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Abstract

The intragenic tumor-suppressor microRNA miR-486-5p is often down-regulated in non-small cell
lung cancer (NSCLC) but the mechanism is unclear. This study investigated epigenetic co-
regulation of miR-486-5p and its host gene ANKI. MiR-486-5p expression in lung tumors and
cell lines was significantly reduced compared to normal lung (p<0.001) and is strongly correlated
with ANKZ expression. /n vitro, sSiRNA-mediated ANVKZ knockdown in NSCLC cells also reduced
miR-486-5p while the DNA methylation inhibitor 5-aza-2"-deoxycytidine induced expression of
both. ANK1 promoter CpG island was unmethylated in normal lung but methylated in 45%
(118/262) lung tumors and 55% (17/31) NSCLC cell lines. After adjustment for tumor histology
and smoking, methylation was significantly more prevalent in adenocarcinoma (101/200, 51%)
compared to squamous cell carcinoma (17/62, 27%), p<0.001; HR=3.513 (ClI: 1.818-6.788); and
in smokers (73/128, 57%) than never-smokers (28/72, 39%), p=0.014; HR=2.086 (Cl: 1.157-
3.759). These results were independently validated using quantitative methylation data for 809
NSCLC cases from The Cancer Genome Atlas project. Together, our data indicate that aberrant
ANKI methylation is highly prevalent in lung cancer, discriminate tumors by histology and
patients’ smoking history, and contributes to miR-486-5p repression.
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1. Introduction

MicroRNAs (miRs) are small (~22 nucleotides) non-coding RNAs that regulate many
fundamental biological processes primarily through inhibiting the translation of their target
genes [1]. Some miRs target key oncogenic or tumor-suppressor genes and thereby play a
critical role in inhibiting or promoting carcinogenesis, respectively [2]. MiR-486-5p is a
tumor-suppressor miR that is often down-regulated across multiple malignancies including
lung [3,4], gastric [5], pancreatic [6], and other [7] cancers. /n vitro and laboratory animal
based gain- or loss-of-function studies on miR-486-5p have confirmed its role in suppressing
the growth of lung cancer [8-10]. Reduced miR-486-5p expression strongly contribute to
lung cancer progression while recent studies showed that it could be reliably detected in
easily accessible samples such as serum and sputum indicating its potential as a prognostic
biomarker. The clinical use this and other prognostic miR signatures as disease fingerprints
and potential early detection biomarkers including through complementing lung cancer
screening by low-dose computed tomography have been demonstrated [11-15]. However,
the mechanism(s) leading to this highly prevalent and clinically important miR-486-5p
repression remains unclear.

Aberrant promoter CpG island methylation is one of the most common epigenetic
modifications that silence tumor-suppressor genes in cancer. Recent publications from our
group [16,17] and others [18,19] have shown that some tumor-suppressor miRs are also
epigenetically silenced in cancer through promoter hypermethylation and/or histone
modification. For intragenic miRs that are located within coding genes, such epigenetic
changes in the promoter region of the host gene could simultaneously alter the expression of
the gene and the miR. Over 50% of approximately 1900 miRs in the human genome are
intragenic, and about a third including miR-486 are located within intronic regions [20,21].
Since some intronic miRs are co-transcribed and consequently co-regulated with their host
genes [20-23], we hypothesized that the frequent repression of miR-486-5p in lung cancer
could be mediated through aberrant epigenetic modification of its host gene, ANKL.

ANK1 is a large (~230kb) gene within chromosome 8p11.21 that encodes the adapter
protein ankyrin-1. Three distinct promoter regions drive tissue-specific expression of
ANKI1B (brain and muscle), ANKIE (erythroid cells), or ANKZA (ubiquitous) transcript
variants [24-26]. MiR-486 is located within the last intron of ANKZ that is common to all
transcripts and could be co-transcribed with any or all variants. Indirect evidence in various
cell types indicates potential co-transcription and co-regulation of ANKZ and miR-486.
GATAL activates the expression of both ANKZ and miR-486-5p in myeloid leukemia
[25,27]. Similarly, MYB (c-myb) binds to the ANKZ promoter and activates coordinated
expression of ANKZ and miR-486-3p to promote erythropoiesis [28]. In skeletal muscle
cells, MLK (MRTF-A) activates expression of ANKZ and miR-486 [29], while MSTN
(myostatin) represses expression of both [30]. These findings support our hypothesis that
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miR-486-5p down-regulation in lung cancer could be mediated through epigenetic
repression of the host gene.

