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Abstract

The “silent epidemic” of traumatic brain injury (TBI) has been placed in the spotlight following
investigations and popular press coverage of athletes and returning soldiers with single and
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repetitive injuries; however, treatments to improve the outcome for patients with TBI across the
spectrum from mild to severe TBI are lacking. Neuroinflammation may cause acute secondary
injury after TBI, and it has been linked to chronic neurodegenerative diseases. Despite these
findings, anti-inflammatory agents have failed to improve outcomes in clinical trials. We therefore
propose in this review a new framework for future exploration of targeted immunomodulation after
TBI that incorporates factors such as the time from injury, mechanism of injury, and secondary
insults in considering potential treatment options. Structured around the dynamics of the immune
response to TBI — from initial triggers to chronic neuroinflammation — the ability of soluble and
cellular inflammatory mediators to promote repair and regeneration versus secondary injury and
neurodegeneration is highlighted, with knowledge from human studies explicitly defined
throughout this review. Recent advances in neuroimmunology and TBI-responsive
neuroinflammation are incorporated, including inflammasomes, mechanisms of microglial
polarization, and glymphatic clearance. In addition, we identify throughout this review where
these findings may offer novel therapeutic targets for translational and clinical research,
incorporate evidence from other brain injury models, and identify outstanding questions in the
field.

Keywords

traumatic brain injury; inflammation; secondary brain injury; repair; neurodegeneration;
microglial activation

l. INTRODUCTION AND OVERVIEW

The Centers for Disease Control estimates 1.7 million people suffer traumatic brain injury
(TBI) in the United States each year and 5.3 million are living with TBI-related disability.
This may grossly underestimate the scope of the epidemic, particularly for mild TBI
(mTBI)2, and globally the incidence of TBI appears to be increasing.! TBI and mTBI are
“signature injuries” of the wars in Iraq and Afghanistan, primarily due to blast exposure
from conventional and improvised explosive devices, and can similarly represent
consequences of civilian terrorist attacks. In addition, TBI has now been linked to post-
traumatic stress disorder, memory deficits, chronic traumatic encephalopathy (CTE), and
chronic neuroinflammation.3

The inflammatory reaction to TBI was thought to occur solely through peripheral immune
mediators entering via a disturbed blood brain barrier (BBB); it is now recognized as a
robust and complex interaction between central and peripheral cellular and soluble
components influenced by patient age, sex, mechanism of injury (focal, diffuse, blast),
degree of injury (mild, repetitive mild, severe), secondary insults (hypoxemia, hypotension),
therapeutic interventions, and genetic variability. TBI leads to early resident microglial
activation and peripheral neutrophil recruitment, followed later by infiltration of
lymphocytes and monocyte-derived macrophages.# Simultaneously, pro- and anti-
inflammatory cytokines vie to promote and terminate the post-traumatic neuroinflammatory
response, and chemokine signaling results in the activation and recruitment of immune cells
towards the lesion.>2
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This post-traumatic inflammation may be beneficial, by promoting clearance of debris and
regeneration, and/or harmful, mediating neuronal death and progressive neurodegeneration
(Figure 1). Several multicenter clinical trials have been conducted with therapies shown in
pre-clinical and single center trials to have beneficial anti-inflammatory effects.
Unfortunately, each trial failed to show benefit; several therapies were deleterious.19-17 We
therefore propose in this review a new framework to guide future preclinical and clinical
trials to optimize the immune response to TBI:

1. Limit the acute pro-inflammatory response to the level needed for clearance of
debris and danger signals.

2. Promote an anti-inflammatory and pro-regenerative immune phenotype.
3. Prevent the development of chronic neuroinflammation and return to normal
function.

Using this framework, we review the dynamics of the immune response to TBI, progressing
from initiation of acute inflammation by danger signals and early inflammatory mediators,
to subacute inflammation occurring days to weeks after injury, and lastly to chronically
activated elements of the immune system which may remain active for months to years and
have been linked to the development of traumatic encephalopathies. Mechanisms that
balance pro-inflammatory and pro-reparative immune activation are discussed, as well as
potential for therapies to promote beneficial aspects of inflammation. We discuss recent
discoveries in immunology and our current understanding of the role these processes and
systems may play in the immune response to TBI. Acknowledging the limitations of TBI
models!®19, we incorporate a comprehensive review of what is known from human studies
over the past two decades of TBI research; though, notably, limited human data are available
of mTBI. Lastly, considering the current knowledge of post-traumatic neuroinflammation we
propose new areas for advancing translational and clinical research.

Il. ACUTE AND SUBACUTE NEUROINFLAMMATION

A. Triggers—DAMPs, Mitochondrial stress, Excitotoxicity, Vascular Injury

Cellular membrane disruption as a result of primary mechanical insult or secondary injury
causes release of damage associated molecular patterns (DAMPSs) capable of triggering and
amplifying neuroinflammation (Table 1). Examples include DNA and RNA, high mobility
group box 1 (HMGB1), S-100 proteins, adenosine triphosphate, uric acid,
lysophospholipids, and lipid peroxidation-derived carbonyl adducts of proteins, among
others.#20:21 |n response, tumor necrosis factor (TNF)a, interleukin (IL)-6 and IL-1p are
up-regulated rapidly by local glial cells and infiltrating immune cells?2 and represent early
effectors that drive post-traumatic neuroinflammation (Table 2).

The dual nature of inflammation was demonstrated in experimental models investigating the
role of TNFa and inducible nitric oxide synthase (iNOS) after TBI. TNFa is linked to brain
edema, BBB disruption, and recruitment of leukocytes.® However, TNFa ™~ mice had
impaired motor function and larger lesions at 4 weeks after injury, despite showing early
neuroprotection.23 Similarly, although TBI increased iNOS expression in the brain with
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multiple pro-inflammatory and neurotoxic effects, genetic or chemical iNOS blockade
resulted in significantly worsened spatial memory 2—3 weeks after injury.24

Cell death via programmed necrosis, such as necroptosis through TNFa mediated RIP
kinase activation,?%26 may lead to a vicious cycle of necrosis—membrane disruption—
DAMP release—necrosis and amplification of inflammation. The prototypical DAMP,
HMGBL1, is increased in cerebrospinal fluid (CSF) of patients after severe TBI and is
associated with elevated intracranial pressure (ICP) in adults and poor outcome in
children.2”:28 HMGB1 is a structural DNA-binding protein that regulates transcription by
stabilizing nucleosomes under normal conditions.28 It can be released from cells by
membrane disruption or actively secreted by monocytes/macrophages and signals through
receptor for advanced glycation end products and toll like receptor 2 (TLR2)/TLR4
receptors to increase production and release of cytokines.2®

One mechanism of cytokine production triggered by DAMPSs is via activation of the
inflammasome complex. Binding to intracellular pattern recognition receptors such as the
NOD-like receptor containing an N-terminal pyrin domain (NLRP) family or absent in
melanoma (AIM) leads to auto-activation of caspase-1 and processing of pro-IL-1p and pro-
IL-18 to their active forms.2930 Relatively few inflammasome complexes are expressed in
the brain: NLRP1 and AIM2 in neurons,31-33 NLRP3 in astrocytes33 and microglia are
present in both mice and humans.34-36 In patients, NLRP1 and caspase-1 are increased in
the CSF after severe TBI and are associated with unfavorable outcomes.32 In mice,
neutralization of the NLRP1 and NLRP3 inflammasomes attenuated IL-1p processing and
reduced lesion volume.31:32 Inflammasome-dependent cytokine production also contributes
to disease progression in mouse models of multiple sclerosis, Alzheimer’s disease, and
amyotrophic lateral sclerosis.3437:38 However, it remains unclear which inflammasome
complexes are the primary producers of IL-1p and IL-18 after TBI, and whether neurons,
microglia or astrocytes are the key cellular mediators of inflammasome-mediated tissue
damage.

