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Abstract

The “silent epidemic” of traumatic brain injury (TBI) has been placed in the spotlight following 

investigations and popular press coverage of athletes and returning soldiers with single and 
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repetitive injuries; however, treatments to improve the outcome for patients with TBI across the 

spectrum from mild to severe TBI are lacking. Neuroinflammation may cause acute secondary 

injury after TBI, and it has been linked to chronic neurodegenerative diseases. Despite these 

findings, anti-inflammatory agents have failed to improve outcomes in clinical trials. We therefore 

propose in this review a new framework for future exploration of targeted immunomodulation after 

TBI that incorporates factors such as the time from injury, mechanism of injury, and secondary 

insults in considering potential treatment options. Structured around the dynamics of the immune 

response to TBI – from initial triggers to chronic neuroinflammation – the ability of soluble and 

cellular inflammatory mediators to promote repair and regeneration versus secondary injury and 

neurodegeneration is highlighted, with knowledge from human studies explicitly defined 

throughout this review. Recent advances in neuroimmunology and TBI-responsive 

neuroinflammation are incorporated, including inflammasomes, mechanisms of microglial 

polarization, and glymphatic clearance. In addition, we identify throughout this review where 

these findings may offer novel therapeutic targets for translational and clinical research, 

incorporate evidence from other brain injury models, and identify outstanding questions in the 

field.
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I. INTRODUCTION AND OVERVIEW

The Centers for Disease Control estimates 1.7 million people suffer traumatic brain injury 

(TBI) in the United States each year and 5.3 million are living with TBI-related disability.1 

This may grossly underestimate the scope of the epidemic, particularly for mild TBI 

(mTBI)2, and globally the incidence of TBI appears to be increasing.1 TBI and mTBI are 

“signature injuries” of the wars in Iraq and Afghanistan, primarily due to blast exposure 

from conventional and improvised explosive devices, and can similarly represent 

consequences of civilian terrorist attacks. In addition, TBI has now been linked to post-

traumatic stress disorder, memory deficits, chronic traumatic encephalopathy (CTE), and 

chronic neuroinflammation.3

The inflammatory reaction to TBI was thought to occur solely through peripheral immune 

mediators entering via a disturbed blood brain barrier (BBB); it is now recognized as a 

robust and complex interaction between central and peripheral cellular and soluble 

components influenced by patient age, sex, mechanism of injury (focal, diffuse, blast), 

degree of injury (mild, repetitive mild, severe), secondary insults (hypoxemia, hypotension), 

therapeutic interventions, and genetic variability. TBI leads to early resident microglial 

activation and peripheral neutrophil recruitment, followed later by infiltration of 

lymphocytes and monocyte-derived macrophages.4 Simultaneously, pro- and anti-

inflammatory cytokines vie to promote and terminate the post-traumatic neuroinflammatory 

response, and chemokine signaling results in the activation and recruitment of immune cells 

towards the lesion.5–9
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This post-traumatic inflammation may be beneficial, by promoting clearance of debris and 

regeneration, and/or harmful, mediating neuronal death and progressive neurodegeneration 

(Figure 1). Several multicenter clinical trials have been conducted with therapies shown in 

pre-clinical and single center trials to have beneficial anti-inflammatory effects. 

Unfortunately, each trial failed to show benefit; several therapies were deleterious.10–17 We 

therefore propose in this review a new framework to guide future preclinical and clinical 

trials to optimize the immune response to TBI:

1. Limit the acute pro-inflammatory response to the level needed for clearance of 

debris and danger signals.

2. Promote an anti-inflammatory and pro-regenerative immune phenotype.

3. Prevent the development of chronic neuroinflammation and return to normal 

function.

Using this framework, we review the dynamics of the immune response to TBI, progressing 

from initiation of acute inflammation by danger signals and early inflammatory mediators, 

to subacute inflammation occurring days to weeks after injury, and lastly to chronically 

activated elements of the immune system which may remain active for months to years and 

have been linked to the development of traumatic encephalopathies. Mechanisms that 

balance pro-inflammatory and pro-reparative immune activation are discussed, as well as 

potential for therapies to promote beneficial aspects of inflammation. We discuss recent 

discoveries in immunology and our current understanding of the role these processes and 

systems may play in the immune response to TBI. Acknowledging the limitations of TBI 

models18,19, we incorporate a comprehensive review of what is known from human studies 

over the past two decades of TBI research; though, notably, limited human data are available 

of mTBI. Lastly, considering the current knowledge of post-traumatic neuroinflammation we 

propose new areas for advancing translational and clinical research.

II. ACUTE AND SUBACUTE NEUROINFLAMMATION

A. Triggers–DAMPs, Mitochondrial stress, Excitotoxicity, Vascular Injury

Cellular membrane disruption as a result of primary mechanical insult or secondary injury 

causes release of damage associated molecular patterns (DAMPs) capable of triggering and 

amplifying neuroinflammation (Table 1). Examples include DNA and RNA, high mobility 

group box 1 (HMGB1), S-100 proteins, adenosine triphosphate, uric acid, 

lysophospholipids, and lipid peroxidation-derived carbonyl adducts of proteins, among 

others.4,20,21 In response, tumor necrosis factor (TNF)α, interleukin (IL)-6 and IL-1β are 

up-regulated rapidly by local glial cells and infiltrating immune cells22 and represent early 

effectors that drive post-traumatic neuroinflammation (Table 2).

The dual nature of inflammation was demonstrated in experimental models investigating the 

role of TNFα and inducible nitric oxide synthase (iNOS) after TBI. TNFα is linked to brain 

edema, BBB disruption, and recruitment of leukocytes.9 However, TNFα−/− mice had 

impaired motor function and larger lesions at 4 weeks after injury, despite showing early 

neuroprotection.23 Similarly, although TBI increased iNOS expression in the brain with 
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multiple pro-inflammatory and neurotoxic effects, genetic or chemical iNOS blockade 

resulted in significantly worsened spatial memory 2–3 weeks after injury.24

Cell death via programmed necrosis, such as necroptosis through TNFα mediated RIP 

kinase activation,25,26 may lead to a vicious cycle of necrosis→membrane disruption→ 
DAMP release→necrosis and amplification of inflammation. The prototypical DAMP, 

HMGB1, is increased in cerebrospinal fluid (CSF) of patients after severe TBI and is 

associated with elevated intracranial pressure (ICP) in adults and poor outcome in 

children.27,28 HMGB1 is a structural DNA-binding protein that regulates transcription by 

stabilizing nucleosomes under normal conditions.28 It can be released from cells by 

membrane disruption or actively secreted by monocytes/macrophages and signals through 

receptor for advanced glycation end products and toll like receptor 2 (TLR2)/TLR4 

receptors to increase production and release of cytokines.25

One mechanism of cytokine production triggered by DAMPs is via activation of the 

inflammasome complex. Binding to intracellular pattern recognition receptors such as the 