Since the tumor-suppressor function of miR-486-5p and its down-regulation in lung cancer
have been extensively studied, the focus of this study was to define the mechanisms leading
to this repression. The presence of epigenetic abnormalities across the promoter regions of
ANKZ and/or the intronic region surrounding the miR and their role in suppressing ANKZ,
miR-486-5p, or both in lung cancer were evaluated. First, miR-486-5p expression in lung
tumor-normal pairs and cell lines was determined using next-generation sequencing (NGS)
of the microRNAome [17]. The NGS also screened for potential epigenetically repressed
miRs using NSCLC cell lines treated with vehicle or the DNA methylation inhibitor 5-
aza-2’-deoxycytidine (DAC). The specificity of methylation to lung cancer and its
association with tumor histology, stage, patients” demography and/or smoking history was
evaluated using qualitative and quantitative methylation assays. The results were confirmed
using various qualitative and quantitative methylation and expression assays and
independently validated using publicly available methylation data from The Cancer Genome
Atlas (TCGA) database. Finally, the role of epigenetic silencing of ANKZ, its effects one
genome-wide transcription of genes, and the pathways it impacts were studied using sSiRNA-
mediated knockdown of the gene in NSCLC cell lines.

2. Materials and Methods

2.1. Tissue samples and cell lines

Lung tumors from 262 NSCLC patients were obtained from frozen tumor banks at the
University of New Mexico (UNM), Johns Hopkins, and the Mayo Clinic. Distant normal
lung tissue (DNLT) obtained from the resected lobe was available for a subset of these cases.
Normal human bronchial epithelial cells (NHBEC) collected through diagnostic
bronchoscopy [31] and peripheral blood mononuclear cells (PBMC) from cancer-free
smokers (n=10) were used as normal control. All samples were obtained with written
informed consent from patients, and the study was approved by the institute’s Ethics
Committee. Five human bronchial epithelial cell lines (HBEC1, 2, 3, 13, and 14)
immortalized as described [32] were obtained from Drs. Shay and Minna, Southwestern
Medical Center, Dallas, TX. Twenty-five NSCLC cell lines (Table S1) obtained from and
authenticated by the American Type Culture Collection (Manassas, VA) were also used.
Experiments were conducted in cell lines passed for a maximum of 6 months post-
resuscitation.

2.2. DNA methylation

DNA extraction, modification, and methylation analysis using Combined Bisulfite
Modification and Restriction Analysis (CoBRA) and Methylation-Specific PCR (MSP) were
performed as described [33] using primers and amplification conditions in Tables S2.
Quantitative methylation data for ANKZ including its promoter CpG islands and the
miR-486 containing last intron was obtained from our recent HumanMethylation450
beadchip (HM450K) analysis of lung tumor-normal pairs and cell lines [34,35]. The publicly
available HM450K data for 809 NSCLC cases from TCGA was used for independent
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validation of results. Treatment of NSCLC cell lines with the DNA methylation inhibitor 5-
aza-2’-deoxycytidine (DAC) was performed as described [33].

2.3. Gene, miRNA, and protein expression

For gene expression, total RNA was isolated and reverse transcribed as described [36]. For
miRNA expression, 10ng total RNA was reverse transcribed using the TagMan® MicroRNA
Reverse Transcription Kit from Applied Biosystems (Foster City, CA) according to the
manufacturer’s protocol. TagMan assays from Applied Biosystems were used to quantify
ANK1 and miR-486-5p expression using ACTB (B-actin) and RNU6B as endogenous
controls, respectively. Samples were run at least twice in duplicate and expression of each
target gene relative to the endogenous control (ACT) and the reference control samples (A
ACT) was calculated in fold-change as described [37]. For protein expression, cells were
lysed in RIPA buffer and 60pg total protein was used to detect endogenous ANK1 and Beta-
actin with anti-ANK1 (NBP1-71805) and anti-B-actin (A2228) antibodies from Novus
Biologicals (Littleton, CO, USA) and Sigma-Aldrich, (Carlsbad, CA, USA), respectively.