Concurrent with the release of DAMPs, a massive increase in extracellular glutamate (and
other excitatory amino acids)3%-4! may occur and lead to excitotoxic neuronal injury via
activation of neuronal glutamate receptors, such as N-methyl-D-aspartate (NMDA) and a.-
amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, followed by Ca**-
dependent degeneration.*2 Elegant interactions between inflammatory mediators and
glutamate signaling have been demonstrated in mice, including: 1) TNFa and IL-18
mediated changes in cell surface expression, distribution, and function of NMDA and
AMPA receptors, 2) NMDA receptor induction of inflammatory gene expression, and 3)
TNFa and IL-1p mediated reduction in astrocytic glutamate transporters resulting in
impaired glutamate clearance from the synaptic cleft.#3> NMDA receptor blockade is
therefore an attractive therapeutic strategy, however, antagonists have failed in clinical TBI
trials due in part to a limited therapeutic window, off-target neurotoxicity, and as a result of
inhibiting normal synaptic function and plasticity.** In response to TBI and glutamate
toxicity, high levels of the endogenous neuroprotectant adenosine is produced from
breakdown of adenosine triphosphate and mRNA.4> Activation of the adenosine A1 receptor
after TBI has anti-excitotoxic*® and anti-inflammatory effects in mice,’ however systemic
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administration of adenosine to patients may result in bradycardia and hypotension. A variety
of adenosine related strategies are being actively investigated to mitigate excitoxicity and
various facets of acute and chronic neuroinflammation.*8

Mitochondrial dysfunction and reactive oxygen species (ROS) generation, caused by direct
and indirect injury after TBI, has also been identified as a trigger of neuroinflammation.*?
Translocation of the phospholipid cardiolipin from the inner to outer mitochondrial
membrane, shown to occur after experimental TBI, tags damaged mitochondria for
mitophagy but may also be a final pathway for inflammasome activation.>%:51 Failure of
mitophagy and resultant cell death can lead to release of mitochondrial DAMPSs as reported
for mitochondrial DNA after TBI in children.52 These mitochondrial danger signals produce
local and systemic responses by the interaction with receptors on immune cells:
mitochondrial DNA by TLR9 on dendritic cells and N-formyl peptides by formyl peptide
receptor-1 on neutrophils.>3 Membranes with mitochondrial cardiolipins on their surface are
engulfed via cluster of differentiation 36 (CD36)-dependent phagocytosis.>* There is a
paucity of data regarding CD36-mediated inflammatory response after TBI, however, CD36
plays a beneficial role in neurological outcome in patients with intracranial hemorrhage.>>

In addition to inflammatory triggers released from neurons and glia, trauma to the
vasculature can lead to leakage of blood components into the cerebral parenchyma,
including complement and the potent neurotoxin and immune modulator cell-free
hemoglobin (fHb).56 Complement factors have been detected in brain tissue®’ and CSF®8 of
patients within hours of severe TBI, and have been found to correlate with BBB
permeability. Although required for normal wound healing, evidence from murine
models®9-1 suggests acute dysregulation of complement may cause secondary injury after
TBI (for review:%2). Inhibition of alternative complement pathway®3 or the membrane attack
complex®65 in a weight-drop model of TBI in mice reduced neurodegeneration and axonal
loss, and improved neurologic outcomes. Also released into contused areas of brain, fHb-
haptoglobin complexes are cleared by CD163 receptors on microglia and macrophages with
resultant differentiation to an anti-inflammatory phenotype.5® If the haptoglobin-CD163
pathway is dysfunctional or is outcompeted by the amount of fHb present, fHb and its
breakdown products heme and iron can induce direct neuronal toxicity by generating ROS
and scavenging nitric oxide (NO).57 This pathway is implicated in the development of post-
traumatic epilepsy in rodents.®® CSF levels of soluble CD163 and the iron-binding protein
ferritin are increased after TBI in children and correlate with injury severity and unfavorable
outcome.59 Thus, inflammation triggered by fHb and its degradation products could be
therapeutic targets after TBI.

Several of the biochemical and molecular mechanisms of secondary injury listed above have
been reported in blast-induced mTBI. Characterized by axonal, periventricular, and
hippocampal neuronal injury, blast-induced mTBI is associated with cytokine and
chemokine release, adenosine production (likely from mRNA breakdown), and activation of
microglia.”®"1 Promising neuroprotective effects were demonstrated with the anti-
inflammatory drug minocycline in this model.”2

Nat Rev Neurol. Author manuscript; available in PMC 2018 March 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Simon et al. Page 6

B. Cellular mechanisms regulating acute neuroinflammation following TBI

i. Dynamics of cellular response to TBI—The first circulating immune cells to
infiltrate the CNS after trauma are neutrophils, which typically peak in mice within 24-48
hours before rapidly declining.”34 Diapedesis between endothelial cells is dependent on
binding of integrins to vascular adhesion molecules, and within 4 hours of experimental TBI
the expression of neutrophilic vascular adhesion molecules endothelial (E)-selectin (CD62E)
and intracellular adhesion molecule-1 (CD54) is increased on endothelium of the injured
hemisphere.”> Administration to mice of antibody to the CD11d/CD18 integrin, located on
cell surface of neutrophils and monocytes, reduced leukocyte infiltration to the CNS as well
as the systemic inflammatory response to TBI (Box 1).76:77 Chemokine gradients are
established (e.g. C-C motif chemokine ligand 2 [CCL2]) that attract monocytes from the
circulation to injured brain where they differentiate into macrophage subpopulations
distinguished by relative cell-surface expression of the chemokine receptors, C-C motif
chemokine receptor 2 (CCR2) and CX3CR1 (inflammatory monocytes:
CD11b*CD45NCCR2*Ly6CN | patrolling monocytes: CD11b*CD45MCX3CR1%)78.
Chemokines and their receptors play several crucial roles in response to TBI, and the reader
is referred to several excellent reviews on this topic: 8. Studies of monocyte infiltration in
mice have demonstrated accumulation within the lesion through 3 days post-injury.’2:80
Dendritic cells (DCs), T lymphocytes and natural killer cells are similarly recruited during
this period,8! but at lower numbers.