NOD-like receptor containing an N-terminal pyrin domain (NLRP) family or absent in 

melanoma (AIM) leads to auto-activation of caspase-1 and processing of pro-IL-1β and pro-

IL-18 to their active forms.29,30 Relatively few inflammasome complexes are expressed in 

the brain: NLRP1 and AIM2 in neurons,31–33 NLRP3 in astrocytes33 and microglia are 

present in both mice and humans.34–36 In patients, NLRP1 and caspase-1 are increased in 

the CSF after severe TBI and are associated with unfavorable outcomes.33 In mice, 

neutralization of the NLRP1 and NLRP3 inflammasomes attenuated IL-1β processing and 

reduced lesion volume.31,32 Inflammasome-dependent cytokine production also contributes 

to disease progression in mouse models of multiple sclerosis, Alzheimer’s disease, and 

amyotrophic lateral sclerosis.34,37,38 However, it remains unclear which inflammasome 

complexes are the primary producers of IL-1β and IL-18 after TBI, and whether neurons, 

microglia or astrocytes are the key cellular mediators of inflammasome-mediated tissue 

damage.

Concurrent with the release of DAMPs, a massive increase in extracellular glutamate (and 

other excitatory amino acids)39–41 may occur and lead to excitotoxic neuronal injury via 

activation of neuronal glutamate receptors, such as N-methyl-D-aspartate (NMDA) and α-

amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, followed by Ca++-

dependent degeneration.42 Elegant interactions between inflammatory mediators and 

glutamate signaling have been demonstrated in mice, including: 1) TNFα and IL-1β 
mediated changes in cell surface expression, distribution, and function of NMDA and 

AMPA receptors, 2) NMDA receptor induction of inflammatory gene expression, and 3) 

TNFα and IL-1β mediated reduction in astrocytic glutamate transporters resulting in 

impaired glutamate clearance from the synaptic cleft.43 NMDA receptor blockade is 

therefore an attractive therapeutic strategy, however, antagonists have failed in clinical TBI 

trials due in part to a limited therapeutic window, off-target neurotoxicity, and as a result of 

inhibiting normal synaptic function and plasticity.44 In response to TBI and glutamate 

toxicity, high levels of the endogenous neuroprotectant adenosine is produced from 

breakdown of adenosine triphosphate and mRNA.45 Activation of the adenosine A1 receptor 

after TBI has anti-excitotoxic46 and anti-inflammatory effects in mice,47 however systemic 

Simon et al. Page 4

Nat Rev Neurol. Author manuscript; available in PMC 2018 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



administration of adenosine to patients may result in bradycardia and hypotension. A variety 

of adenosine related strategies are being actively investigated to mitigate excitoxicity and 

various facets of acute and chronic neuroinflammation.48

Mitochondrial dysfunction and reactive oxygen species (ROS) generation, caused by direct 

and indirect injury after TBI, has also been identified as a trigger of neuroinflammation.49 

Translocation of the phospholipid cardiolipin from the inner to outer mitochondrial 

membrane, shown to occur after experimental TBI, tags damaged mitochondria for 

mitophagy but may also be a final pathway for inflammasome activation.50,51 Failure of 

mitophagy and resultant cell death can lead to release of mitochondrial DAMPs as reported 

for mitochondrial DNA after TBI in children.52 These mitochondrial danger signals produce 

local and systemic responses by the interaction with receptors on immune cells: 

mitochondrial DNA by TLR9 on dendritic cells and N-formyl peptides by formyl peptide 

receptor-1 on neutrophils.53 Membranes with mitochondrial cardiolipins on their surface are 

engulfed via cluster of differentiation 36 (CD36)-dependent phagocytosis.54 There is a 

paucity of data regarding CD36-mediated inflammatory response after TBI, however, CD36 

plays a beneficial role in neurological outcome in patients with intracranial hemorrhage.55

In addition to inflammatory triggers released from neurons and glia, trauma to the 

vasculature can lead to leakage of blood components into the cerebral parenchyma, 

including complement and the potent neurotoxin and immune modulator cell-free 

hemoglobin (fHb).56 Complement factors have been detected in brain tissue57 and CSF58 of 

patients within hours of severe TBI, and have been found to correlate with BBB 

permeability. Although required for normal wound healing, evidence from murine 

models59–61 suggests acute dysregulation of complement may cause secondary injury after 

TBI (for review:62). Inhibition of alternative complement pathway63 or the membrane attack 

complex64,65 in a weight-drop model of TBI in mice reduced neurodegeneration and axonal 

loss, and improved neurologic outcomes. Also released into contused areas of brain, fHb-

haptoglobin complexes are cleared by CD163 receptors on microglia and macrophages with 

resultant differentiation to an anti-inflammatory phenotype.66 If the haptoglobin-CD163 

pathway is dysfunctional or is outcompeted by the amount of fHb present, fHb and its 

breakdown products heme and iron can induce direct neuronal toxicity by generating ROS 

and scavenging nitric oxide (NO).67 This pathway is implicated in the development of post-

traumatic epilepsy in rodents.68 CSF levels of soluble CD163 and the iron-binding protein 

ferritin are increased after TBI in children and correlate with injury severity and unfavorable 

outcome.69 Thus, inflammation triggered by fHb and its degradation products could be 

therapeutic targets after TBI.

Several of the biochemical and molecular mechanisms of secondary injury listed above have 

been reported in blast-induced mTBI. Characterized by axonal, periventricular, and 

hippocampal neuronal injury, blast-induced mTBI is associated with cytokine and 

chemokine release, adenosine production (likely from mRNA breakdown), and activation of 

microglia.70,71 Promising neuroprotective effects were demonstrated with the anti-

inflammatory drug minocycline in this model.72
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B. Cellular mechanisms regulating acute neuroinflammation following TBI

i. Dynamics of cellular response to TBI—The first circulating immune cells to 

infiltrate the CNS after trauma are neutrophils, which typically peak in mice within 24–48 

hours before rapidly declining.73,74 Diapedesis between endothelial cells is dependent on 

binding of integrins to vascular adhesion molecules, and within 4 hours of experimental TBI 

the expression of neutrophilic vascular adhesion molecules endothelial (E)-selectin (CD62E) 

and intracellular adhesion molecule-1 (CD54) is increased on endothelium of the injured 

hemisphere.75 Administration to mice of antibody to the CD11d/CD18 integrin, located on 

cell surface of neutrophils and monocytes, reduced leukocyte infiltration to the CNS as well 

as the systemic inflammatory response to TBI (Box 1).76,77 Chemokine gradients are 

established (e.g. C-C motif chemokine ligand 2 [CCL2]) that attract monocytes from the 

circulation to injured brain where they differentiate into macrophage subpopulations 

distinguished by relative cell-surface expression of the chemokine receptors, C-C motif 

chemokine receptor 2 (CCR2) and CX3CR1 (inflammatory monocytes: 

CD11b+CD45hiCCR2+Ly6Chi | patrolling monocytes: CD11b+CD45hiCX3CR1+)78. 