2.4. Transfection

Cells were transfected with ANKI-specific SiRNA (siANK1), miR-486-5p mimic, or
scrambled controls from Applied Biosystems using Lipofectamine 2000 (Invitrogen, Santa
Clara, CA) as described [38]. Four different siRNAs targeting different sequences of ANK1
(Fig. S1), sSiIANK1#1 (s223810), sSiIANK1#2 (s1364), SiIANK1#3 (s1362), and siANK1#4
(s1363) were used. ANKZ and miR-486-5p expression following transfections were
determined as described above. Cell survival and migration were compared between
siControl and siANK1 transfected cells using MTT and wound closure assays, respectively
as described [36]. Genome-wide gene expression changes between siControl and siANK1
cells were evaluated 48h post-transfection using Illumina Whole-Genome Gene Expression
Beadchip (Illumina, San Diego, CA) as described by the manufacturer and the pathways
regulated by the most significantly altered genes were identified using Ingenuity pathway
analysis software.

2.5. Statistical analysis

Gene methylation and patient characteristics including age, gender, smoking status, and
tumor histology were summarized with mean and standard deviation for continuous
variables and proportions for categorical variables. The association between methylation and
patient characteristics was assessed by Fisher’s exact test. ANKZ and miR-486-5p
expression in siControl vs. siANK1 transfected cells was compared using one-way analysis
of variance (ANOVA). All analyses were conducted in SAS 9.2.

3. Results

3.1. MiR-486-5p is epigenetically repressed in lung cancer

We have recently screened the microRNAome of NSCLC cell lines (n=10) and lung tumor-
normal pairs (n=14) from lung adenocarcinoma patients using NGS [17]. MiR-486-5p was
one of the miRs with markedly reduced expression in NSCLC cell lines and lung tumors
compared to normal lung. The level of miR-486-5p in each tumor was lower than the
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corresponding DNLT (supplementary Fig. S2A) and pairwise comparison revealed that the
overall expression in the tumors was significantly lower (p=0.0006) than the normal lung
(Fig. 1A). Although miR-486-5p down-regulation and its effects in promoting lung
carcinogenesis have been previously reported [3,8-10], the mechanism of repression is
unknown. MicroRNAome analysis of NSCLC cell lines treated with vehicle or DAC as
described [33] showed that DAC treatment increased miR-486-5p expression in 5/10 cell
lines with lowest expression by 2 to 8-fold (Fig. 1B). These results, which were verified with
miR-specific TagMan expression assays (Fig. S2B), suggest DNA methylation is likely
involved in miR-486-5p repression. However, our HM450K-based quantitative methylation
data [34,35] revealed that the ~5kb region containing miR-486 is strongly methylated in all
samples including DNLT (Fig. S2C). Evaluation of the region in normal lung epithelial
(NHBEC) and blood (PBMC) cells using CoBRA also showed strong methylation (Table
S3) indicating this methylation is a normal epigenetic modification that does not explain the
tumor-specific repression of miR-486-5p in lung cancer.

3.2. MiR-486-5p and its host gene show similar expression pattern in lung cancer

Many intragenic miRs are co-transcribed (thus co-regulated) with their host gene [20-
22,39]. MiR-486 is located within the last intron of ANKZ (Fig. 1C), a large gene with three
distinct promoter regions that regulate tissue-specific expression of at least three groups of
transcript variants, ANK1B, ANKIE, and ANK1A [24-26]. We quantified the expression of
these variants in lung cancer using variant-specific TagMan gene expression assays
(illustrated in Fig. 1C). Although all three ANKZ variants were detected in DNLT that
contains various cell types, ANK1B was the main/only transcript expressed in lung epithelial
cells (the precursor cells for NSCLC) and lung cancer cells (Fig. 1D). Also a low level of
ANKIE (but no ANK1A)expression was detected in a few NSCLC cell lines (Fig. 1D).
Hence, total ANKZ expression in lung cancer was measured using a TagMan assay that
detects both ANKZIBand ANK1E (E&B line in Fig. 1C). Comparison of ANKZ (total) and
miR-486-5p levels in lung cancer revealed that the miR and its host follow similar
expression pattern (Fig. 2A).