Box 1

Systemic Inflammatory Response Syndrome and the Compensatory Anti-
Inflammatory Response

In this review we focus primarily on the neuroinflammatory response to TBI. A systemic
inflammatory response syndrome (SIRS) and compensatory anti-inflammatory response
have also been described after isolated TBI that may increase risk of nosocomial
infection or multiple organ dysfunction. Via the sympathetic and parasympathetic
nervous system, glymphatic and lymphatic clearance, hypothalamic-pituitary-adrenal
axis, and disrupted blood-brain-barrier, there are several pathways for CNS injury to
affect the peripheral immune response. In addition, therapeutic agents routinely used in
neurocritical care such as sedatives, antiepileptics, and hyperosmolar agents may affect
peripheral immune function. Age appears to be an important factor, for example early
neutrophilia in adults is associated with significantly greater oxidative burst activity?19
whereas neutrophils in children with TBI have significantly reduced ROS generation.220
Perhaps the most important factor influencing the characteristics of the systemic
inflammatory response to TBI is time from injury. Although few studies have carefully
studied the time course of peripheral immune function, there appears to be a marked
immunosuppressed state at ~ 1 week out from TBI that corresponds to the time of peak
nosocomial infection rate. For excellent review and future directions, the reader is
referred to: 221,

Concurrently within the CNS, astrocytes, a vital regulator of CNS inflammation, undergo
reactive astrogliosis characterized by morphological and functional adaptations including
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up-regulation of GFAP and production of cytokines and chemokines that further recruit and
activate immune cells (for review: 82:83). YKL-40, a marker of reactive astrocytes, is
significantly elevated in the CSF of adults with severe TBI on day 2 and peaked on day 4
post-injury (Table 3). Microglia undergo a similar transformation in morphology and
function with an initial peak approximately 7 days post-injury.86.84.85

ii. Pro and anti-inflammatory roles of microglia—The concept of post-traumatic
neuroinflammation as a “double-edged sword”8®, with both beneficial and injurious effects,
has recently been expanded to include the function of microglia.8”:88 Similar to peripheral
macrophages, microglia respond to changes in their microenvironment to become polarized
along an activation spectrum ranging from classical M1-like to alternative M2-like (Figure
2).89 This concept has evolved from the canonical M1/M2 subset classification to reflect
mixed-phenotypes and the functional plasticity of tissue macrophages / microglia to changes
in the microenvironment. Stimulation by DAMPs, free radicals, or pro-inflammatory
cytokines such as interferon-(IFN)-y induce a M1-like phenotype characterized by
production of pro-inflammatory cytokines (e.g. IL-1p, TNFa), chemokines (e.g. CCL2,
CXCL9), ROS generation, and reduced phagocytic activity.84-91 Although M1-like ‘pro-
inflammatory’ cells are often presumed to be harmful, a well-regulated M1-like response
may be neuroprotective after TBI. An exaggerated or prolonged M1-like response, however,
can lead to secondary brain injury and drive a self-propagating hyperinflammatory state.92:93
The M2a-like “alternative’ phenotype83-91, in response to IL-4 and IL-13 stimulation, is
associated with production of anti-inflammatory cytokines and increased phagocytic
activity.9091 The M2c-like “deactivated’ phenotype occurs in response to IL-10,
glucocorticoids, or uptake of apoptotic cells regulates tissue repair and remodeling.90:91
Lastly, the M2b-like ‘intermediate’ phenotype is stimulated by immune complex exposure or
TLR ligands®-91 and has both pro- (IL-1, IL-6, TNFa) and anti-inflammatory (IL-10)
effects.90:91 The degree to which microglia assume a particular phenotype (or multiple
phenotypes) is dependent upon these and other changes in the lesion microenvironment
driving complex intracellular signaling pathways, influenced by genetic and epigenetic
factors, that may offer additional opportunities for therapeutic intervetion.%1:94

Microglial polarization has been shown to vary over time and between different TBI models.
In mice, activated microglia demonstrate a bimodal increase after focal contusion with an
initial M2-like peak at 7 days followed by an M1-like peak at 21-28 days; though, the bulk
of activated microglia have mixed M1-/M2-like activation markers.81.84.93 |n diffuse brain
injury, M1-/M2-like polarization dynamics are strikingly different, likely due to altered
cellular immune responses that include reduced neutrophil infiltration and restricted
macrophage/microglial accumulation to white matter regions that incurred greatest damage.
Diffuse brain injury results in transient increases in IL-1p, TNFa, and CD14 expression in
the cortex and hippocampus of mice as early as 4 hours post-injury that return to baseline by
72 hours.? In addition, iINOS+/Arginasel+ microglia/macrophages are also increased at 24
hours post-injury,% indicating that diffuse injury also up-regulates mixed M1- and M2-like
activation markers. However, the functional role of M1-/M2-like phenotypes in axonal injury
and repair following diffuse brain injury remains to be elucidated.
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iii. Links to adaptive immune response—The adaptive immune response mediated by
T cells and B cells can strongly influence microglia phenotype and function, but the role of
the adaptive immune system after TBI remains rather unclear. T cells infiltrate injured
tissues after CNS injury and sequestration of lymphocytes in lymph nodes by FTY720
administration results in reduced inflammation and better recovery in rodents with spinal
cord injury.97-%9 However, FTY720 also acts directly on CNS cells complicating data
interpretation. On the other hand, mice deficient in T cells (due to deficiency of RAG or
MHCII genes) have worse outcomes in CNS injury models,100.101 syggesting a dominant
neuroprotective effect of T cells.

Somewhat counter-intuitively, activation of autoimmune T cells in mice that provoke
myelin- targeted encephalitis provides protection from secondary neurodegeneration in CNS
injury, coined *protective autoimmunity’.191-104 One mechanism for this protection may be
T cell production of neurotrophic factors that act on neurons and astrocytes to promote
survival and repair.105106 T cells are required for normal CNS development, as mice
deficient in T cells show cognitive and behavioral developmental abnormalities, suggesting
that T cells also contribute to the development and perhaps maintenance of the healthy
brain.197 As well as regulating the M1/M2-like balance, T cell-produced IL-4 protects
neurons through potentiation of neurotrophin signaling.109 Unusually, IL-4-mediated T cell
protection of injured CNS tissue does not appear to require antigen-specific receptor
activation of T cells, and neurons directly induce 1L-4.100 The IL-1 family alarmin IL-33 is
released from damaged cells, and is also neuroprotective after CNS injury in mice.108 1L-33
is known to act on Th2 cells that produce 1L-4;199 hence 1L-33 may provide a link between
CNS injury and activation of IL-4 production. An IL-33-responsive population of tissue-
resident regulatory T cells has been identified in muscle!19111 and gut of mice,12 and
contributes to resolution of inflammation and wound repair in those tissues. It is intriguing
to speculate that a similar 1L-33-Treg axis could operate in human brain after TBI.