Chemokines and their receptors play several crucial roles in response to TBI, and the reader 

is referred to several excellent reviews on this topic: 8,9. Studies of monocyte infiltration in 

mice have demonstrated accumulation within the lesion through 3 days post-injury.79,80 

Dendritic cells (DCs), T lymphocytes and natural killer cells are similarly recruited during 

this period,81 but at lower numbers.

Box 1

Systemic Inflammatory Response Syndrome and the Compensatory Anti-
Inflammatory Response

In this review we focus primarily on the neuroinflammatory response to TBI. A systemic 

inflammatory response syndrome (SIRS) and compensatory anti-inflammatory response 

have also been described after isolated TBI that may increase risk of nosocomial 

infection or multiple organ dysfunction. Via the sympathetic and parasympathetic 

nervous system, glymphatic and lymphatic clearance, hypothalamic-pituitary-adrenal 

axis, and disrupted blood-brain-barrier, there are several pathways for CNS injury to 

affect the peripheral immune response. In addition, therapeutic agents routinely used in 

neurocritical care such as sedatives, antiepileptics, and hyperosmolar agents may affect 

peripheral immune function. Age appears to be an important factor, for example early 

neutrophilia in adults is associated with significantly greater oxidative burst activity219 

whereas neutrophils in children with TBI have significantly reduced ROS generation.220 

Perhaps the most important factor influencing the characteristics of the systemic 

inflammatory response to TBI is time from injury. Although few studies have carefully 

studied the time course of peripheral immune function, there appears to be a marked 

immunosuppressed state at ~ 1 week out from TBI that corresponds to the time of peak 

nosocomial infection rate. For excellent review and future directions, the reader is 

referred to: 221.

Concurrently within the CNS, astrocytes, a vital regulator of CNS inflammation, undergo 

reactive astrogliosis characterized by morphological and functional adaptations including 
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up-regulation of GFAP and production of cytokines and chemokines that further recruit and 

activate immune cells (for review: 82,83). YKL-40, a marker of reactive astrocytes, is 

significantly elevated in the CSF of adults with severe TBI on day 2 and peaked on day 4 

post-injury (Table 3). Microglia undergo a similar transformation in morphology and 

function with an initial peak approximately 7 days post-injury.66,84,85

ii. Pro and anti-inflammatory roles of microglia—The concept of post-traumatic 

neuroinflammation as a “double-edged sword”86, with both beneficial and injurious effects, 

has recently been expanded to include the function of microglia.87,88 Similar to peripheral 

macrophages, microglia respond to changes in their microenvironment to become polarized 

along an activation spectrum ranging from classical M1-like to alternative M2-like (Figure 

2).89 This concept has evolved from the canonical M1/M2 subset classification to reflect 

mixed-phenotypes and the functional plasticity of tissue macrophages / microglia to changes 

in the microenvironment. Stimulation by DAMPs, free radicals, or pro-inflammatory 

cytokines such as interferon-(IFN)γ induce a M1-like phenotype characterized by 

production of pro-inflammatory cytokines (e.g. IL-1β, TNFα), chemokines (e.g. CCL2, 

CXCL9), ROS generation, and reduced phagocytic activity.89–91 Although M1-like ‘pro-

inflammatory’ cells are often presumed to be harmful, a well-regulated M1-like response 

may be neuroprotective after TBI. An exaggerated or prolonged M1-like response, however, 

can lead to secondary brain injury and drive a self-propagating hyperinflammatory state.92,93 

The M2a-like ‘alternative’ phenotype89–91, in response to IL-4 and IL-13 stimulation, is 

associated with production of anti-inflammatory cytokines and increased phagocytic 

activity.90,91 The M2c-like ‘deactivated’ phenotype occurs in response to IL-10, 

glucocorticoids, or uptake of apoptotic cells regulates tissue repair and remodeling.90,91 

Lastly, the M2b-like ‘intermediate’ phenotype is stimulated by immune complex exposure or 

TLR ligands89–91 and has both pro- (IL-1, IL-6, TNFα) and anti-inflammatory (IL-10) 

effects.90,91 The degree to which microglia assume a particular phenotype (or multiple 

phenotypes) is dependent upon these and other changes in the lesion microenvironment 

driving complex intracellular signaling pathways, influenced by genetic and epigenetic 

factors, that may offer additional opportunities for therapeutic intervetion.91,94

Microglial polarization has been shown to vary over time and between different TBI models. 

In mice, activated microglia demonstrate a bimodal increase after focal contusion with an 

initial M2-like peak at 7 days followed by an M1-like peak at 21–28 days; though, the bulk 

of activated microglia have mixed M1-/M2-like activation markers.81,84,93 In diffuse brain 

injury, M1-/M2-like polarization dynamics are strikingly different, likely due to altered 

cellular immune responses that include reduced neutrophil infiltration and restricted 

macrophage/microglial accumulation to white matter regions that incurred greatest damage. 

Diffuse brain injury results in transient increases in IL-1β, TNFα, and CD14 expression in 

the cortex and hippocampus of mice as early as 4 hours post-injury that return to baseline by 

72 hours.95 In addition, iNOS+/Arginase1+ microglia/macrophages are also increased at 24 

hours post-injury,96 indicating that diffuse injury also up-regulates mixed M1- and M2-like 

activation markers. However, the functional role of M1-/M2-like phenotypes in axonal injury 

and repair following diffuse brain injury remains to be elucidated.
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iii. Links to adaptive immune response—The adaptive immune response mediated by 

T cells and B cells can strongly influence microglia phenotype and function, but the role of 

the adaptive immune system after TBI remains rather unclear. T cells infiltrate injured 

tissues after CNS injury and sequestration of lymphocytes in lymph nodes by FTY720 

administration results in reduced inflammation and better recovery in rodents with spinal 

cord injury.97–99 However, FTY720 also acts directly on CNS cells complicating data 

interpretation. On the other hand, mice deficient in T cells (due to deficiency of RAG or 

MHCII genes) have worse outcomes in CNS injury models,100,101 suggesting a dominant 

neuroprotective effect of T cells.

