Skip to main content
. 2017 Sep 21;8(50):87675–87683. doi: 10.18632/oncotarget.21147

Figure 4. The changes of transcriptional expression of antioxidant enzymes by the treatment with docetaxel or cabazitaxel.

Figure 4

(A) The mRNA expression of manganese superoxide dismutase (MnSOD, SOD2) in C4-2AT6 cells was not changed by the treatment with docetaxel (DOC) nor cabazitaxel (CBZ). (B) The mRNA expression of catalase (CAT) was not changed by the treatment with DOC nor CBZ. (C) The transcripts of SESN3 were significantly down-regulated by the treatment with cabazitazel, but not by docetaxel. * ; p< 0.05, ** ; p< 0.01. (D) SESN3 expression in C4-2AT6 cell treated with cabazitaxel was significantly inhibited compared with docetaxel-treated cells. (E) SESN3 expression in vivo in the control, docetaxel-treated or cabazitaxel-treated tumors. *** ; p< 0.001, compared with control tumors. (F) Transfection of siRNAs for SESN3 in C4-2AT6 cells. (G) Transfection of siRNAs for SESN3 reduced the level of SESN3 expression both in both the nucleus and cytoplasm. (H) C4-2AT6 cells were treated with cabazitaxel in the presence of si-SESN3. C4-2AT6 cells with si-SESN3 showed significantly higher sensitivity to cabazitaxel compared with mock-transfection control. ** ; p< 0.01, *** ; p< 0.001, compared with mock-transfection control. (I) The effect of ROS production by si-SESN3 in C4-2AT6 cells. The enhanced cytotoxic effect was accompanied by elevated ROS production. (J) The change of expression of the cleaved-PARP in C4-2AT6 cells with si-SESN3 after treatment with cabazitaxel. *** ; p< 0.001, compared with mock-transfection control