3.3. MiR-486-5p is co-expressed with ANK1 but does not repress its host

Approximately 20% of intragenic miRs are predicted to target their host gene [23]. Using
the mirSVR miRNA target prediction method from miRanda we identified two miR-486-5p
binding sites within the ANKZ 3"UTR. However, both sites have low mirSVR scores
(-0.2046 and —0.1013) for potentially down-regulating ANKI expression. These predictions
were experimentally tested by comparing miR-486-5p and ANKI expression in multiple
NSCLC cell lines following transfection with miR-486-5p-mimic or scrambled control. The
results showed that increasing miR-486-5p in NSCLC cells (Fig. 2B) did not significantly
alter ANKZ mRNA or protein expression (Fig. 2C). Conversely, the effect of epigenetic
repression of ANKZ on miR-486-5p expression was investigated using siRNA-mediated
knockdown of ANKZ expression in NSCLC cell lines (Fig. S3A-B). The results revealed
that ANVKZ knockdown in lung cancer (Fig. 2D) also reduced miR-486-5p expression (Fig.
2E). Together, these results indicate that miR-486-5p is co-expressed with its host ANK1 but
does not target it for repression.
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3.4. ANK1 promoter CpG islands are aberrantly methylated in lung cancer

ANKI has 8 CpG islands scattered across its ~230kb DNA (Fig. 1C). Methylation of two of
these CpG islands that cover the promoter regions of ANKIB (CpG:171) and ANKIE (CpG:
79) were screened in normal and NSCLC cells using the semi-quantitative methylation assay
(CoBRA) and the relationship with ANKZ and miR-486-5p expression was compared. Both
CpG islands were unmethylated in NHBEC but completely methylated in some lung cancer
cell lines (Fig. 3A and 3B). ANK1B promoter was unmethylated in NSCLC cell lines with
higher ANKZ and miR-486-5p expression such as SKMES1, H23, and H1299, but
completely methylated in cell lines with lower expression of the gene and the miR such as
Calu6, H1568, and H1993 (Fig. 3A and 2A). Although ANKIE promoter was also
completely methylated in some lung cancer cell lines (Fig. 3B middle panel), its weak
methylation in PBMC from cancer-free donors (Fig. 3B top panel) indicate that its
methylation is not as cleanly tumor-specific as ANKIB promoter. The reversibility of
ANK1B and ANK1E promoter methylation (Fig. 3A-B bottom panels) and expression (Fig.
S4A-C) are shown in cells treated with growth media (control) or the DNA
methyltransferases inhibitor (DAC) for 96 hours as described [33].

The methylation levels of ANKIBand ANKI1E promoters in lung cancer were also
quantified using our previous HM450K data [34,35]. A total of 18 HM450K probes
interrogated the methylation levels of CpGs across the ANKIB and ANKIE promoters in
NHBEC, DNLT (n=24), lung tumors (n=64), and Calu6. In agreement with the CoBRA
results (Fig. 3A), each of the 10 ANK1B promoter probes displayed the lowest methylation
levels (B-values) in NHBEC?7 and the highest levels in Calu6 (Fig. 4A). The average
methylation level of each ANKZB probe in DNLT was comparable to the levels in NHBEC7
(unmethylated control) but was significantly lower than the methylation levels in the primary
tumors. Details of the methylation data including the average and range of methylation
levels for each probe in the lung tumor-normal pairs are shown in Table S4. The prevalence
for aberrant methylation of each probe was also calculated using p = 0.20 as a threshold to
define aberrant methylation (Table S4). In contrast to ANKIB, the 8 probes across the
ANK1E promoter showed higher methylation levels in DNLT compared to NHBEC?
(DNLT B-values are closer to tumors than NHBEC7, Fig. 4B). The weak methylation of
ANKIE promoter seen in all PBMC by CoBRA (Fig. 3B) along with the presence of PBMC
in the DNLT (but not in NHBEC?7) likely contributed to the higher methylation in DNLT.