Somewhat counter-intuitively, activation of autoimmune T cells in mice that provoke 

myelin- targeted encephalitis provides protection from secondary neurodegeneration in CNS 

injury, coined ‘protective autoimmunity’.101–104 One mechanism for this protection may be 

T cell production of neurotrophic factors that act on neurons and astrocytes to promote 

survival and repair.105,106 T cells are required for normal CNS development, as mice 

deficient in T cells show cognitive and behavioral developmental abnormalities, suggesting 

that T cells also contribute to the development and perhaps maintenance of the healthy 

brain.107 As well as regulating the M1/M2-like balance, T cell-produced IL-4 protects 

neurons through potentiation of neurotrophin signaling.100 Unusually, IL-4-mediated T cell 

protection of injured CNS tissue does not appear to require antigen-specific receptor 

activation of T cells, and neurons directly induce IL-4.100 The IL-1 family alarmin IL-33 is 

released from damaged cells, and is also neuroprotective after CNS injury in mice.108 IL-33 

is known to act on Th2 cells that produce IL-4;109 hence IL-33 may provide a link between 

CNS injury and activation of IL-4 production. An IL-33-responsive population of tissue-

resident regulatory T cells has been identified in muscle110,111 and gut of mice,112 and 

contributes to resolution of inflammation and wound repair in those tissues. It is intriguing 

to speculate that a similar IL-33-Treg axis could operate in human brain after TBI.

Specific mechanisms of T cell mediated protection versus damage need to be precisely 

targeted to produce benefit. The methods used to invoke a CNS injury-protective 

autoimmune response are also used to induce the rodent model of multiple sclerosis, 

experimental autoimmune encephalomyelitis (EAE). Th17 cells, named because of their 

production of IL-17 along with other pro-inflammatory cytokines, are thought to drive 

inflammatory demyelination of the spinal cord in EAE.113 Th17 cells and other ‘type 17’ T 

cells have been associated with myriad autoimmune and inflammatory conditions114 but 

have not yet been investigated in TBI. Type-17 responses are promoted by cytokines known 

to be released after TBI in humans, particularly IL-1β, and induce CXCL8 and neutrophil 

recruitment. In ischemic stroke, harmful IL-17 is largely produced by ‘type-17’ γδT cells 

that rapidly infiltrate the injured brain.115 These cells are strongly influenced by the remote 

gut environment, as antibiotic-induced dysbiosis of gut microbial flora resulted in protection 

from stroke that could be linked to reduced frequencies of IL-17+ γδT cells.116 The 

profound impact of the gut microbiome on peripheral tissue immune responses, including 

the CNS, is a recurring theme in immunology.117–119 CNS-gut communication may also 

influence cognition, mood and anxiety.120,121 It is thus possible that antibiotic 
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administration or changes in diet associated with intensive care unit hospitalization after 

severe TBI could inadvertently alter this gut microbiome-brain-inflammation axis.

Lymphatic drainage of body tissues regulates interstitial fluid and removal of waste 

products. The lymphatics also support immune surveillance by carrying macromolecules and 

activated dendritic cells bearing foreign antigens to local lymph nodes where they can be 

presented to activate the adaptive immune response. This may represent a critical step, since 

naïve T and B cells typically circulate through lymph nodes via blood and efferent 

lymphatics but do not enter non-lymphoid tissues until primed. Until recently, the brain was 

considered an immune privileged site with lack of lymphatic drainage supporting the 

blinding of the peripheral immune system to ongoing events in that tissue. However, 

adaptive immune responses are primed and recruited following CNS injury, and waste 

products must be rapidly cleared from this highly metabolic organ. Technological advances 

in imaging that allowed for interrogation of brain drainage in closed skull systems have 

resolved these paradoxes. Two most likely intercepting systems that drain brain tissue have 

been delineated in mice. The ‘glymphatic system’, describes the astrocyte-regulated 

convective bulk flow of CSF from the paravascular space through interstitial fluid in an 

arterial-venous direction.122,123 This flow allows for rapid entry of small molecules, and 

perhaps more importantly for fluid drainage and clearance of metabolites, soluble proteins 

and waste products including beta amyloid from the brain interstitial space.122,124,125 

Glymphatic flow is greatly increased during sleep, associated with increased brain interstitial 

space volume; this can be partly attributed to mechanical mechanisms as lateral posture in 

awake mice replicated the increased flow compared to upright posture.126,127 The second 

CNS clearance system consists of lymphatics that line the dural sinuses and meningeal 

arteries.128,129 These vessels have classical lymphatic architecture and drain to the deep 

cervical lymph nodes—providing a direct conduit between the brain and the peripheral 

immune system. They also contain immune cells and macromolecules, mimicking peripheral 

lymphatics. Brain lymphatics include populations of T cells and B cells,129 which have 

presumably migrated through and surveyed the brain tissue.

TBI impairs the glymphatic system drainage in rodent models,130 resulting in accumulation 

of damage and waste products such as Tau,124 and providing a potential link between injury-

induced disruption of glymphatic drainage and development of CTE. Inflammatory astrocyte 

activation may amplify the effects of mechanical damage on glymphatic flow after TBI. 

Effects of TBI on brain lymphatic drainage to deep cervical lymph nodes have not yet been 

investigated, but one could envision that TBI would readily alter the associated lymph 

vessels. Accumulation of waste products due to impaired lymphatic drainage might trigger 

neuroinflammation by activating pattern recognition receptors on microglia. The interaction 

between altered lymphatic drainage and neuroinflammation and ensuing long-term 

consequences therefore warrants further investigation.

C. The impact of secondary insults on the acute inflammatory response to TBI

A critical determinant of outcome after TBI, particularly in severe TBI, is the presence of a 

concurrent secondary insult such as polytrauma, hypotension, and/or hypoxemia. With 

severe TBI, secondary insults occur in as many as two-thirds of victims.131 These insults are 
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frequently hemorrhagic in nature, compromising perfusion and oxygen delivery to the 

injured brain.132 Analysis of >2000 patients with severe TBI revealed a mortality rate of 

72% for combined injury vs. 46% for TBI alone.133

Despite the importance of polytrauma and secondary insults in TBI, there has been little 

study of their impact on the cerebral or systemic inflammatory responses in both pre-clinical 

and clinical investigations. Although one might anticipate that polytrauma and/or secondary 

insults, by superimposing tissue hypoxemia and/or ischemia onto the traumatic insult, would 

amplify the local inflammatory response in brain, surprisingly that has not been observed. 

Instead, both pre-clinical and clinical studies have revealed that second insults shift the 

cytokine response to a more anti-inflammatory phenotype, amplifying the IL-10 response. 

Shein et al.134 studied the impact of a brief period of severe hemorrhagic shock (HS) after 

controlled cortical impact TBI in mice. The combination of TBI plus HS led to nearly 100-

fold and 30-fold increases in serum IL-10 levels vs. TBI or HS alone. Also, six pro-

inflammatory cytokines and chemokines, namely IP-10, TNFα, CXCL1, CCL2, CCL3, and 

CCL11 were all increased in serum after TBI alone but not after TBI plus HS. In addition, 

animals with combined TBI and HS had lower serum IL-6 vs. TBI alone. However, despite 

worsening of both long term behavioral and histological outcomes by HS after TBI,135 the 

local cytokine and chemokine responses in brain were not appreciably altered.

