greater distances from the boundary [50].

Modeling the encoding and retrieval of sequences

Models have also addressed the encoding and retrieval of sequences. In an influential model 

developed by Lisman and Jensen, the initial storage of a sequence of locations has been 

modeled using after-depolarization potentials triggered by high levels of cholinergic 

modulation [51,52]. This model includes separation of different elements of a sequence on 

different gamma cycles that are phase amplitude coupled with theta rhythm [52]. 

Considerable data supports this model, including evidence that different sequence positions 

exhibit greater gamma power at distinct phases of theta [8], and this segregation is related to 

successful temporal order memory. The maintenance of spiking activity associated with a 

sequence of locations allows strengthening of connections between place cells that can 

mediate later sequential replay of the sequence. This sequential replay of place cells occurs 

during sharp wave ripple activity observed in the local field potential in the hippocampus 

[53,54]. This sharp wave replay occurs during the low levels of cholinergic modulation that 
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occur in quiet waking or slow wave sleep [51,55,56]. These replay events could mediate the 

consolidation of previously encoded information during periods of quiet waking or slow-

wave sleep [6,38,53,54,57]. These replay events may correspond to information packets that 

form the basis of cortical cognitive processing [58]. Such information packets could use 

codes such as the residue number system suggested for grid cell coding [59].

Modeling of context-dependent disambiguation

Models have addresssed how the retrieval of spatial memory representations can be used to 

guide future decisions. This includes models in which retrieval of sequences guides spatial 

alternation and the selective retrieval of overlapping trajectories [56,60]. Models that allow 

selective retrieval of one out of many individual sequences can generate context-dependent 

neuronal activity [61,62]. These models can simulate the firing of splitter cells, that 

selectively respond on overlapping track segments based on the future or past turning 

response of a rat [9,63]. These circuit level mechanisms also allow simulation of the 

disambiguation of overlapping sequences in human subjects [1,64].

Modeling of goal-directed navigation

Models also address how the forward read-out of locations based on grid cell firing patterns 

allow selection of either the direct vector to a goal location [65–68] or a pathway dependent 

upon obstacles [67,69] as shown in Figure 2. These models are supported by experimental 

data indicating the replay of place cell sequences associated with goal-directed navigation 

[70–72]. The models are also supported by fMRI data in humans demonstrating 

hippocampal and parahippocampal activity at the start of a trajectory when a subject 

retrieves a previously learned overlapping trajectory [1,64]. Subsequent work showed that 

retrieval of a planned trajectory involves reactivation of intermediate locations on the 

trajectory [2]. Studies show coding of navigationally relevant information in fMRI activity, 

with hippocampus coding path length and entorhinal cortex coding the Euclidean distance to 

the goal [3,73]. Modeling shows how interaction of brain regions can allow performance 

based on semantic memory for the allocentric position of landmarks translated to the 

egocentric position of landmarks [45]. These models and other work on the influence of 

visual cues [47] are relevant to data showing the interaction of regions coding visual cues 

such as optic flow and feature angle with regions involved in navigation [73,74].

Modeling working memory for spatial location

Many spatial tasks require working memory for spatial location of an object either in 

allocentric or egocentric coordinates [75]. This has been modeled using attractor dynamics 

in which recurrent synaptic connections maintain a bump of activity representing the 

location of an object in a scene. Most models of attractor dynamics have focused on 

maintaining sustained activity in a full population of neurons for the full delay period. 

However, models show how activity might shift between different minicolumns [76]. The 

addition of inhibitory interneurons to the earlier model generates bursts of gamma frequency 

oscillations [77]. Experimental data on gamma oscillations [78] indicates that the pattern of 

neural activity during delay periods shows brief bursts of high frequency gamma oscillations 

similar to the model, in contrast to a background state of lower frequency beta oscillations.
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Modeling of temporal memory (time cells)

As noted above, neurophysiological data indicates that neurons in a number of different 

structures including hippocampus and entorhinal cortex respond selectively at specific 

temporal intervals within behavioral tasks [12–14]. In particular, the neural activity 

occurring at specific intervals during delay periods of behavioral tasks have been described 

as time cells. These temporal interval phenomena have been modeled in a number of 

different ways which could be tested experimentally by evaluating the relative contribution 

of synaptic properties, intrinsic neuronal properties or oscillatory dynamics.