Specific mechanisms of T cell mediated protection versus damage need to be precisely
targeted to produce benefit. The methods used to invoke a CNS injury-protective
autoimmune response are also used to induce the rodent model of multiple sclerosis,
experimental autoimmune encephalomyelitis (EAE). Th17 cells, named because of their
production of IL-17 along with other pro-inflammatory cytokines, are thought to drive
inflammatory demyelination of the spinal cord in EAE.113 Th17 cells and other ‘type 17° T
cells have been associated with myriad autoimmune and inflammatory conditions4 but
have not yet been investigated in TBI. Type-17 responses are promoted by cytokines known
to be released after TBI in humans, particularly IL-1B, and induce CXCL8 and neutrophil
recruitment. In ischemic stroke, harmful IL-17 is largely produced by ‘type-17’ y8T cells
that rapidly infiltrate the injured brain.11® These cells are strongly influenced by the remote
gut environment, as antibiotic-induced dysbiosis of gut microbial flora resulted in protection
from stroke that could be linked to reduced frequencies of IL-17* y8T cells.116 The
profound impact of the gut microbiome on peripheral tissue immune responses, including
the CNS, is a recurring theme in immunology.117-119 CNS-gut communication may also
influence cognition, mood and anxiety.120.121 |t js thus possible that antibiotic

Nat Rev Neurol. Author manuscript; available in PMC 2018 March 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Simon et al.

Page 9

administration or changes in diet associated with intensive care unit hospitalization after
severe TBI could inadvertently alter this gut microbiome-brain-inflammation axis.

Lymphatic drainage of body tissues regulates interstitial fluid and removal of waste
products. The lymphatics also support immune surveillance by carrying macromolecules and
activated dendritic cells bearing foreign antigens to local lymph nodes where they can be
presented to activate the adaptive immune response. This may represent a critical step, since
naive T and B cells typically circulate through lymph nodes via blood and efferent
lymphatics but do not enter non-lymphoid tissues until primed. Until recently, the brain was
considered an immune privileged site with lack of lymphatic drainage supporting the
blinding of the peripheral immune system to ongoing events in that tissue. However,
adaptive immune responses are primed and recruited following CNS injury, and waste
products must be rapidly cleared from this highly metabolic organ. Technological advances
in imaging that allowed for interrogation of brain drainage in closed skull systems have
resolved these paradoxes. Two most likely intercepting systems that drain brain tissue have
been delineated in mice. The ‘glymphatic system’, describes the astrocyte-regulated
convective bulk flow of CSF from the paravascular space through interstitial fluid in an
arterial-venous direction.122.123 This flow allows for rapid entry of small molecules, and
perhaps more importantly for fluid drainage and clearance of metabolites, soluble proteins
and waste products including beta amyloid from the brain interstitial space.122.124.125
Glymphatic flow is greatly increased during sleep, associated with increased brain interstitial
space volume; this can be partly attributed to mechanical mechanisms as lateral posture in
awake mice replicated the increased flow compared to upright posture.126:127 The second
CNS clearance system consists of lymphatics that line the dural sinuses and meningeal
arteries.128:129 These vessels have classical lymphatic architecture and drain to the deep
cervical lymph nodes—providing a direct conduit between the brain and the peripheral
immune system. They also contain immune cells and macromolecules, mimicking peripheral
lymphatics. Brain lymphatics include populations of T cells and B cells,129 which have
presumably migrated through and surveyed the brain tissue.

TBI impairs the glymphatic system drainage in rodent models, 30 resulting in accumulation
of damage and waste products such as Tau,124 and providing a potential link between injury-
induced disruption of glymphatic drainage and development of CTE. Inflammatory astrocyte
activation may amplify the effects of mechanical damage on glymphatic flow after TBI.
Effects of TBI on brain lymphatic drainage to deep cervical lymph nodes have not yet been
investigated, but one could envision that TBI would readily alter the associated lymph
vessels. Accumulation of waste products due to impaired lymphatic drainage might trigger
neuroinflammation by activating pattern recognition receptors on microglia. The interaction
between altered lymphatic drainage and neuroinflammation and ensuing long-term
consequences therefore warrants further investigation.

C. The impact of secondary insults on the acute inflammatory response to TBI

A critical determinant of outcome after TBI, particularly in severe TBI, is the presence of a
concurrent secondary insult such as polytrauma, hypotension, and/or hypoxemia. With
severe TBI, secondary insults occur in as many as two-thirds of victims.131 These insults are
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frequently hemorrhagic in nature, compromising perfusion and oxygen delivery to the
injured brain.132 Analysis of >2000 patients with severe TBI revealed a mortality rate of
72% for combined injury vs. 46% for TBI alone.133

Despite the importance of polytrauma and secondary insults in TBI, there has been little
study of their impact on the cerebral or systemic inflammatory responses in both pre-clinical
and clinical investigations. Although one might anticipate that polytrauma and/or secondary
insults, by superimposing tissue hypoxemia and/or ischemia onto the traumatic insult, would
amplify the local inflammatory response in brain, surprisingly that has not been observed.
Instead, both pre-clinical and clinical studies have revealed that second insults shift the
cytokine response to a more anti-inflammatory phenotype, amplifying the 1L-10 response.
Shein et al.134 studied the impact of a brief period of severe hemorrhagic shock (HS) after
controlled cortical impact TBI in mice. The combination of TBI plus HS led to nearly 100-
fold and 30-fold increases in serum IL-10 levels vs. TBI or HS alone. Also, six pro-
inflammatory cytokines and chemokines, namely IP-10, TNFa, CXCL1, CCL2, CCL3, and
CCL11 were all increased in serum after TBI alone but not after TBI plus HS. In addition,
animals with combined TBI and HS had lower serum IL-6 vs. TBI alone. However, despite
worsening of both long term behavioral and histological outcomes by HS after TBI, 13 the
local cytokine and chemokine responses in brain were not appreciably altered.

Clinical data, in general, parallel these pre-clinical findings. Relative to patients with TBI
alone, patients with TBI plus polytrauma have increased serum concentration of the anti-
inflammatory agents IL-10, IL-1ra, an STNFr-I and no change in pro-inflammatory
cytokines IL-1@ and TNFa.136 Kumar et al.137 carried out a trajectory analysis of cytokines
and adhesion molecules in serum and CSF after severe TBI in 114 adults. Again, serum
IL-10 levels were higher among individuals with TBI plus polytrauma versus isolated TBI. It
remains unclear, however, if all types of secondary insults produce a similar shift to an anti-
inflammatory phenotype, or whether HS confers a unique effect.

Indeed, several forms of peripheral injury such as skeletal fracture or hepatic contusion may
increase the circulation of pro-inflammatory cytokines in patients. To address the effect of
peripheral injuries on TBI outcomes, combined models that incorporate long-bone fracture
have increased in use.138:139 Shyltz et al.240 reported findings on a mouse model of tibia
fracture plus diffuse brain injury in which mice with combined injury exhibited increased
anxiety-related behavior and brain atrophy. Associated with these outcomes, the combined
injury group had evidence of increased astrogliosis, neutrophil infiltration, and brain tissue
IL-1p relative to mice with isolated fracture or TBI. Similarly, the systemic administration of
pro-inflammatory mediators 1L-18141 and lipopolysaccharide#2 in rodent models of diffuse
TBI exacerbate the neuroinflammatory response, result in larger contusion volume, and
worsen behavioral outcomes. Whether this was mediated directly via binding to receptors on
microglia and astrocytes, or through effects such as hypotension or hyperthermia may
confound the results of these studies.