Clinical data, in general, parallel these pre-clinical findings. Relative to patients with TBI 

alone, patients with TBI plus polytrauma have increased serum concentration of the anti-

inflammatory agents IL-10, IL-1ra, an sTNFr-I and no change in pro-inflammatory 

cytokines IL-1β and TNFα.136 Kumar et al.137 carried out a trajectory analysis of cytokines 

and adhesion molecules in serum and CSF after severe TBI in 114 adults. Again, serum 

IL-10 levels were higher among individuals with TBI plus polytrauma versus isolated TBI. It 

remains unclear, however, if all types of secondary insults produce a similar shift to an anti-

inflammatory phenotype, or whether HS confers a unique effect.

Indeed, several forms of peripheral injury such as skeletal fracture or hepatic contusion may 

increase the circulation of pro-inflammatory cytokines in patients. To address the effect of 

peripheral injuries on TBI outcomes, combined models that incorporate long-bone fracture 

have increased in use.138,139 Shultz et al.140 reported findings on a mouse model of tibia 

fracture plus diffuse brain injury in which mice with combined injury exhibited increased 

anxiety-related behavior and brain atrophy. Associated with these outcomes, the combined 

injury group had evidence of increased astrogliosis, neutrophil infiltration, and brain tissue 

IL-1β relative to mice with isolated fracture or TBI. Similarly, the systemic administration of 

pro-inflammatory mediators IL-1β141 and lipopolysaccharide142 in rodent models of diffuse 

TBI exacerbate the neuroinflammatory response, result in larger contusion volume, and 

worsen behavioral outcomes. Whether this was mediated directly via binding to receptors on 

microglia and astrocytes, or through effects such as hypotension or hyperthermia may 

confound the results of these studies.

Finally, there has been limited study of the impact of secondary insults in mTBI. Titus et 

al.143 reported that a brief period of imposed hyperthermia to 39°C beginning 15 min before 

and continued for 4 hours after mild fluid percussion injury (FPI) in rats, produced cognitive 
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deficits despite the use of an injury level that was otherwise devoid of cognitive deficits. 

Cooling back to normothermia at 15 min after TBI prevented development of the deficits. 

Amplification of neuroinflammation by hyperthermia was implicated. Given the prevalence 

of concussions during the summer months in training camps for sports such as football, this 

observation if translated to humans could be important.

D. Inflammation-mediated neurogenesis, gliogenesis, and angiogenesis

Neuronal death after TBI may be mitigated by an increase in neuronal progenitor cell (NPC) 

proliferation, migration to injured brain regions, differentiation to neurons, and integration 

into neural networks.144 Similar to the dual effects of inflammation on secondary brain 

injury, experimental evidence suggests that inflammatory mediators are a key component of 

neurogenesis and may support or hinder NPCs at multiple steps. For example, microglia 

stimulated to an M1-like phenotype with LPS reduce adult hippocampal neurogenesis in the 

mouse,145 an effect similarly seen with pro-inflammatory cytokines TNFα, IL-1β, and 

IL-6.146 This was reversed by treatment with minocycline145 or indomethacin.147 In 

contrast, M2-like microglia, stimulated by IL-4 or low-dose IFN-γ, release neurotrophins 

such as insulin-like growth factor-1 (IGF-1) and induce neurogenesis.148 This effect was 

seen in mice with addition of a running wheel to the cage after TBI, simulating clinical 

rehabilitation, which reduced M1-like microglial activation and was associated with 

increased production of IGF-1 (as well as IL-10 and brain-derived neurotrophic factor) to 

increase neurogenesis and improve cognitive outcomes.149 NPCs also express chemokine 

receptors, such as CCR2 and CXCR4, and chemokines may direct their migration to the area 

of injury.150

Brain atrophy increases over time after TBI,151–157 and yet most survivors of TBI will show 

a temporally linked degree of functional recovery.158 This recovery represents brain 

plasticity and reorganization, in addition to recovery of function of existing neuronal 

pathways. Although data from TBI models are limited, experiments modeling other forms of 

brain injury suggest neural-immune interactions may be critical to forming and 

strengthening new synaptic connections.159–161 The degree of activation and the local 

inflammatory milieu likely define whether any particular cytokine or inflammatory cell type 

benefits or disrupts brain plasticity. For example, in a GFAP-IL-6 transgenic mouse model, 

over-expression of IL-6 caused a significant reduction in long-term potentiation (LTP) in the 

hippocampus.159 However, when anti-IL-6 is used to block basal levels of IL-6 signaling, 

there is a significant prolongation of LTP and improved long-term memory.162 Elevated 

IL-1β also impairs LTP but surprisingly promotes neurite outgrowth and is synergistic with 

neurotrophin-3.163 In rats subjected to repetitive mTBI, activation of microglia was 

associated with inability to induce LTP, attenuated NMDA-mediated signal, and impaired 

memory–these effects were not seen after single mTBI.164

Microglial polarization and the local inflammatory milieu may also influence repair through 

activation of angiogenesis and gliogenesis. Although evidence from TBI models is scant, 

experimental autoimmune and hypoxic/ischemic brain injury suggest M1-like microglia 

impair oligodendrogensis, oligodendrocyte maturation and viability by a TNFα-dependent 

mechanism.94,165 In contrast, M2-like microglia or conditioned media from M2-like 
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microglial culture promote oligodendrogenesis and remyelination in these models. M2-like 

microglia may also, via production of pro-angiogenic cytokines (e.g. TGFβ) and growth 

factors, induce angiogenesis and vascular repair. Whether these findings translate to 

recovery from TBI in humans is unknown, however treatment with pro-angiogenic growth 

factors released by M2-like microglia is neuroprotective in mice and promotes neurogenesis 

and angiogenesis in experimental TBI.166

E. Clinical experience of agents impacting acute neuroinflammation

A key question arises, is TBI-responsive neuroinflammation a clinically relevant therapeutic 

target (Figure 3)? As described above, numerous pre-clinical studies suggest this is the case. 

However, few clinical trials of therapies primarily targeting inflammation have been 

reported. Corticosteroids, surprisingly, have been the least successful anti-inflammatory 

class of drugs in TBI (Table 3). Despite the potent effects on suppressing inflammation, high 

dose methylprednisolone (5 mg/kg/day),167 “megadose” dexamethasone (100 mg),168 

“ultrahigh dose” dexamethasone (2.3 g),169 the aminosteroid tirilazad,170 and a trial of 

hydrocortisone and fludrocortisone (primary outcome hospital acquired pneumonia)171 all 

failed to demonstrate benefits on neurological outcome. Off-target effects with systemic 

administration of corticosteroids likely impact outcomes, and in the case of tirilazad, limited 

brain exposure may have been a confounder.172

Other anti-inflammatory strategies have been evaluated in humans including testing of the 

bradykinin B2 receptor antagonist Anatibant, which produced a trend toward worse outcome 

in 228 patients enrolled.173 A provocative randomized controlled trial (RCT) used 

recombinant human granulocyte colony stimulating factor (G-CSF) to enhance the cellular 

inflammatory response.174 Although the primary outcome in this study was the incidence of 

nosocomial infection, and the number of patients was low, no differences in mortality or 

hospital length of stay were detected between G-CSF treated and placebo groups, nor was 

there a difference in primary outcome. Minocycline has shown promise in a phase II trial in 

patients with spinal cord injury;175 however, it has not been reported in human TBI and pre-

clinical data are equivocal.176 Of note, all of the studies targeting inflammation after TBI 

have been performed in adult patients. Given studies showing an association between 

heightened inflammation and younger age in children with severe TBI, anti-

neuroinflammatory strategies may be more impactful in the developing brain.69,177

