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Abstract

Purpose—Cochlear implantation has recently become available as an intervention strategy for 

young children with profound hearing impairment. In fact, infants as young as 6 months are now 

receiving cochlear implants (CIs), and even younger infants are being fitted with hearing aids 

(HAs). Because early audiovisual experience may be important for normal development of speech 

perception, it is important to investigate the effects of a period of auditory deprivation and 

amplification type on multimodal perceptual processes of infants and children. The purpose of this 

study was to investigate audiovisual perception skills in normal-hearing (NH) infants and children 

and deaf infants and children with CIs and HAs of similar chronological ages.

Methods—We used an Intermodal Preferential Looking Paradigm to present the same woman’s 

face articulating two words (“judge” and “back”) in temporal synchrony on two sides of a TV 

monitor, along with an auditory presentation of one of the words.

Results—The results showed that NH infants and children spontaneously matched auditory and 

visual information in spoken words; deaf infants and children with HAs did not integrate the 

audiovisual information; and deaf infants and children with CIs initially did not initially integrate 

the audiovisual information but gradually matched the auditory and visual information in spoken 

words.

Conclusions—These results suggest that a period of auditory deprivation affects multimodal 

perceptual processes that may begin to develop normally after several months of auditory 

experience.
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1. Introduction

In typically developing infants, the auditory system is well developed at birth whereas the 

visual system takes several months to fully develop (Bahrick and Lickliter, 2000; Dobson 

and Teller, 1978; Gottlieb, 1976). Nevertheless, infants are capable of integrating auditory 
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and visual speech information at a very young age (Kuhl and Meltzoff, 1982; Patterson and 

Werker, 2003). There is debate as to what role experience plays in acquiring early 

audiovisual integration skills for speech. Some researchers have proposed that acquiring 

complete representations of audiovisual speech gestures requires extensive experience 

listening to, observing, and perhaps even producing speech. One way of measuring the 

effects of such experience is to compare audiovisual speech perception skills in normal-

hearing infants and deaf infants who receive hearing aids or cochlear implants to restore 

maximal hearing capabilities. The purpose of the present study is to investigate the 

development of audiovisual perception of spoken words in infants with normal hearing and 

hearing loss who vary in chronological age, duration of deafness, and duration of 

audiological device use.

Young infants are capable of matching auditory and visual information that is naturally 

coupled in the environment (Bahrick and Lickliter, 2000; Lewkowicz and Kraebel, 2004). In 

one of the first studies of infants’ perception of audiovisual synchrony, for example, Spelke 

(1976) simultaneously presented two films, one portraying a woman playing peek-a-boo and 

the other portraying a hand playing percussion instruments, to 4-month-old infants. She then 

measured infants’ looking time to each of the films while a soundtrack corresponding to 

only one of the films was played, and found that the infants preferred to watch the film that 

matched the sound track. Several studies have more specifically explored infants’ perception 

and integration of auditory and visual information in speech (Aldridge et al., 1999; Dodd, 

1979; Lewkowicz, 2000; Walton and Bower, 1993). In a seminal study of infant audiovisual 

speech perception, Kuhl and Meltzoff (1982) presented 18- to 20-week-old infants with two 

faces visually articulating the vowels /a/ and /i/ and one sound track synchronized with one 

of the articulating faces. They found that the infants looked longer at the matching face than 

the nonmatching face. More recent studies have also shown that infants as young as 2.5 

months of age successfully integrate audiovisual steady-state vowels (Patterson and Werker, 

1999, 2003). Finally, infants as young as newborns prefer audiovisually matched 

presentations of nonnative vowels (Aldridge et al., 1999; Walton and Bower, 1993).

Although infants show remarkable audiovisual matching skills of simple speech stimuli like 

steady state vowels, other research has shown some limitations on their matching of more 

complex stimuli. When presented with consonants or combinations of consonants and 

vowels, infants must correlate the visual and auditory signals that change rapidly over time 

as they are articulated by the talker. Mugitani, Hirai, Shimada, and Hiraki (2002) found that 

8-month-olds had difficulty matching audiovisual information in consonants. On the other 

hand, MacKain, Studdert-Kennedy, Spieker, and Stern (1983) found that 5- to 6-month-old 

infants preferred to look longer at matching CVCV displays, but only when attending to the 

right side. Although they interpreted these results as indicative of left hemisphere speech 

processing, the results could also suggest that infants do not integrate audiovisual 

information in complex stimuli as easily as in steady-state vowels.