Finally, there has been limited study of the impact of secondary insults in mTBI. Titus et
al.143 reported that a brief period of imposed hyperthermia to 39°C beginning 15 min before
and continued for 4 hours after mild fluid percussion injury (FPI) in rats, produced cognitive
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deficits despite the use of an injury level that was otherwise devoid of cognitive deficits.
Cooling back to normothermia at 15 min after TBI prevented development of the deficits.
Amplification of neuroinflammation by hyperthermia was implicated. Given the prevalence
of concussions during the summer months in training camps for sports such as football, this
observation if translated to humans could be important.

D. Inflammation-mediated neurogenesis, gliogenesis, and angiogenesis

Neuronal death after TBI may be mitigated by an increase in neuronal progenitor cell (NPC)
proliferation, migration to injured brain regions, differentiation to neurons, and integration
into neural networks.144 Similar to the dual effects of inflammation on secondary brain
injury, experimental evidence suggests that inflammatory mediators are a key component of
neurogenesis and may support or hinder NPCs at multiple steps. For example, microglia
stimulated to an M1-like phenotype with LPS reduce adult hippocampal neurogenesis in the
mouse,14° an effect similarly seen with pro-inflammatory cytokines TNFa., IL-1p, and
IL-6.146 This was reversed by treatment with minocyclinel#® or indomethacin.147 In
contrast, M2-like microglia, stimulated by IL-4 or low-dose IFN-y, release neurotrophins
such as insulin-like growth factor-1 (IGF-1) and induce neurogenesis.1*® This effect was
seen in mice with addition of a running wheel to the cage after TBI, simulating clinical
rehabilitation, which reduced M1-like microglial activation and was associated with
increased production of IGF-1 (as well as IL-10 and brain-derived neurotrophic factor) to
increase neurogenesis and improve cognitive outcomes.24? NPCs also express chemokine
receptors, such as CCR2 and CXCR4, and chemokines may direct their migration to the area
of injury.150

Brain atrophy increases over time after TBI,151-157 and yet most survivors of TBI will show
a temporally linked degree of functional recovery.158 This recovery represents brain
plasticity and reorganization, in addition to recovery of function of existing neuronal
pathways. Although data from TBI models are limited, experiments modeling other forms of
brain injury suggest neural-immune interactions may be critical to forming and
strengthening new synaptic connections.1%-161 The degree of activation and the local
inflammatory milieu likely define whether any particular cytokine or inflammatory cell type
benefits or disrupts brain plasticity. For example, in a GFAP-IL-6 transgenic mouse model,
over-expression of IL-6 caused a significant reduction in long-term potentiation (LTP) in the
hippocampus.15% However, when anti-1L-6 is used to block basal levels of 1L-6 signaling,
there is a significant prolongation of LTP and improved long-term memory.162 Elevated
IL-1p also impairs LTP but surprisingly promotes neurite outgrowth and is synergistic with
neurotrophin-3.163 In rats subjected to repetitive mTBI, activation of microglia was
associated with inability to induce LTP, attenuated NMDA-mediated signal, and impaired
memory-these effects were not seen after single mTBI.164

Microglial polarization and the local inflammatory milieu may also influence repair through
activation of angiogenesis and gliogenesis. Although evidence from TBI models is scant,
experimental autoimmune and hypoxic/ischemic brain injury suggest M1-like microglia
impair oligodendrogensis, oligodendrocyte maturation and viability by a TNFa-dependent
mechanism.94.165 |n contrast, M2-like microglia or conditioned media from M2-like
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microglial culture promote oligodendrogenesis and remyelination in these models. M2-like
microglia may also, via production of pro-angiogenic cytokines (e.g. TGFB) and growth
factors, induce angiogenesis and vascular repair. Whether these findings translate to
recovery from TBI in humans is unknown, however treatment with pro-angiogenic growth
factors released by M2-like microglia is neuroprotective in mice and promotes neurogenesis
and angiogenesis in experimental TBI.166

E. Clinical experience of agents impacting acute neuroinflammation

A Kkey question arises, is TBI-responsive neuroinflammation a clinically relevant therapeutic
target (Figure 3)? As described above, numerous pre-clinical studies suggest this is the case.
However, few clinical trials of therapies primarily targeting inflammation have been
reported. Corticosteroids, surprisingly, have been the least successful anti-inflammatory
class of drugs in TBI (Table 3). Despite the potent effects on suppressing inflammation, high
dose methylprednisolone (5 mg/kg/day),167 “megadose” dexamethasone (100 mg),168
“ultrahigh dose” dexamethasone (2.3 g),169 the aminosteroid tirilazad,1’0 and a trial of
hydrocortisone and fludrocortisone (primary outcome hospital acquired pneumonia)t’1 all
failed to demonstrate benefits on neurological outcome. Off-target effects with systemic
administration of corticosteroids likely impact outcomes, and in the case of tirilazad, limited
brain exposure may have been a confounder.172

Other anti-inflammatory strategies have been evaluated in humans including testing of the
bradykinin B2 receptor antagonist Anatibant, which produced a trend toward worse outcome
in 228 patients enrolled.1”3 A provocative randomized controlled trial (RCT) used
recombinant human granulocyte colony stimulating factor (G-CSF) to enhance the cellular
inflammatory response.1’4 Although the primary outcome in this study was the incidence of
nosocomial infection, and the number of patients was low, no differences in mortality or
hospital length of stay were detected between G-CSF treated and placebo groups, nor was
there a difference in primary outcome. Minocycline has shown promise in a phase 1l trial in
patients with spinal cord injury;17> however, it has not been reported in human TBI and pre-
clinical data are equivocal.176 Of note, all of the studies targeting inflammation after TBI
have been performed in adult patients. Given studies showing an association between
heightened inflammation and younger age in children with severe TBI, anti-
neuroinflammatory strategies may be more impactful in the developing brain.69.177

Inferences can also be made extrapolating from clinical trials using multi-faceted therapies
with anti-inflammatory consequences. The anti-inflammatory effects of hypothermia were
touted as one of its main modes of efficacy.1’8 Disappointingly, despite single center studies
in adults with severe TBI showing reduction of IL-1p in CSF,17® multicenter RCTs of
therapeutic hypothermia after TBI have failed to show benefit in adults180-181 or
children.11.12 progesterone, which blunted the neuroinflammatory response to trauma in
mice, was evaluated in two large multicenter RCTs13:14 of adults with moderate-severe TBI
and failed to show benefit in 6-month GOS or mortality.

These clinical studies suggest that non-selective attenuation of the inflammatory response
early after severe TBI is not beneficial, or possibly detrimental. The existing literature lacks
studies using targeted, single pathway anti-inflammatory strategies in humans, and more

Nat Rev Neurol. Author manuscript; available in PMC 2018 March 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Simon et al.