Inferences can also be made extrapolating from clinical trials using multi-faceted therapies 

with anti-inflammatory consequences. The anti-inflammatory effects of hypothermia were 

touted as one of its main modes of efficacy.178 Disappointingly, despite single center studies 

in adults with severe TBI showing reduction of IL-1β in CSF,179 multicenter RCTs of 

therapeutic hypothermia after TBI have failed to show benefit in adults180,181 or 

children.11,12 Progesterone, which blunted the neuroinflammatory response to trauma in 

mice, was evaluated in two large multicenter RCTs13,14 of adults with moderate-severe TBI 

and failed to show benefit in 6-month GOS or mortality.

These clinical studies suggest that non-selective attenuation of the inflammatory response 

early after severe TBI is not beneficial, or possibly detrimental. The existing literature lacks 

studies using targeted, single pathway anti-inflammatory strategies in humans, and more 
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personalized approaches that individualize treatments to genotype, inflammatory 

biomarkers, timing and duration of therapy, patient age and sex. Identification of specific 

patient subsets, for example the study by Diamond et al.182 that identified an IL-1β gene 

variant associated with risk of post-traumatic epilepsy, to target enrollment criteria for 

clinical studies may favorably influence their success.

Furthermore, it is unclear whether inhibiting inflammation after mild or repetitive mild TBI 

acutely may prevent chronic sequelae such as CTE. Raising the key questions, does a single 

exposure, or multiple exposures, to TBI prime the brain for chronic neuroinflammation, and 

accordingly would impacting the inflammatory response early after mTBI, or targeting the 

immune response late, represent clinically relevant approaches? Finally, from a therapeutic 

perspective, given the aforementioned benefit of strategies mimicking rehabilitation on 

neuroinflammation neurogenesis and cognitive outcome, it is possible that optimal 

enhancement of beneficial aspects of neuroinflammation, rather than inhibiting detrimental 

effects, could represent a more successful avenue for future clinical investigation.

III. CHRONIC NEUROINFLAMMATION

A. Chronic neuroinflammation after TBI: innocent bystander or driver of pathology?

As discussed, after TBI an acute inflammatory response is elicited that one might expect 

would resolve to a resting state, prepared for the next inflammatory trigger. However, in a 

subset of patients, chronic neuroinflammation may develop and last for years after 

injury.183–186 The proportion of patients in whom chronic inflammation will develop, the 

dominant triggers and intracellular pathways propagating inflammation, and genetic 

susceptibilities to chronic inflammation are under active investigation.

An examination of autopsy specimens from patients surviving >1 year after TBI, and in 

cases up to 18 years, revealed a significant increase in amoeboid microglia in subcortical 

white matter tracts versus control tissue.184,187 Activated microglia were observed in 28% of 

the autopsies and was associated with thinning of the corpus callosum.184,187 These findings 

are supported by positron emission tomography (PET) imaging studies using translocator 

protein (TSPO) ligands, which likely bind activated microglia, to examine chronic 

neuroinflammation in TBI survivors.185,188 In one study, diffuse [11C]R-PK11195 (TSPO 

ligand) binding was found in adults with moderate to severe injury up to 17 years later in 

areas remote to the trauma including thalamus, putamen, and the occipital cortex.185 

Inflammation in the thalamus was associated with more severe cognitive impairments.185 

The 2nd generation TPSO ligand [11C]DPA-713 was used to study retired National Football 

League (NFL) players with self-reported history of career concussions. The supramarginal 

gyrus and right amygdala exhibited ligand binding to levels greater than seen in age matched 

controls.188 Serum cytokines may also demonstrate a chronic immune activation state after 

TBI. For example, a prospective TBI biomarker study reported chronically elevated 

expression of TNFα in serum after TBI and association of increased TNFα with unfavorable 

long-term neuropsychiatric outcomes.189

Experimental studies substantiate the clinical evidence of a chronic inflammatory state after 

TBI, and indicate underlying molecular mechanisms and potential therapeutic 
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strategies.164,190–194 Chronic microglial activation with cell surface markers MHC II, CD68, 

and NADPH oxidase (NOX2) is seen one year after moderate to severe contusion.92 These 

markers would indicate M1-like phenotype, with pro-inflammatory cytokine production and 

reduced phagocytic activity that would be less effective at protective functions such as Aβ 
clearance. Over the course of the year, mice demonstrate progressive neurodegeneration with 

enlarging lesion volume, persistent oxidative stress, demyelination, and cognitive 

impairments. Chronic neuroinflammation is also observed in several repetitive mTBI 

models. Like the acute inflammatory response to mild repetitive injury, microglia are 

characteristically localized to white matter tracts and may be seen in those regions bordering 

degenerating axons with associated neurobehavioral changes 12–18 months after 

injury.164,191,195–198

There is interest, therefore, in the development of pharmacologic and non-pharmacologic 

approaches to reduce chronic neuroinflammation after TBI as a therapeutic strategy, greatly 

expanding the window for targeted interventions. This concept has been examined in pre-

clinical studies, for example, with the selective metabotropic glutamate receptor 5 agonist 

(RS)-2-chloro-5-hydroxyphenylglycine (CHPG), previously shown to reduce microglial 

activation199 and improve functional recovery200 when given acutely after trauma. Mice 

given CHPG at 1 month after focal brain injury had improved neurological recovery, 

decreased neuroinflammation, arrested lesion expansion, sparing of white matter, and 

reduced neurodegeneration at 4 months.201 Similarly, although with a more generalized anti-

inflammatory approach, administration of the phosphodiesterase inhibitor ibudilast on days 

30–34 after FPI in rats reduced anxiety-like behavior and gliosis at 6 months.202 Exercise 

regimens that simulate physical rehabilitation may modulate neuroinflammation and 

promote release of neurotrophic factors after TBI. Piao et al.149 found that a 4-week 

treatment with voluntary exercise attenuated IL-1β gene expression and chronic microglial 

activation, increased production of IL-10 and neurotrophic factors, improved behavioral 

outcomes, and reduced lesion volume.149 Importantly, the authors compared two start dates 

for the exercise regimen which was only effective if delayed to 5 weeks after injury and was 

potentially pro-inflammatory when initiated at 1 week post-injury. Thus, accumulating pre-

clinical research indicates that chronic neuroinflammation and related neurodegeneration 

can be treated weeks after TBI, which suggests exciting potential for clinical translation of 

delayed anti-inflammatory therapies.