Despite being capable of matching audiovisual speech information, it remains possible that 

infants and children still have incomplete representations of the auditory and visual 

components in speech. Lewkowicz (2000) presented 4-, 6-, and 8-month-old infants with 

audiovisual syllables (/ba/ and /sha/) and measured their perception of auditory, visual, or 
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audiovisual changes to these syllables. They found that all age groups detected auditory and 

audiovisual changes to the syllables, but only the 8-month-olds detected visual changes, 

unless presented in an infant-directed speech style. These results suggest that infants’ 

perception of the visual components of AV speech may develop more slowly than their 

perception of the auditory components. In fact, there is still evidence of less visual influence 

on perception of audiovisual speech, compared to adults, by the time children reach 

preschool (Desjardins et al., 1997; McGurk and MacDonald, 1976; van Linden and 

Vroomen, 2008).

Several researchers have related infants’ uneven development of auditory and visual 

perception to their early experiences with listening, observing, and producing speech (e.g., 

Desjardins et al., 1997; Mugitani et al., 2008). In a study of preschoolers’ perception of 

congruent and incongruent audiovisual syllables, Desjardins et al. (1997) found that the 

perception of the visual speech gestures was more adult-like in children who had more 

experience correctly producing consonants such as “th” compared to children who had 

difficulty producing such consonants. The authors further suggest that the representation of 

the visible articulation is built up by not just correctly producing consonants but also by the 

length of time correctly producing consonants. This notion has important implications for 

infants and children with congenital profound hearing loss who receive cochlear implants, 

who have no auditory experience prior to cochlear implantation, and who typically do not 

correctly produce consonants until several months or years following implantation.

One factor that is extremely important for early auditory experience in deaf children is age at 

implantation. Infants and children who are implanted at an earlier age thus have a shorter 

duration of deafness and a longer duration of experience with spoken language. In recent 

analyses of spoken word recognition and sentence comprehension in children with cochlear 

implants enrolled in a longitudinal study of speech perception and language development, 

we found that prelingually deaf children showed more improvement in audiovisual and 

auditory-alone comprehension skills than visual-alone skills over a period of five years 

following cochlear implantation (Bergeson et al., 2003, 2005). We also found that children 

who were implanted under the age of 5 years performed better in the auditory-alone and 

audiovisual conditions than children implanted over the age of 5 years, whereas children 

who were implanted later had better visual-alone scores than children who were implanted 

earlier. Finally, pre-implantation performance in the visual-alone and audiovisual conditions 

was strongly correlated with performance 3 years post-implantation on a variety of clinical 

outcome measures of speech and language skills.

These results suggest that infants and children with hearing loss learn to utilize any speech 

information they receive, regardless of the modality. That is, children with less early 

auditory experience (i.e., implanted after the age of 5 years) actually appear to be more 

influenced by the visual component of spoken language than children with more early 

auditory experience. Similarly, in a study of McGurk consonant perception in deaf children 

with cochlear implants, Schorr, Fox, van Wassenhove, and Knudsen (2008) found that 

children implanted after the age of 2.5 years were more influenced by the visual component 

of incongruent syllables than children implanted before the age of 2.5 years. Thus, early 

auditory and audiovisual experience seems to delay processing of the visual components of 
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audiovisual information, whereas early visual-only experience serves to increase dependence 

upon the visual components of audiovisual information.

One main goal of the present study is to investigate audiovisual speech perception in normal-

hearing infants and children and hearing-impaired infants and children who use hearing aids 

or cochlear implants. Recent studies have shown that hearing-impaired infants may be able 

to perceive and integrate audiovisual speech stimuli after approximately 12 months of 

cochlear implant experience, but audibility plays a role in successful audiovisual integration 

(Barker and Bass-Ringdahl, 2004; Barker and Tomblin, 2004). Thus, we hypothesize that 

infants and children with severe-to-profound hearing loss prior to receiving hearing aids and 

infants and children with profound hearing loss prior to receiving cochlear implants will 

have difficulty matching auditory and visual signals in a replication and extension of Kuhl 

and Meltzoff’s (1982) audiovisual speech perception task.

Another goal of this study is to investigate the effects of duration of severe-to-profound 

hearing loss on audiovisual speech perception. If longer durations of early auditory 

deprivation lead to increased difficulty acquiring audiovisual speech integration skills, then 

earlier implanted infants and children should perform better on audiovisual speech 

perception tasks than later implanted infants and children.