3.5. ANK1B methylation discriminates lung tumors by histology and smoking history

Screening aberrant methylation in patient samples using simple, highly sensitive, qualitative
assays such as MSP requires a clean tumor-specific methylation. Thus, due to ANKIE
promoter methylation in PBMC and DNLT, MSP was used to screen only the ANK1B
promoter in lung tumor-normal pairs from 262 NSCLC cases. Aberrant methylation of
ANKI1B promoter was found in 45% of lung tumors while none of the DNLT (0/25),
NHBEC (0/5), or PBMC (0/5) were methylated (Table S3). Comparison of ANK1B
methylation with clinical characteristics of the patients (Table 1) revealed that methylation
occur from early stage (Stage-1) in AC (46%, 56/123) and SCC (29%, 10/35) and remained
at similarly high frequency in the advanced (Stages Il — 1) AC (59%, 44/75) and SCC
(26%, 7/27). After adjustment for smoking, the prevalence for ANKIB methylation was
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significantly higher in lung adenocarcinoma (AC=101/200, 51%) compared to squamous
cell carcinoma (SCC=17/62, 27%), p<0.001; HR=3.513 (CI: 1.818-6.788) (Table 2). Within
the same cancer histology, the prevalence for ANK1ZB methylation was similar between
current and former smokers in AC and SCC. In contrast, ANK1B methylation was
significantly more prevalent in AC from smokers, current [27/47 (57%), p=0.047], former
[46/81 (57%), p=0.027], or all smokers combined [73/128 (57%), p=0.014] than from never
smokers [28/72 (39%)]. Targeted sequencing data for the clinically relevant EGFR activating
mutation hotspots was available for the tumors from never smokers. Interestingly, ANK1
methylation was found in 21/44 (48%) EGFR wild-type tumors compared to 7/28 (25%)
EGFR mutant tumors indicating a borderline (p = 0.054) inverse relationship between the
two abnormalities (Table S5).

3.6. The histologically distinct ANK1B methylation in lung cancer is independently

validated

Our findings were independently validated using HM450K data for 809 NSCLC patients
from the publicly available TCGA database. The large normal lung (n=74), AC (n=450) and
SCC (n=359) samples valuated by TCGA also allowed quantitative comparison of ANKIB
methylation between these two most common lung cancer subtypes. Methylation of the 10
ANKIB promoter probes in the TCGA (Fig. 4C) and our DNLT samples (Fig. 4A) was
comparable. Similarly, methylation of these probes in TCGA samples was significantly
higher in AC than DNLT, p<0.0001 (Fig. 4C). In contrast, with the exception of probe cg.
326 (located outside of the ANKIB CpG island), methylation of all probes in the SCC
samples was similar to DNLT. Furthermore, the significantly higher methylation of ANK1B
promoter probes found in TCGA AC than SCC samples (p<0.0001) also confirmed our
qualitative MSP results (Table 2). Details of ANK1B methylation for the TCGA samples,
including comparisons of the prevalence for aberrant methylation between DNLT vs. AC
(Table S6), DNLT vs. SCC (Table S7), and AC vs. SCC (Table S8) are shown as described
above and the data across ANK1 is shown in Fig. S5.

3.7. ANK1 knockdown in NSCLC alters important cancer related pathways

The impact of epigenetic silencing of ANKZ (and its co-expressed miR) in lung cancer was
investigated /n vitro using siRNA (another epigenetic mechanism) to repress its expression.
ANKI expression in siANK1 transfected H1568 and H1299 was reduced >70% compared to
the corresponding siCont transfected cells (Fig. 5A). Comparison of the genome-wide gene
expression between the siCont and siANK1 transfected cells revealed that ANKZ
knockdown in these cell lines led to = 1.5-fold changes in the expression of 255 and 209
genes, respectively. The most significantly affected cellular and molecular pathways in both
cell lines were important regulators of cancer development and progression (Fig. 5B).
Although the two cell lines share 4 of the top 5 significantly altered molecular pathways,
ANK1 knockdown in neither cell line caused discernible difference in cell death, survival, or
migration (data not shown).
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4. Discussion