B. Progressive neurodegeneration following single and repetitive brain trauma

Accelerated neurodegeneration and CTE may occur following single or repetitive TBI, as 

has been reported in cases of athletes203 and military personnel3 with high incidence of head 

trauma and concussion.204 TBI increases the risk of developing dementia in some patients, 

specifically non-Alzheimer’s dementia, years after the initial injury.205–209 Recently, the role 

of chronic inflammation in the pathophysiology of neurodegenerative disorders has attracted 

considerable attention210,211 and led investigators to speculate about the role of post-

traumatic neuroinflammation in mediating neurodegeneration, non-Alzheimer’s dementias, 

and CTE. Cases of CTE associated with repetitive mTBI have also shown activated 

microglia in perivascular regions of subcortical white matter and throughout the brain as the 

disease progresses.3,212,213 To date, however, comprehensive studies of neuroinflammation 
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in patients with CTE have yet to be reported. Webster et al.214 investigated an early 

intervention with progesterone to prevent neurodegeneration after repetitive mTBI in 

rodents. Animals were administered three mild diffuse injuries, each separated by 5 days, 

and randomized to vehicle or progesterone for 15 days after the first injury. At 12-weeks 

post-treatment, a chronic time point in rodent TBI models, progesterone-treated rats 

exhibited improved neurocognitive outcomes, reduced brain atrophy, and attenuated 

neuroinflammation compared to repetitive mTBI plus vehicle. Based on these promising 

data, additional preclinical studies are warranted.

It remains unclear whether persistent inflammation initiates the characteristic 

neuropathology – formation of neurofibrillary tangles, phosphorylated TAR DNA-binding 

protein 43 (TDP-43) accumulation, and Aβ deposition – and should be targeted. Or, if 

accumulation of these abnormal proteins triggers the inflammatory response, though perhaps 

one ill-suited to restore normal function. Further research is required to advance our 

understanding of critical mechanisms underlying the chronic pathologies of TBI, including 

chronic neuroinflammation, and their relationship to development of neurodegenerative 

disease (Figure 4). Advances in clinical TBI neuroimaging, including use of selective PET 

ligands for amyloid,215,216 tau,217,218 and neuroinflammation,185,188 may clarify the 

mechanisms driving chronic neurodegeneration after TBI, and provide opportunities to 

develop targeted therapies for the long-term sequelae.

IV. CONCLUDING REMARKS

Advances in our understanding of TBI-responsive neuroinflammation have led to exciting 

new questions (Box 2), identified new therapeutic targets and expanded the time frame in 

which to consider treating. Clinical trials with therapies modulating inflammation after TBI 

are in their infancy – even in severe TBI – and therapies targeting neuroinflammation after 

mTBI in patients are completely unexplored. Nevertheless, thus far it appears that treating 

all patients with TBI using a broad-acting anti-inflammatory agent has not shown benefit in 

RCTs. Clearly, there is a need to define inflammatory phenotypes of our patients based on 

injury characteristics such as patient age, sex, genetic predisposition, presence or absence of 

secondary insults, and serum / CSF / imaging biomarkers. Such an approach will allow us to 

answer questions posited in our initial framework, including: how to target inflammation for 

clearance of debris, who will benefit from therapies to promote reparative aspects of 

inflammation, and when should therapies targeting chronic inflammation be initiated. This 

approach should be combined with enhanced pre-clinical trials, which 1) incorporate 

multiple injury models, injury severities, and secondary insults 2) define clinically-relevant 

therapeutic window(s) and treatment durations 3) expand outcomes to examine both harmful 

and protective aspects of inflammation and include acute- and chronic endpoints. Coupled 

with important new trials design strategies such as adaptive design, the result of this 

approach will be clinical trials targeting specific patients with personalized 

immunomodulatory treatments that we hope will reduce secondary injury, enhance repair, 

and improve patient outcomes.
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Box 2

Outstanding Research Questions / Unmet Needs

• What is the level of acute inflammation needed for clearance of debris? How 

can it be determined?

• Does the M1-/M2-like paradigm translate to human brain injury? Are there 

injury severity or regional differences in phenotype?

• Can autoreactive adaptive immune responses be harnessed for benefit in TBI? 

Do Th17/IL-17 adaptive responses contribute to neurodegeneration in TBI?

• Does the extent of damage to the CNS lymphatic drainage systems following 

TBI play a role in defining the magnitude of long-term neuroinflammation?

• What mechanisms prime reactivity of glia acutely after TBI and sustain their 

immune activation for weeks, months and years? Will delayed interventions 

that modulate chronic microglial activation be effective for treatment?

• How can we determine that the reparative processes are no longer beneficial 

and how should we facilitate return of the inflammatory process to a normal 

state?

• Can therapeutic trials be targeted to inflammatory phenotypes or biomarkers?

• Imaging biomarkers: There is an urgent need to identify new stable and 

selective PET ligands or MRI based methods to image neuroinflammation.
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Review Criteria

For review of human data on TBI neuroinflammation, we searched PubMed for articles 

published in English from January 1950 to March 2016 using the following query: 

“traumatic brain injury” or “closed head injury” or “closed-head injury” or “head trauma” 

AND ( ( Case Reports[ptyp] OR Clinical Study[ptyp] OR Clinical Trial[ptyp] OR 

Clinical Trial, Phase I[ptyp] OR Clinical Trial, Phase II[ptyp] OR Clinical Trial, Phase 

III[ptyp] OR Clinical Trial, Phase IV[ptyp] OR Controlled Clinical Trial[ptyp] OR 

Comparative Study[ptyp] OR Meta-Analysis[ptyp] OR Multicenter Study[ptyp] OR 

Randomized Controlled Trial[ptyp] ) AND Humans[Mesh]). We selected articles 

reporting clinical findings of neuroinflammation in human traumatic brain injury. 

Reference lists were used, as well as these authors’ expertise, for inclusion of additional 

relevant studies.
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Key Points

• Traumatic brain injury is a significant public health issue that is increasing in 

global incidence and recognition in popular press, particularly for mild, 

repetitive, and blast injuries.

• Neuroinflammation, triggered by release of endogenous danger signals and 

innate immune activation, is crucial to recovery after traumatic brain injury; 

however, a dysregulated immune response may lead to secondary injury.

• The activity of microglia and infiltrating macrophages and adaptive immune 

cells is driven by extracellular injury signals and intracellular molecular 

pathways that may represent novel therapeutic targets.

• Design of preclinical and clinical trials studying immunomodulatory 

interventions should account for changes in neuroinflammation that occur 

over time, between injury type / severity / secondary injury, and across patient 

characteristics such as age, sex, and genetic variability.