Page 13

personalized approaches that individualize treatments to genotype, inflammatory
biomarkers, timing and duration of therapy, patient age and sex. Identification of specific
patient subsets, for example the study by Diamond et al.182 that identified an I1L-1f gene
variant associated with risk of post-traumatic epilepsy, to target enroliment criteria for
clinical studies may favorably influence their success.

Furthermore, it is unclear whether inhibiting inflammation after mild or repetitive mild TBI
acutely may prevent chronic sequelae such as CTE. Raising the key questions, does a single
exposure, or multiple exposures, to TBI prime the brain for chronic neuroinflammation, and
accordingly would impacting the inflammatory response early after mTBI, or targeting the
immune response late, represent clinically relevant approaches? Finally, from a therapeutic
perspective, given the aforementioned benefit of strategies mimicking rehabilitation on
neuroinflammation neurogenesis and cognitive outcome, it is possible that optimal
enhancement of beneficial aspects of neuroinflammation, rather than inhibiting detrimental
effects, could represent a more successful avenue for future clinical investigation.

Ill. CHRONIC NEUROINFLAMMATION

A. Chronic neuroinflammation after TBI: innocent bystander or driver of pathology?

As discussed, after TBI an acute inflammatory response is elicited that one might expect
would resolve to a resting state, prepared for the next inflammatory trigger. However, in a
subset of patients, chronic neuroinflammation may develop and last for years after
injury.183-186 The proportion of patients in whom chronic inflammation will develop, the
dominant triggers and intracellular pathways propagating inflammation, and genetic
susceptibilities to chronic inflammation are under active investigation.

An examination of autopsy specimens from patients surviving >1 year after TBI, and in
cases up to 18 years, revealed a significant increase in amoeboid microglia in subcortical
white matter tracts versus control tissue.184.187 Activated microglia were observed in 28% of
the autopsies and was associated with thinning of the corpus callosum.84187 These findings
are supported by positron emission tomography (PET) imaging studies using translocator
protein (TSPO) ligands, which likely bind activated microglia, to examine chronic
neuroinflammation in TBI survivors.185.188 |n one study, diffuse [11C]R-PK11195 (TSPO
ligand) binding was found in adults with moderate to severe injury up to 17 years later in
areas remote to the trauma including thalamus, putamen, and the occipital cortex.18
Inflammation in the thalamus was associated with more severe cognitive impairments.185
The 2" generation TPSO ligand [11C]DPA-713 was used to study retired National Football
League (NFL) players with self-reported history of career concussions. The supramarginal
gyrus and right amygdala exhibited ligand binding to levels greater than seen in age matched
controls.188 Serum cytokines may also demonstrate a chronic immune activation state after
TBI. For example, a prospective TBI biomarker study reported chronically elevated
expression of TNFa in serum after TBI and association of increased TNFa with unfavorable
long-term neuropsychiatric outcomes.189

Experimental studies substantiate the clinical evidence of a chronic inflammatory state after
TBI, and indicate underlying molecular mechanisms and potential therapeutic
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strategies.164.190-194 Chronic microglial activation with cell surface markers MHC 11, CD68,
and NADPH oxidase (NOX2) is seen one year after moderate to severe contusion.? These
markers would indicate M1-like phenotype, with pro-inflammatory cytokine production and
reduced phagocytic activity that would be less effective at protective functions such as Ap
clearance. Over the course of the year, mice demonstrate progressive neurodegeneration with
enlarging lesion volume, persistent oxidative stress, demyelination, and cognitive
impairments. Chronic neuroinflammation is also observed in several repetitive mTBI
models. Like the acute inflammatory response to mild repetitive injury, microglia are
characteristically localized to white matter tracts and may be seen in those regions bordering

degenerating axons with associated neurobehavioral changes 12—-18 months after
injury,164.191,195-198

There is interest, therefore, in the development of pharmacologic and non-pharmacologic
approaches to reduce chronic neuroinflammation after TBI as a therapeutic strategy, greatly
expanding the window for targeted interventions. This concept has been examined in pre-
clinical studies, for example, with the selective metabotropic glutamate receptor 5 agonist
(RS)-2-chloro-5-hydroxyphenylglycine (CHPG), previously shown to reduce microglial
activation9 and improve functional recovery2%? when given acutely after trauma. Mice
given CHPG at 1 month after focal brain injury had improved neurological recovery,
decreased neuroinflammation, arrested lesion expansion, sparing of white matter, and
reduced neurodegeneration at 4 months.2% Similarly, although with a more generalized anti-
inflammatory approach, administration of the phosphodiesterase inhibitor ibudilast on days
30-34 after FPI in rats reduced anxiety-like behavior and gliosis at 6 months.202 Exercise
regimens that simulate physical rehabilitation may modulate neuroinflammation and
promote release of neurotrophic factors after TBI. Piao et al.24° found that a 4-week
treatment with voluntary exercise attenuated IL-1f gene expression and chronic microglial
activation, increased production of IL-10 and neurotrophic factors, improved behavioral
outcomes, and reduced lesion volume.149 Importantly, the authors compared two start dates
for the exercise regimen which was only effective if delayed to 5 weeks after injury and was
potentially pro-inflammatory when initiated at 1 week post-injury. Thus, accumulating pre-
clinical research indicates that chronic neuroinflammation and related neurodegeneration
can be treated weeks after TBI, which suggests exciting potential for clinical translation of
delayed anti-inflammatory therapies.

B. Progressive neurodegeneration following single and repetitive brain trauma

Accelerated neurodegeneration and CTE may occur following single or repetitive TBI, as
has been reported in cases of athletes?%3 and military personnel® with high incidence of head
trauma and concussion.294 TBI increases the risk of developing dementia in some patients,
specifically non-Alzheimer’s dementia, years after the initial injury.295-209 Recently, the role
of chronic inflammation in the pathophysiology of neurodegenerative disorders has attracted
considerable attention?10.211 and led investigators to speculate about the role of post-
traumatic neuroinflammation in mediating neurodegeneration, non-Alzheimer’s dementias,
and CTE. Cases of CTE associated with repetitive mTBI have also shown activated
microglia in perivascular regions of subcortical white matter and throughout the brain as the
disease progresses.3212:213 To date, however, comprehensive studies of neuroinflammation

Nat Rev Neurol. Author manuscript; available in PMC 2018 March 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Simon et al.

Page 15

in patients with CTE have yet to be reported. Webster et al.?14 investigated an early
intervention with progesterone to prevent neurodegeneration after repetitive mTBI in
rodents. Animals were administered three mild diffuse injuries, each separated by 5 days,
and randomized to vehicle or progesterone for 15 days after the first injury. At 12-weeks
post-treatment, a chronic time point in rodent TBI models, progesterone-treated rats
exhibited improved neurocognitive outcomes, reduced brain atrophy, and attenuated
neuroinflammation compared to repetitive mTBI plus vehicle. Based on these promising
data, additional preclinical studies are warranted.