This study demonstrated that miR-486-5p and its host gene ANKI are co-expressed,
epigenetically repressed in lung cancer through aberrant hypermethylation of ANK1
promoter, and both could be re-expressed by inhibiting DNA methylation with 5-aza-2’-
deoxycytidine (DAC). The last intron of ANKZ that contains miR-486 and its surrounding
region is completely methylated in all normal and lung cancer samples evaluated indicating
that DNA methylation in this region is normal, non-cancer-related, modification. In contrast,
the promoter CpG island of ANK1B, the only/major ANKI transcript variant in lung
epithelial cells, was strongly methylated in lung cancer, but not in normal lung or blood
cells. This aberrant ANK1B promoter methylation was significantly associated with lung
adenocarcinoma and tumors from smokers. Epigenetic silencing of ANKZ in lung cancer
either through promoter hypermethylation /n vivo or siRNA-mediated knockdown /n vitro
reduced the expression of both ANKZ and miR-486-5p, and significantly altered cancer-
related pathways. However, unlike some intragenic miRs that target their host gene for
degradation in a negative-feedback loop regulation [40-42], increasing miR-486-5p in
NSCLC cells using its mimic did not affect ANKZ expression. These findings were verified
using various qualitative and quantitative assays and independently validated using
quantitative methylation data for 809 lung tumors from TCGA. Together, our findings for
the first time demonstrate that aberrant methylation of ANKZ promoter is a highly prevalent
and tumor-specific abnormality in NSCLC and contributes to lung carcinogenesis by
epigenetic repression of the gene and the tumor-suppressor miR-486-5p it hosts.

MiR-486-5p suppresses the transformation, growth, and migration of cancer cells by directly
targeting and mediating the degradation of oncogenes. Thus, abnormal repression of this
miR in cancer provides a growth advantage by enhancing the tumor-promoting properties of
its targets. Among miR-486-5p target oncogenes that get activated following its
downregulation in lung cancer include: CDK4, which promote cell cycle progression [3],
ARHGAPS5, which regulates cellular adhesion, motility, and polarity to promote cell
migration and invasion [10], the growth promoting IGF signaling genes IGF1, IGF1R, and
PIK3R1 [9], and the proto-oncogene serine/threonine kinase PIM-1 [8]. The tumor-
suppressor role of miR-486-5p is also demonstrated in other cancers where it targets PIM-1
in breast cancer [43], SNAI1 in prostate cancer [44], and CLDN10, CITRON, and PIK3R1
in HCC [45,46] [45]. Although downregulation of this important tumor-suppressor miR in
various cancer types is well-known, the mechanism of repression had not been delineated.
Our study now fills this knowledge gap by demonstrating that the tumor-specific and highly
prevalent promoter methylation of its host gene ANK1 simultaneously suppresses
expression of the gene and miR-486-5p in lung cancer.

Co-expression of miR-486-5p and ANKZ may not be unique among intragenic miRs. About
one-third human miRs are located within introns of annotated genes and are transcribed by
RNA polymerase Il as part of the host transcription unit [21,22,39]. Expression of these
miRs and their host genes largely coincides indicating that both may be generated from a
common precursor transcript [22]. Splicing of the primary transcript produces a mature
mMRNA while the miR containing intron is cleaved by Drosha to release a pre-miR (~70 nt)
and subsequently processed by Dicer to a mature miR (~22 nt). A synchronized interplay
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between the spliceosome and microprocessor (miR biogenesis) machineries ensures efficient
production of a mature MRNA and miR(s) from a single primary transcript [21,47]. The
coordinated repression of miR486-5p and ANKZ we showed in NSCLC is also supported by
direct and/or indirect evidence for ANKZ/miR-486 co-regulation in multiple cell types. Hall
et al., demonstrated that ANVKZ and miR-486-5p are upregulated following DNA damage
and regulate complementary pathways [48]. In hematopoietic progenitor cells, MYB binds
to ANVKI promoter and activates ANVKZ and miR-486-3p expression to shift commitment
from megakaryocyte to erythroid lineage [28]. Shaham et al., showed that GATA1 binds to
ANKI1 promoter and regulates ANKZ and miR-486-5p expression in erythroid cells [27]. In
muscle cells, MLK binding to ANKZ promoter induces dose dependent ANKZ and miR-486
expression [29], whereas myostatin binding suppresses expression of both [30]. Down
regulation of miR-486-5p and miR-486-3p following ANKZ knockdown has also been
recently reported [49]. The emerging role of siRNA as the gene specific guide of RNA-
induced initiation of transcriptional gene silencing (RITS) complex [50,51] that suppresses
transcription or causes degradation of the primary transcript prior to the micro-processing of
the intronic miR could explain these findings.