• Chronic neuroinflammation, which may develop and last for years after 

traumatic brain injury, is being investigated as a link to accelerated 

neurodegeneration and chronic traumatic encephalopathy.
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Figure 1. Overview of Neuroinflammation after TBI
Primary mechanical injury to the CNS may cause cell membrane disruption, vascular 

rupture, and BBB damage followed by secondary reactions involving ionic imbalance, 

release of excitatory amino acids, calcium overload, and mitochondrial dysfunction - 

ultimately culminating in cell death pathways. Primary and secondary injury lead to release 

of DAMPs, cytokines, chemokines, activation of microglia and astrocytes, and recruitment 

of circulating immune cells. These immune responses largely overlap temporally. The 

inflammatory response is crucial to clearance of debris, repair, and regeneration after TBI. 

However, dysregulated inflammation can lead to additional acute and chronic brain injury.

Abbreviations: CNS, central nervous system; BBB, blood brain barrier; DAMP, damage-

associated molecular pattern; TBI, traumatic brain injury
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Figure 2. Extracellular injury signals and intracellular molecular pathways control polarization 
of microglia and macrophages following TBI
Molecular signals from injured tissue can drive phenotypic and functional responses in 

microglia/macrophages after TBI. DAMPs released by injured neurons, pro-inflammatory or 

oxidative mediators released by infiltrating immune cells including TNFα, IFNγ, IL-6, and 

O2− can polarize cells towards an M1-like phenotype. M1-like populations are characterized 

by expression of proteins such as IL-1β, TNFα, IL-6, NOS2, IL-12p40, and NOX2. 

Molecular pathways that regulate the M1-phenotype include STAT1, IRF-3/5, NFκB 

p50/p65 and miR-155, among others. M1-like microglia and macrophages release pro-

inflammatory factors and free radicals that promote chronic neuroinflammation, oxidative 

stress and neurodegeneration, and inhibit regeneration. In response to anti-inflammatory and 

neurotrophic signals microglia and macrophages can be polarized towards an M2-like 
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phenotype, characterized by expression of proteins such as CD206, CD163, Arginase 1, 

FCγR, Ym1, IL-10, and TGFβ. Molecular pathways that regulate M2-like phenotypic 

transitions include STAT6/3, IRF-4/7, NF-κB p50/p50, Nrf2 and miR-124, among others. 

M2-like microglia and macrophages release anti-inflammatory and trophic factors that 

resolve inflammation. They also have increased phagocytic activity, and improve brain 

repair by modulating neurogenesis, axonal regeneration, synaptic plasticity, and 

angiogenesis. Microglia and macrophages demonstrate significant plasticity and can switch 

between M1- and M2-like phenotypes. Moreover, it is recognized that following TBI they 

present mixed phenotypes during the acute phase post-injury, and transitions to an M1-like 

dominant phenotype in the chronic phase after TBI.

Abbreviations: TBI, traumatic brain injury; DAMP, damage-associated molecular pattern; 

TNF, tumor necrosis factor; IFN, interferon; IL, interleukin; NOS, nitric oxide synthase; 

NOX, nicotinamide adenine dinucleotide phosphate oxidase; STAT, signal transducer and 

activator of transcription; IRF, interferon regulatory factor; CD, cluster of differentiation; 

TGF, transforming growth factor; NF-κB, nuclear factor kappa-light-chain-enhancer of 

activated B cells
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Figure 3. Novel therapies for TBI targeting inflammation at different time points from injury
Therapies targeting TBI-responsive inflammation may be effective at different time points 

depending on the therapeutic target(s). Similarly, design of pre-clinical and clinical trials of 

anti-inflammatory agents should note that inflammation causing secondary injury at one 

time-point may be protective at others. Initially, inflammation triggered by release of 

DAMPs and ROS generation can be blocked through the use of antioxidants, minocycline, 

and PPAR agonists, among others. Inflammasome activation will cause release of IL-1β, the 

action of which can be inhibited at IL-1 receptors with IL-1ra (Anakinra). Over the next 

several hours-days, invasion of CNS by circulating immune cells will contribute to 

neuroinflammation, and this process can be inhibited by therapies such as NK1 antagonism 

and chemokine antagonists. Microglial polarization to M2-like phenotype has been shown to 

be neuroprotective. M1-like phenotype, which peaks ~7 days from injury, is 

proinflammatory and associated with secondary injury. The M2-like phenotype can be 

promoted by MSC, PPAR agonists, and CCR2 antagonists, among other possibilities. The 

adaptive immune response peaks days after injury. T-cells must be primed to enter CNS – 

this may be inhibited by therapies such as IVIG. Additionally, alterations in gut microbiome 

may affect the relative number of pro- and anti-inflammatory T-lymphocytes. Glymphatic 

clearance may be impaired after TBI, which may lead to impaired clearance of pro-

inflammatory mediators. Investigations are ongoing to determine ways to improve 

Simon et al. Page 39

Nat Rev Neurol. Author manuscript; available in PMC 2018 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



glymphatic flow, however it has been shown to be maximized during sleep. Chronic 

microglial activation may develop and lead to chronic neurodegeneration, encephalopathy, 

and dementia. Activation of the mGluR5 on microglia, such as with CHPG, attenuates M1-

like microglial activation. Rehabilitation and exercise have also been shown to reduce M1-

like microglial activation.

Abbreviations: TBI, traumatic brain injury; CSF, cerebrospinal fluid; ROS, reactive oxygen 

species; DAMP, damage-associated molecular pattern; BBB, blood brain barrier; PPAR, 

peroxisome proliferator-activated receptor; IL, interleukin; MSC, mesenchymal stem cell; 

CHPG, (RS)-2-Chloro-5-hydroxyphenylglycine; IVIG, intravenous immunoglobulin; IFN, 

interferon; fHb, free hemoglobin; GFAP, glial fibrillary acidic protein
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Figure 4. Chronic neuroinflammation contributes to chronic neurodegeneration, dementias, and 
encephalopathy after TBI
Neuroinflammation and microglial activation are key mediators of repair and recovery from 

TBI. However, recent clinical and laboratory data have shown that TBI can cause persistent 

neuroinflammation and microglial activation, in some cases lasting many years, and lead to 

chronic neurodegeneration, dementia, and encephalopathy. Prospective studies of TBI 

biomarkers in adults with severe TBI have shown that serum levels of IL-1β, IL-6, CXCL8, 

IL-10, and TNFα are chronically increased. Experiments in animal models have 

demonstrated persistently increased numbers of microglia expressing MHC II, CD68, and 

NOX2 at the margins of the lesion and in the thalamus at 1-year post-injury associated with 

oxidative stress and white matter disruption. These inflammatory findings have been 

correlated with chronic neurodegeneration, the development of dementia, and 
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encephalopathies – which may subsequently cause additional inflammation in a self-

perpetuating deleterious feedback mechanism.

Abbreviations: TBI, traumatic brain injury; IL, interleukin; CD, cluster of differentiation; 

TNF, tumor necrosis factor
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