It remains unclear whether persistent inflammation initiates the characteristic
neuropathology — formation of neurofibrillary tangles, phosphorylated TAR DNA-binding
protein 43 (TDP-43) accumulation, and AB deposition — and should be targeted. Or, if
accumulation of these abnormal proteins triggers the inflammatory response, though perhaps
one ill-suited to restore normal function. Further research is required to advance our
understanding of critical mechanisms underlying the chronic pathologies of TBI, including
chronic neuroinflammation, and their relationship to development of neurodegenerative
disease (Figure 4). Advances in clinical TBI neuroimaging, including use of selective PET
ligands for amyloid, 215216 tay,217.218 and neuroinflammation, 185188 may clarify the
mechanisms driving chronic neurodegeneration after TBI, and provide opportunities to
develop targeted therapies for the long-term sequelae.

IV. CONCLUDING REMARKS

Advances in our understanding of TBI-responsive neuroinflammation have led to exciting
new questions (Box 2), identified new therapeutic targets and expanded the time frame in
which to consider treating. Clinical trials with therapies modulating inflammation after TBI
are in their infancy — even in severe TBI — and therapies targeting neuroinflammation after
mTBI in patients are completely unexplored. Nevertheless, thus far it appears that treating
all patients with TBI using a broad-acting anti-inflammatory agent has not shown benefit in
RCTs. Clearly, there is a need to define inflammatory phenotypes of our patients based on
injury characteristics such as patient age, sex, genetic predisposition, presence or absence of
secondary insults, and serum / CSF / imaging biomarkers. Such an approach will allow us to
answer questions posited in our initial framework, including: how to target inflammation for
clearance of debris, who will benefit from therapies to promote reparative aspects of
inflammation, and when should therapies targeting chronic inflammation be initiated. This
approach should be combined with enhanced pre-clinical trials, which 1) incorporate
multiple injury models, injury severities, and secondary insults 2) define clinically-relevant
therapeutic window(s) and treatment durations 3) expand outcomes to examine both harmful
and protective aspects of inflammation and include acute- and chronic endpoints. Coupled
with important new trials design strategies such as adaptive design, the result of this
approach will be clinical trials targeting specific patients with personalized
immunomodulatory treatments that we hope will reduce secondary injury, enhance repair,
and improve patient outcomes.
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Box 2

Outstanding Research Questions / Unmet Needs

. What is the level of acute inflammation needed for clearance of debris? How
can it be determined?

. Does the M1-/M2-like paradigm translate to human brain injury? Are there
injury severity or regional differences in phenotype?

. Can autoreactive adaptive immune responses be harnessed for benefit in TBI?
Do Th17/1L-17 adaptive responses contribute to neurodegeneration in TBI?

. Does the extent of damage to the CNS lymphatic drainage systems following
TBI play a role in defining the magnitude of long-term neuroinflammation?

. What mechanisms prime reactivity of glia acutely after TBI and sustain their
immune activation for weeks, months and years? Will delayed interventions
that modulate chronic microglial activation be effective for treatment?

. How can we determine that the reparative processes are no longer beneficial
and how should we facilitate return of the inflammatory process to a normal
state?

. Can therapeutic trials be targeted to inflammatory phenotypes or biomarkers?

. Imaging biomarkers: There is an urgent need to identify new stable and
selective PET ligands or MRI based methods to image neuroinflammation.
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Review Criteria

For review of human data on TBI neuroinflammation, we searched PubMed for articles
published in English from January 1950 to March 2016 using the following query:
“traumatic brain injury” or “closed head injury” or “closed-head injury” or “head trauma”
AND ( ( Case Reports[ptyp] OR Clinical Study[ptyp] OR Clinical Trial[ptyp] OR
Clinical Trial, Phase I[ptyp] OR Clinical Trial, Phase Il[ptyp] OR Clinical Trial, Phase
I11[ptyp] OR Clinical Trial, Phase 1V[ptyp] OR Controlled Clinical Trial[ptyp] OR
Comparative Study[ptyp] OR Meta-Analysis[ptyp] OR Multicenter Study[ptyp] OR
Randomized Controlled Trial[ptyp] ) AND Humans[Mesh]). We selected articles
reporting clinical findings of neuroinflammation in human traumatic brain injury.
Reference lists were used, as well as these authors’ expertise, for inclusion of additional
relevant studies.
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Key Points

Traumatic brain injury is a significant public health issue that is increasing in
global incidence and recognition in popular press, particularly for mild,
repetitive, and blast injuries.

Neuroinflammation, triggered by release of endogenous danger signals and
innate immune activation, is crucial to recovery after traumatic brain injury;
however, a dysregulated immune response may lead to secondary injury.

The activity of microglia and infiltrating macrophages and adaptive immune
cells is driven by extracellular injury signals and intracellular molecular
pathways that may represent novel therapeutic targets.

Design of preclinical and clinical trials studying immunomodulatory
interventions should account for changes in neuroinflammation that occur
over time, between injury type / severity / secondary injury, and across patient
characteristics such as age, sex, and genetic variability.

Chronic neuroinflammation, which may develop and last for years after
traumatic brain injury, is being investigated as a link to accelerated
neurodegeneration and chronic traumatic encephalopathy.

Nat Rev Neurol. Author manuscript; available in PMC 2018 March 01.




Simon et al. Page 36
> Time Line of Inflammation Following TBI Key Regulatory Points
c 1) Limit the acute pro-inflammatory response to
5 Triggers s the level needed for clearance.
2 4-HNE iUl 2) Promote an anti-inflammatory and pro-
Ch ki -infl < i :
= C;ﬂ’:fer':::t‘p“’ inflammatory}i i, tor e e Additional SR regenerative immune phenotype. -
) Cytokines (pro-infl, v) | Triggers o . 3) Prevent the development of chronic
> Exﬁ’jg:é';‘l;i’?n’* ClearenceciEE neuroinflammation and return to normal
% Glutamate Apoptosis or autophagy function.
(@) HMGB1 Adgr\losine )
-3 Lysophospholipids Antl—lf\flammatory cytolklnes
— ROS Reactive astrocytes / glial scar
-9'_ $100 v e o
M1-like microglia / M®
M2-like microglia / M®
m = = harmful response
——— = protective response
Z
Sc- NK, Dendritic, and T-cells
o
- Important Factors Determining Immune Response:
Z Age, Sex, Comorbidities, Genetic Susceptibility, Mechanism
% (focal, diffuse, blast), Degree of injury (mild, mild repetitive,
c severe), Secondary insults (hypoxemia, hypotension), Therapies
0
g_ Cytokines and Chemokines
§e)
—
Repair / Regeneration , AB, Glial scar
Volume Loss / Degeneration
0 1 3 7 14 Months to years
> Time (d)
c
—+
j - - - -
) Figure 1. Overview of Neuroinflammation after TBI
= Primary mechanical injury to the CNS may cause cell membrane disruption, vascular
% rupture, and BBB damage followed by secondary reactions involving ionic imbalance,
o release of excitatory amino acids, calcium overload, and mitochondrial dysfunction -
= ultimately culminating in cell death pathways. Primary and secondary injury lead to release
~ of DAMPs, cytokines, chemokines, activation of microglia and astrocytes, and recruitment
of circulating immune cells. These immune responses largely overlap temporally. The
inflammatory response is crucial to clearance of debris, repair, and regeneration after TBI.
However, dysregulated inflammation can lead to additional acute and chronic brain injury.
Abbreviations: CNS, central nervous system; BBB, blood brain barrier; DAMP, damage-
> associated molecular pattern; TBI, traumatic brain injury
c
—
>
o
-
<
D
S
c
w0
e}
=,
§e)
~+
Nat Rev Neurol. Author manuscript; available in PMC 2018 March 01.