The majority of previous studies of infants’ perception of audiovisual speech have used 

isolated steady-state vowels as test stimuli, even though those sounds rarely occur in 

everyday speech to infants and children. It is important to measure audiovisual speech input 

that infants and children experience in their natural environment. Compared to isolated 

steady-state vowels, spoken words encode highly distinctive auditory and visual phonetic 

information such as rapid spectrum changes and dynamic movements of the articulators over 

time. Therefore, a third goal of the present study is to measure the development of 

audiovisual perception of words in normal-hearing infants and hearing-impaired infants with 

hearing aids or cochlear implants across a variety of ages.

2. Method

2.1. Subjects

Normal-hearing infants and children (n = 20; 11 females) ages 11.5–39.5 months (m = 23.9) 

were recruited from the local community. Any infants with three or more ear infections per 

year were administered a tympanogram and otoacoustic emission testing to insure normal 

hearing.

Infants and children with bilateral hearing loss were recruited from Indiana University 

School of Medicine (see Table 1). Hearing Aids: Twenty children (9 females) received 

hearing aids between the ages of 2–19 months (m = 6.2 months) and were 8–28 months of 

age (m = 15.6 months) at time of testing. Their pre-amplification unaided pure tone averages 

ranged from 38–120 dB (m = 61.5 dB). An additional three children with hearing aids were 

excluded because they did not complete testing. Cochlear Implants: Nineteen children (5 

females) received a cochlear implant between the ages of 10–24 months (m = 15.6 months) 

and were 16–39 months of age (m = 26.6 months) at time of testing. Their pre-amplification 
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unaided pure tone averages ranged from 67–120 dB (m = 112.0 dB). An additional eight 

children with cochlear implants were excluded because they did not complete testing. 

Hearing-impaired subjects were tested at 3–20 months post-amplification; some were tested 

at more than one post-amplification interval.

All subjects had normal vision, as reported by their parents. The families were paid $10/hour 

for their participation. Families of hearing-impaired infants were also reimbursed for 

transportation and lodging costs when traveling from long distances.

2.2. Stimulus materials

Audiovisual test stimuli were drawn from the Hoosier Audiovisual Multitalker Database of 

spoken words, in which a female talker produced CVC monosyllabic words in a natural 

adult-directed manner using neutral facial expressions (Lachs and Hernández, 1998; Sheffert 

et al., 1996). The words “judge” and “back” were used in this study. These two words were 

selected because their articulations are visually distinctive and the durations of the 

audiovisual clips are closely matched (“judge” = 0.595 s; “back” = 0.512 s). The auditory 

stimuli were presented at 65–70 dB HL, well within the audible range for all groups of 

infants.

2.3. Apparatus and procedure

Testing was conducted in a custom-made, double-walled IAC sound booth. Infants sat on 

their caregiver’s lap in front of a large 55-inch wide-aspect TV monitor. The experiment was 

conducted using HABIT software (Cohen et al., 2004). Video clips of the two test words 

(“judge” and “back”) were presented simultaneously on the left and right sides of the TV 

monitor. Visual presentation of the test words was counterbalanced across testing sessions 

(judge-left, back-right versus judge-right, back-left). During the pre-test phase, two silent 

trials were presented to determine whether individual infants exhibited a response bias for 

the visual articulation of one word over the other. During the test phase, the same video clips 

were presented in each of 16 trials (8 repetitions of the words per trial). Half of the trials 

were also accompanied by the sound track from one of the spoken words (e.g., “judge”) and 

half of the trials used the other spoken word (e.g., “back”), in random order. Prior to each 

trial the infant’s attention was drawn to the TV monitor using an “attention getter” (i.e., a 

video of a laughing baby’s face).

Each trial was initiated when the infant looked at the attention getter and continued until all 

8 repetitions of the word were completed. To assess the direction and durations of the 

infants’ looking behavior during the test phases, we coded the infants’ looking responses 

offline using the digital video tape recordings of the testing sessions. All coding was 

performed by trained research assistants who were blind to the stimulus conditions and 

experimental hypotheses. All coders were trained on a subset of previously coded videos 

until they consistently achieved greater than 95% consistency with previous codings.

3. Results

None of the groups of infants and children showed a looking time preference for either word 

(“judge” or “back”) during the visual-only pre-trial presentations. Because infants and 
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young children often have difficulty maintaining attention for a period of time, we analyzed 

the results for the first block of trials (trials 1–8) and the second block of trials (trials 9–16) 

to track children’s attention and interest levels over the course of the experimental session. 