We showed that DAC treatment increased ANKZ and miR-486-5p expression in NSCLC,
especially in cell lines with the lowest expression. The tumor-specific ANKIB promoter
methylation that was detected in lung cancer but not normal lung and blood cells was also
associated with reduced ANKZ and miR-486-5p expression. Likewise, downregulation of
miR-486-5p in NSCLC cells following siRNA-mediated ANKI knockdown supports that
ANK1 promoter methylation could similarly co-repress both /n vivo. Although ANKZ has
three major transcript variants [24-26], ANK1B is the only or predominant variant expressed
in lung epithelial cells and lung cancer cells, hence the major source of miR-486 co-
expression in these cells. However, the lack of significant phenotypic changes following /n
vitro knockdown of ANKZ and miR-486-5p suggest that these abnormalities are likely
contributors rather than drivers of lung cancer development. Taken together, the
independently validated, highly prevent, aberrant ANK1B promoter methylation shown in
this study likely explains the frequently reported repression of miR-486-5p in lung cancer.
The fact that this abnormality is more common in lung AC than SCC from smokers and AC
from never-smokers indicates that epigenetic repression of ANKZ and miR-486-5p may play
more important role in smoking-induced development and progression of lung AC.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights
. MiR-486-5p is commonly repressed in NSCLC but the mechanism is unclear.

. MiR-486-5p is located within ANK1 intron and is co-expressed with its host
gene.

. Aberrant methylation of ANK1 promoter represses both ANK1 and
miR-486-5p in NSCLC.

. ANK1 is primarily methylated in lung adenocarcinoma from smokers.

. ANK1/miR-486-5p co-repression contributes to smoking induced lung
adenocarcinoma.
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Figure 1. Expression of miR-486-5p and its host gene ANK1 in lung cancer
Next generation sequencing reveals miR-486-5p expression is (A) reduced in lung cancer

and (B) could be induced by the DNA methylation inhibitor 5-aza-2"-deoxycytidine (DAC).

C) Schematic representation depicting genomic structure of ANKZ,

its various transcript

variants, CpG islands, and miR-486 located in the last intron. Diamond headed lines indicate
exons targeted by the transcript specific TagMan assays. Double and single arrow heads

indicate the binding sites for the different SIRNAs used in the study

and the location of

miR486, respectively. D) Expression of the three ANKZ transcript variants in normal and

malignant lung tissue/cells.
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Figure 2. Comparison of miR-486-5p and ANK1 expression in lung cancer
A) Expression patterns of ANKIZ and miR-486-5p in normal lung and NSCLC cell lines. B—

E) NSCLC cell lines were transiently transfected with control or miR-486-5p mimic (B and
C) and control or ANK1-specific SiRNA, siANK1#4, (D and E) and the level of
miR-486-5p (B and E) and ANKZ (C and D) mRNA (top) and protein (bottom) expression

were determined.
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Methylation of ANK7E promoter CpG island
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Figure 3. Aberrant methylation of ANK1 promoter CpG islands in lung cancer
Methylation of (A) ANK1B and (B) ANKZ1E promoter CpG islands in normal (top panels)