1duosnuepy Joyiny 1duosnuely Joyiny 1duosnuepy Joyiny

1duosnuely Joyiny

Simon et al.

Page 37

» M1-like Damaged M2-like
T:U Microglia/macrophage Neur: Microglia/macrophage
k=) OV Disrupted BBB | [
g Th /Th17 = == == =L N

{
= @ i s e @
.E l__
H] Activated .
< Activated
= Astrocyte @ Astrocyte
o 4 > 1
S " g )
£ | -
> ]
w

TNFe, IFNy, IL-6 0;  DAMPs IL4, IL-10, TGFB

|l NFKB ps0ips0
pggfgs —~ PPARy
ot ; ‘ Microglia/macrophage mi:r'f1224
A 9 Phage « | sTaT3/ STATS
R P g W | IRF-4/JMJD3
MiR-155 -’ - , ey

Intracellular molecular pathways

Phenotypic Plasticity %{

Functional responses

Figure 2. Extracellular injury signals and intracellular molecular pathways control polarization
of microglia and macrophages following TBI

Molecular signals from injured tissue can drive phenotypic and functional responses in
microglia/macrophages after TBI. DAMPs released by injured neurons, pro-inflammatory or
oxidative mediators released by infiltrating immune cells including TNFa, IFN+y, IL-6, and
02~ can polarize cells towards an M1-like phenotype. M1-like populations are characterized
by expression of proteins such as IL-1f, TNFa, IL-6, NOS2, 1L-12p40, and NOX2.
Molecular pathways that regulate the M1-phenotype include STAT1, IRF-3/5, NFxB
p50/p65 and miR-155, among others. M1-like microglia and macrophages release pro-
inflammatory factors and free radicals that promote chronic neuroinflammation, oxidative
stress and neurodegeneration, and inhibit regeneration. In response to anti-inflammatory and
neurotrophic signals microglia and macrophages can be polarized towards an M2-like
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phenotype, characterized by expression of proteins such as CD206, CD163, Arginase 1,
FCyYR, Ym1, IL-10, and TGFB. Molecular pathways that regulate M2-like phenotypic
transitions include STAT6/3, IRF-4/7, NF-xB p50/p50, Nrf2 and miR-124, among others.
M2-like microglia and macrophages release anti-inflammatory and trophic factors that
resolve inflammation. They also have increased phagocytic activity, and improve brain
repair by modulating neurogenesis, axonal regeneration, synaptic plasticity, and
angiogenesis. Microglia and macrophages demonstrate significant plasticity and can switch
between M1- and M2-like phenotypes. Moreover, it is recognized that following TBI they
present mixed phenotypes during the acute phase post-injury, and transitions to an M1-like
dominant phenotype in the chronic phase after TBI.

Abbreviations: TBI, traumatic brain injury; DAMP, damage-associated molecular pattern;
TNF, tumor necrosis factor; IFN, interferon; IL, interleukin; NOS, nitric oxide synthase;
NOX, nicotinamide adenine dinucleotide phosphate oxidase; STAT, signal transducer and
activator of transcription; IRF, interferon regulatory factor; CD, cluster of differentiation;
TGF, transforming growth factor; NF-xB, nuclear factor kappa-light-chain-enhancer of
activated B cells
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Figure 3. Novel therapies for TBI targeting inflammation at different time points from injury
Therapies targeting TBI-responsive inflammation may be effective at different time points

depending on the therapeutic target(s). Similarly, design of pre-clinical and clinical trials of
anti-inflammatory agents should note that inflammation causing secondary injury at one
time-point may be protective at others. Initially, inflammation triggered by release of
DAMPs and ROS generation can be blocked through the use of antioxidants, minocycline,
and PPAR agonists, among others. Inflammasome activation will cause release of IL-1p, the
action of which can be inhibited at IL-1 receptors with IL-1ra (Anakinra). Over the next
several hours-days, invasion of CNS by circulating immune cells will contribute to
neuroinflammation, and this process can be inhibited by therapies such as NK1 antagonism
and chemokine antagonists. Microglial polarization to M2-like phenotype has been shown to
be neuroprotective. M1-like phenotype, which peaks ~7 days from injury, is
proinflammatory and associated with secondary injury. The M2-like phenotype can be
promoted by MSC, PPAR agonists, and CCR2 antagonists, among other possibilities. The
adaptive immune response peaks days after injury. T-cells must be primed to enter CNS -
this may be inhibited by therapies such as IVIG. Additionally, alterations in gut microbiome
may affect the relative number of pro- and anti-inflammatory T-lymphocytes. Glymphatic
clearance may be impaired after TBI, which may lead to impaired clearance of pro-
inflammatory mediators. Investigations are ongoing to determine ways to improve
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glymphatic flow, however it has been shown to be maximized during sleep. Chronic
microglial activation may develop and lead to chronic neurodegeneration, encephalopathy,
and dementia. Activation of the mGIuR5 on microglia, such as with CHPG, attenuates M1-
like microglial activation. Rehabilitation and exercise have also been shown to reduce M1-
like microglial activation.

Abbreviations: TBI, traumatic brain injury; CSF, cerebrospinal fluid; ROS, reactive oxygen
species; DAMP, damage-associated molecular pattern; BBB, blood brain barrier; PPAR,
peroxisome proliferator-activated receptor; IL, interleukin; MSC, mesenchymal stem cell;
CHPG, (RS)-2-Chloro-5-hydroxyphenylglycine; IVIG, intravenous immunoglobulin; IFN,
interferon; fHb, free hemoglobin; GFAP, glial fibrillary acidic protein
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Figure 4. Chronic neuroinflammation contributes to chronic neurodegeneration, dementias, and
encephalopathy after TBI
Neuroinflammation and microglial activation are key mediators of repair and recovery from

TBI. However, recent clinical and laboratory data have shown that TBI can cause persistent
neuroinflammation and microglial activation, in some cases lasting many years, and lead to
chronic neurodegeneration, dementia, and encephalopathy. Prospective studies of TBI
biomarkers in adults with severe TBI have shown that serum levels of IL-1pB, IL-6, CXCLS,
IL-10, and TNFa are chronically increased. Experiments in animal models have
demonstrated persistently increased numbers of microglia expressing MHC I, CD68, and
NOX2 at the margins of the lesion and in the thalamus at 1-year post-injury associated with
oxidative stress and white matter disruption. These inflammatory findings have been
correlated with chronic neurodegeneration, the development of dementia, and
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encephalopathies — which may subsequently cause additional inflammation in a self-
perpetuating deleterious feedback mechanism.

Abbreviations: TBI, traumatic brain injury; IL, interleukin; CD, cluster of differentiation;
TNF, tumor necrosis factor
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