Moreover, it could also be the case that infants and children with hearing loss might not 

immediately detect the audiovisual correspondence and instead need extra time to learn that 

the auditory signal matches only one of the visual signals. Total looking times (s) – averaged 

across trials in each condition for each block and for each individual group of infants and 

children – are presented below.

3.1. Normal hearing infants and children

As shown in Fig. 1, normal-hearing infants prefer to look longer at the matching face (m = 

3.78, s.d. = 0.55) than the nonmatching face (m = 3.42, s.d. = 0.55) in the first block of 

trials, t(19) = 2.15, p = 0.045. In the second block of trials, normal-hearing infants did not 

show a looking time preference for either the matching face (m = 3.18, s.d. = 0.87) or the 

nonmatching face (m = 3.17, s.d. = 0.57) face, t(19) = 0.03, p = 0.973.

3.2. Deaf infants and children with hearing aids

Because hearing-impaired subjects with hearing aids were tested at more than one post-

amplification interval, we completed linear mixed-model analyses (SPSS 16). Figure 1 

shows that hearing-impaired infants with hearing aids did not prefer to look longer at the 

matching face (m = 3.69, s.d. = 0.62) than the nonmatching face (m = 3.55, s.d. = 0.78) in 

the first block, F(1, 30) = 0.554, p = 0.467. In the second block, hearing-impaired infants 

with hearing aids again did not show a looking time preference for either the matching face 

(m = 3.29, s.d. = 0.76) or the nonmatching face (m = 3.26, s.d. = 0.79), F(1, 30) = 0.014, p = 

0.906.

To investigate the effects of pre-amplification unaided pure tone averages on audiovisual 

speech perception, we compared looking time preferences across children with mild-to-

moderate hearing loss (hearing thresholds of 25–70 dB, n = 12) versus those with severe-to-

profound hearing loss (hearing thresholds over 70 dB, n = 7) for each block of test trials (see 

Fig. 2). Linear mixed-model analyses revealed that looking preferences in children with 

mild-to-moderate hearing loss and in children with severe-to-profound hearing loss differed 

significantly in Block 1, F(1, 16.4) = 4.87, p = 0.04, but not in Block 2. Further analyses 

revealed that only the children with mild-to-moderate hearing loss looked significantly 

longer at the matching than non-matching face (F(1, 8.1) = 10.90, p = 0.01) in Block 1, 

whereas those with severe to profound hearing loss did not show any statistically significant 

looking preferences in Block 1 or Block 2. These results suggest that, like NH infants and 

children, children with mild-to-moderate hearing loss are able to match auditory and visual 

speech information.

3.3. Deaf infants and children with cochlear implants

Because hearing-impaired subjects with hearing aids were tested at more than one post-

amplification interval, we completed linear mixed-model analyses (SPSS 16). Figure 1 

shows a pattern of preferences across the two experimental blocks that is in direct contrast to 

the pattern of preferences in the normal-hearing infants and children. In the first block of 
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trials, linear mixed-model analyses revealed that hearing-impaired infants with cochlear 

implants actually looked slightly longer at the nonmatching face (m = 3.93, s.d. = 0.54) than 

the matching face (m = 3.66, s.d. = 0.55), although the difference was not statistically 

significant, F(1, 27) = 2.46, p = 0.128. On the other hand, in the second block of trials, 

hearing-impaired infants with cochlear implants looked significantly longer at the matching 

face (m = 3.67, s.d. = 0.85) than the nonmatching face (m = 3.05, s.d. = 0.62), F(1, 27) = 

13.56, p = 0.001.

An ANCOVA with face type (matching vs. mismatching) as the independent variable, 

looking time (s) as the dependent variable, and pre-amplification PTA (dB) as a covariate 

revealed no effects or interactions with pre-amplification hearing level. To investigate the 

effects of age at cochlear implant stimulation and duration of cochlear implant use on 

audiovisual speech perception, we compared looking time preferences across the first and 

second experimental blocks in infants and children who received cochlear implant 

stimulation before the age of 15 months (Early, n = 10) and after the age of 15 months (Late, 

n = 9) at 3, 6, 12, 18, and 20 months after implantation. Fig. 3 shows that the children in 

both groups initially looked longer at the nonmatching than the matching face, but then 

switched preferences to look longer at the matching than the nonmatching face in the second 

block of trials. Linear mixed-model analyses revealed that performance between groups did 

not differ significantly in Block 1 but did differ significantly in Block 2, F(1, 12.7) = 7.40, p 
= 0.02; only the Late group looked significantly longer at the matching than the 

nonmatching face, F(1, 6.5) = 11.41, p = 0.01. There was also a significant effect of post-

implantation interval during Block 2, F(4, 8.3) = 6.80, p = 0.01. Post-hoc analyses revealed 

significantly worse performance at the 3-month post-implantation interval than the 6-month 

post-implantation interval (p = 0.04, Bonferroni adjustment for multiple comparisons). 