and lung cancer (middle and bottom panels) was evaluated using the semi-quantitative
Combined Bisulfite Modification and Restriction Analysis (CoBRA). Partial or complete
digestion of PCR products into smaller fragments following the addition (+) of the BstU1
restriction enzyme indicates partial or complete methylation. Partial demethylation of the
two promoter CpG islands (bottom panels) following treatment with the methylation
inhibitor DAC compared to control shown by the re-appearance of some undigested bands,
indicates reversibility of these epigenetic changes.
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Figure 4. Quantitative validation of ANK1 methylation in lung cancer
The methylation level (mean + SD) of (A) ANK1B and (B) ANK1E promoter CpG islands

was quantitatively determined using whole genome methylation data from the
HumanMethylation450 beadchip (HM450K). The location of each probe with respect to the
promoter CpG island region and first exon of the specific transcript variant is depicted below

the x-axis labels. C) HM450K data for large lung tumor and normal samples from the
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publicly available TCGA database validated the tumor-specific (not present in normal lung)
methylation of ANK1B promoter in lung cancer and revealed its strong association with
lung adenocarcinoma (AC) than squamous cell carcinoma SCC.
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Figure 5. ANK1 knockdown in lung cancer impacts cancer related pathways
A) ANK1I expression in two NSCLC cell lines 48 h after transfection with control (siCon) or

ANK1-specific (SIANK1#4) siRNA. B) The genome-wide impact of these knockdowns was
evaluated using whole transcriptome array and the top pathways affected by significantly

altered genes were identified using pathway analysis.
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ANK1B methylation by demographic and clinical characteristics of NSCLC patients.

Table 1

Characteristics

ANK1B methylation vs. patients’ characteristics

Lung AC (n = 200), n (%) *

Lung SCC (n = 62), n (%) *

Unmethylated | Methylated | Unmethylated | Methylated
99 (49.5%) 101 (50.5%) 45 (72.6%) 17 (27.4%)
Age (years):
median + SD 66 + 12 67+11 697 717
Sex:
Female 61 (62%) 64 (64%) 19 (42%) 8 (47%)
Male 38 (38%) 37 (37%) 26 (58%) 9 (53%)
Stage: **
Stage | 67 (68%) 56 (56%) 25 (56%) 10 (59%)
Stage |1 10 (10%) 17 (17%) 6 (13%) 6 (35%)
Stage 111 15 (15%) 19 (19%) 7 (16%) -
Stage IV 6 (6%) 8 (8%) 7 (16%) 1 (6%)
Unknown 1 (1%) 1 (1%) - -
Smoking status:
Current smokers 20 (20%) 27 (27%) 12 (27%) 3 (18%)
Former smokers 35 (35%) 46 (46%) 33 (71%) 14 (820%)
Never smokers 44 (44%) 28 (28%) - -
Survival (months)
Median + SD 34+24 36+28 36 +46 38+57

*
Percentiles are calculated for each methylation group within the AC or SCC tumor histology.

Hok

Despite a slight increase in AC, the prevalence for ANK1 methylation in early stage (Stage 1) and advanced (Stage Il — IV) tumors was

comparable.
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Table 2
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Aberrant methylation of ANK1 promoter CpG island discriminates lung cancer by patients’ smoking history

and tumor histology.

Smoking status

Methylation n (%)

Logistic regression

Odds ratio (95% Confidence

Lung AC SCC interval) p-value

Smokers (S) 7 73/128 (57%) 17162 (27%) 3.513(1.818 - 6.788) <0.001
Current (CS) 27147 (57%) 3/15 (20%) 5.400 (1.344 - 21.703) 0.009
Former (FS) 46/81 (57%) 14/47 (30%) 3.098 (1.443 - 6.652) 0.003

Never smokers (NS) 28/72 (39%) - - -
Total 101/200 (51%) | 17/62 (27%) 2.701 (1.448 - 5.035) 0.001
CSvs. FS - 1.027 (0.497 — 2.124) 0.942
CSvs. NS - 2.121 (1.005 — 4.480) 0.047
ﬁ_omparlsons by smoking status with in a specific FS vs. NS } 2,065 (1.082 — 3.942) 0027
istology

Svs. NS - 2.086 (1.157 — 3.759) 0.014
- CSvs. FS 0.589 (0.144 - 2.417) 0.450

meokers (S) are current and former smokers combined.
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