Temporal intervals coded by synaptic interactions

The sequence of neural activity observed in some tasks can be modeled by complex synaptic 

interactions. Sequence retrieval based on the fast time constants of glutamatergic synaptic 

potentials would cause fast sequence retrieval such as that observed during brief sharp-wave 

ripple events observed in the hippocampal EEG [53,54,57], in contrast to the slow transitions 

of time cells [12]. Therefore, models of the slow transitions between different cells over a 

time scale of seconds require complex network dynamics, such as the slow activation of 

different attractors referred to as context cells [79,80]. Similarly, slow transitions between 

active time cells can be obtained by modeling different dynamics of synaptic influences 

within recurrent neural network models [81]. A number of mechanisms have been proposed 

for coding position within a sequence, which includes addressing data on the verbal memory 

for serial order lists [80]

Temporal intervals coded by intrinsic properties

Another mechanism for obtaining slow transitions between neuronal populations is to utilize 

intrinsic conductances with slower time constants. For example, models have replicated time 

cells using exponential decay with slow time constants [82,83], and have shown how this 

could arise from slow decay of a calcium-activated non-specific cation current [55,84] or a 

change in spiking threshold due to the calcium activated potassium current [83]. These 

models could be tested by altering the level of neuromodulators such as acetylcholine that 

regulate these intrinsic properties.

Temporal coding by oscillatory interactions

Models have also shown how temporal intervals can be coded by oscillatory interactions. 

This includes models in which the discrete temporal order of stimuli is coded by the position 

of gamma frequency oscillations within a theta frequency oscillation [52], which has been 

supported by recent data showing phase specificity of gamma oscillations related to stimulus 

order [8]. Another set of models show that a continuous representation of temporal interval 

can be coded by interference between different oscillations [60,85,86]. Simulations using 

these models demonstrated the same oscillatory dynamics that generate grid cell firing 

patterns could also generate time cell firing patterns [60] as shown in Figure 3. These 

models generated predictions of multiple time cell firing fields that are supported by 

experimental data [87]. The models that depend upon oscillatory interactions for coding of 

both space and time are supported by data showing that the inactivation of the medial 

septum causes loss of both grid cell firing in the entorhinal cortex [37] and the loss of time 
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cell firing in the hippocampus [88]. However, further studies must determine whether these 

effects are due to loss of oscillatory input or loss of cholinergic modulation arising from the 

medial septum.

Temporal coding between episodes

Note that most of the models described here focus on the timing of events within specific 

episodes, rather than the temporal order between different episodes, which requires larger 

scales of temporal coding. Modeling studies have proposed that neurogenesis within the 

dentate gyrus could provide different populations of granule cells allowing contextual 

coding between memories on a much larger temporal scale [89]. Work in humans suggests 

that adult neurogenesis additionally impacts the entorhinal cortex [90].

Conclusions

In summary, models have demonstrated potential mechanisms for a range of different spatial 

and temporal coding properties within cortical structures, and experimental data supports 

aspects of these different mechanisms. In particular, some classes of models can account for 

both the coding of spatial location in an environment as well as the coding of time during 

running in one location on a treadmill, including the oscillatory interference models 

[27,29,60], attractor dynamic models [83,91] and models using Laplace transforms [82]. 

These models have inspired and guided many experiments testing physiological mechanisms 

of spatial and temporal coding [13,15,17,18,20,21,87,88]. Modeling also demonstrates how 

coding of spatial location and time can form a framework to form the associations necessary 

to link events to the spatiotemporal trajectory of an episodic memory [56,82]. Modeling of 

episodic memories as trajectories has inspired experimental tests of the coding of memory in 

humans [1–3,69,73]. However, a full understanding of the network dynamics for coding 

space and time in episodic memory will require both more sophisticated and detailed models 

as well as more explicit experimental tests of the different mechanistic components of these 

computational models.
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Highlights

• Neurons show coding of time and spatial location in memory-guided tasks

• Models demonstrate how spatial coding could arise from integration of self-

motion

• Models show how spatial coding could depend on angle and distance of visual 

stimuli.

• Models show how the same neuron can code both location and time interval.
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Figure 1. 
A. Computation of the location of an animal in a square environment with barriers can be 

determined from the angle and distance to visual features [47]. Movement of barriers has 

been shown to shift neurophysiological codes for location [15,18]. B. Figure showing the 

egocentric view of visual features at location in A. C–D. Same as A–B for a different 

location.
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Figure 2. 
A. Model for goal-directed behavior based on linear forward trajectory planning [68]. 

Circles represent the location where previous place cell firing took place. Triangle indicates 

animal location. Light gray lines indicate sequential sampling of forward trajectories 

through the environment. Darker line ending in circle indicates the trajectory that overlaps 

with the previously visited place cell firing field that was associated with a goal location, 

allowing selection of this trajectory. B. Different trajectories obtained by sampling at 
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multiple spatial scales, allowing initial selection of trajectories to the large place cell firing 

field, followed by selection of trajectories to smaller place cell firing fields.
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Figure 3. 
Coding of space and time by the oscillatory interference model [29,60]. A. The model 

simulates grid cell firing as a simulated rat runs on a foraging trajectory (gray lines). Black 

dots show the location of the simulated rat each time the grid cell model generates a spike. 

B. The same model addresses activity during spatial alternation on a T-maze (top) with a 

period of running on a running wheel during the delay period between choices (lines on 

bottom). C. The same model shows location dependent firing on the T-maze (dark segments 
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in top plot) as well as consistent firing at specific intervals of time or distance during 

running on the running wheel (dark segments on bottom lines).
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