These findings suggest that performance was influenced by both age at implantation and 

duration of cochlear implant experience. However, the effect of age at implantation was 

opposite than predicted – earlier implanted children performed worse than later implanted 

children.

4. Discussion

Based on previous studies of audiovisual speech perception in normal-hearing infants and 

hearing-impaired infants and children with cochlear implants (Barker and Tomblin, 2004; 

Bergeson et al., 2003, 2005; Kuhl and Meltzoff, 1982; Patterson and Werker, 2003), we 

predicted that audiovisual speech perception skills would be influenced by hearing 

impairment. However, we found that infants and children in all three groups (those with 

normal-hearing, hearing aids, or cochlear implants) did not look significantly longer at the 

matching versus nonmatching face while listening to the words “judge” or “back.”

Nevertheless, interesting patterns of performance emerged when comparing looking time 

preferences across the first and second blocks of the experiment. Normal-hearing infants and 

children with mild-to-moderate hearing loss initially preferred to look longer at the matching 

face than the nonmatching face. During the second block of the experiment, however, they 

looked approximately the same amounts at both the matching and nonmatching faces. It is 

possible that once they have successfully matched up the auditory and visual signals they 
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become equally bored with the matching and nonmatching faces. In fact, their looking times 

do decrease somewhat across the two blocks of trials. Interestingly, infants and children with 

greater hearing loss prior to receiving their hearing aids did not show the ability to match 

auditory and visual speech information during either block of trials. Thus, it appears that 

auditory experience plays a role in audiovisual speech perception.

Additional evidence for this notion is that deaf infants with cochlear implants could not 

successfully match the auditory and visual information in the spoken words until the second 

block of trials and that performance was worse at the earliest post-implantation interval. An 

ANCOVA also revealed that the amount of pre-implantation hearing loss did not affect these 

results, likely because there was little variance in the levels of hearing loss. Interestingly, 

infants and children who were implanted earlier did not do as well as those who were 

implanted later on the audiovisual speech perception task. Recall that Bergeson et al. (2003, 

2005) found that children implanted later performed better on the visual-only task of speech 

comprehension measures, whereas children implanted earlier performed better on the 

auditory-only and audiovisual portions of the speech comprehension measures. Moreover, 

Schorr et al. (2008) found similar effects of age at implantation in a replication of the 

McGurk audiovisual speech perception test (McGurk and Mac-Donald, 1976). They suggest 

a sensitive period of approximately 2.5 years for bimodal fusion. After this sensitive period, 

deaf children with cochlear implants are influenced more by the visual input rather than the 

auditory input. In the present study, it is possible that the children implanted later process the 

visual components but must learn the correspondence between the visual and auditory 

signals, as evidenced by the preference for matching audiovisual stimuli only in Block 2. 

Moreover, the present results on duration of device use suggest that early-implanted infants 

and children might eventually show the same bimodal fusion in Block 1 as normal-hearing 

infants and infants with mild-moderate hearing loss after a sufficient period of cochlear 

implant experience.

Evidence from studies with animals and studies of human neural responses suggests that the 

absence of sound during the first several months of life affects neural development at several 

points along the peripheral auditory pathway and other higher-level cortical areas (Kral et 

al., 2000; Leake and Hradek, 1988; Neville and Bruer, 2001; Ponton et al., 1996; Ponton and 

Eggermont, 2001; Ponton et al., 2000; Ponton et al., 1999; Sharma et al., 2002). Connections 

between the auditory cortex and other brain structures may not develop normally in 

congenitally deaf infants, and, as a result, their visual, attentional, and cognitive neural 

networks may not be strongly linked to their auditory processing skills after receiving a 

cochlear implant. Moreover, early experience and activities with multimodal stimulus events 

appear to be necessary for the development of auditory and visual sensory systems and the 

integration of common “amodal” information from each modality (Lewkowicz and Kraebel, 

2004). It is possible, then, that children who have been deprived of auditory sensory input 

before and immediately following birth because of a hearing loss may not acquire spoken 

language through normal auditory-visual sensory means.

In summary, the results of the present study reveal that level of hearing loss and age at 

cochlear implantation do in fact affect the development of audiovisual speech perception. 

Normal-hearing children, children with more hearing prior to receiving hearing aids, and 
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children who received a cochlear implant later rather than earlier were the most successful at 

matching auditory and visual components of spoken words. These findings suggest that 

early auditory experience is very important for developing normal audiovisual speech 

perception abilities. However, infants and children with hearing loss may learn to rely on the 

visual modality to aid audiovisual speech perception.
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Fig. 1. 
Total looking time at the matching and nonmatching faces in the first and second blocks of 

the experiment across hearing status. Error bars indicate standard error.
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Fig. 2. 
Looking time differences (looking time to matching face minus looking time to nonmatching 

face) across levels of pre-amplification unaided hearing thresholds (below and above 70 dB) 

in infants who use hearing aids. Error bars indicate standard error.
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Fig. 3. 
Looking time differences (looking time to matching face minus looking time to nonmatching 

face) for infants who received cochlear implants prior to 14 months of age (Early) and after 

14 months of age (Late). Error bars indicate standard error.
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Table 1

Participant demographics

Age at
amplification (mos)

Pre-amplification
unaided PTA (dB) Device

Cochlear Implant Group

CI15 13.8 102 Nucleus 24 Contour

CI19 10.3 67 Med-El C 40+

CI22 22.1 97 Nucleus 24 Contour

CI25 16.1 118 Nucleus 24 K

CI28 16.8 118 Nucleus 24 Contour

CI29 16.5 118 Med-El C 40+ [L] Advanced Bionics HiRes 90K [R]

CI34 10.4 112 Nucleus 24 Contour

CI35 16.7 120 Nucleus Freedom–Contour Advance

CI39 17.9 97 Nucleus Freedom–Straight

CI40 13.2 118 Nucleus Freedom–Contour Advance

CI42 12.8 117 Nucleus Freedom–Contour Advance

CI48 20.5 118 Nucleus Freedom–Contour Advance

CI49 20.5 118 Nucleus Freedom–Contour Advance

CI51 10.2 118 Nucleus Freedom–Contour Advance

CI53 11.9 118 Nucleus Freedom–Contour Advance

CI3029 14.5 118 Advanced Bionics HiRes 90K

CI3058 24.2 112 Nucleus Freedom–Contour Advance

CI3307 9.9 118 Advanced Bionics HiRes 90k focus

CI3374 13.6 107 Nucleus Freedom–Contour Advance

Hearing Aid Group

HA03 2.2 . Phonak Naida 111 UP

HA07 4.6 41 Oticon Gaia BTEs

HA08 6.2 48 Phonak Maxx 311 BTE

HA09 19.6 46 Phonak Maxx 311 BTEs

HA10 10.6 64 Oticon Gaia BTEs

HA11 6.6 53 Phonak Maxx 211 BTE

HA12 8.4 43 Unison 6 BTEs

HA13 2.0 44 Unitron Unison 6 BTE

HA14 4.7 47 Oticon Gaia BTEs

HA16 14.1 118 Phonak Power Maxx 411 BTEs

HA17 3.4 120 Phonak Maxx 311 BTEs

HA18 4.1 47 Phonak Maxx 311 BTEs

HA20 1.4 120 Phonak Maxx 311 BTE

HA22 8.8 45 Phonak Maxx 311 BTEs

HA24 5.2 38 Oticon Gaia VC BTEs

HA25 6.4 80 Oticon Sumo BTE [L] Oticon Tego Pro BTE [R]

HA3029 3.9 120 Oticon Tego Pro BTEs

HA3551 2.3 104 Oticon Sumo DM
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Age at
amplification (mos)

Pre-amplification
unaided PTA (dB) Device

HA3664 7.1 39 Oticon Safran BTEs

HA3699 2.5 76 Oticon Tego Pro BTEs

Restor Neurol Neurosci. Author manuscript; available in PMC 2017 November 07.


	Abstract
	1. Introduction
	2. Method
	2.1. Subjects
	2.2. Stimulus materials
	2.3. Apparatus and procedure

	3. Results
	3.1. Normal hearing infants and children
	3.2. Deaf infants and children with hearing aids
	3.3. Deaf infants and children with cochlear implants

	4. Discussion
	References
	Fig. 1
	Fig. 2
	Fig. 3
	Table 1

