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Abstract

Objective—Adolescent alcohol use (AAU) is associated with brain anomalies, but less is known 

about long-term neurocognitive effects. Despite theoretical models linking AAU to diminished 

cognitive control, empirical work testing this relationship with specific cognitive control neural 

correlates (e.g., prefrontal theta-band EEG dynamics) remains scarce. A longitudinal twin design 

was used to test the hypothesis that greater AAU is associated with reduced conflict-related EEG 

theta-band dynamics in adulthood, and to examine the genetic/environmental etiology of this 

association.

Methods—In a large (N = 718) population-based prospective twin sample, AAU was assessed at 

ages 11/14/17. Twins completed a flanker task at age 29 to elicit EEG theta-band medial frontal 

cortex (MFC) power and medial–dorsal prefrontal cortex (MFC-dPFC) connectivity. Two 

complementary analytic methods (cotwin control analysis; biometric modeling) were used to 

disentangle the genetic/shared environmental risk towards AAU from possible alcohol exposure 

effects on theta dynamics.

Results—AAU was negatively associated with adult cognitive control-related theta-band MFC 

power and MFC-dPFC functional connectivity. Genetic influences primarily underlie these 

associations.

Conclusions—Findings provide strong evidence that genetic factors underlie the comorbidity 

between AAU and diminished cognitive control-related theta dynamics in adulthood.

Significance—Conflict-related theta-band dynamics appear to be candidate brain-based 

endophenotypes/mechanisms for AAU.
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1. Introduction

A large body of work suggests that AAU is associated with a variety of neurocognitive 

anomalies, including structural/functional brain abnormalities and poor neuropsychological 

test performance (reviewed in Jacobus and Tapert, 2013; Welch et al., 2013). Specifically, 

heavy drinking adolescents exhibit reduced grey and white matter prefrontal cortex volume 

(Bellis et al., 2005; Medina et al., 2008; Malone et al., 2014; Wilson et al., 2015) and 

suboptimal performance on laboratory tasks of executive functioning (Nigg et al., 2006; 

Squeglia et al., 2009; Malone et al., 2014) compared to adolescents with limited or no 

history of alcohol exposure. Because most of this research was conducted using cross-

sectional observational research designs, less is known about any long-term neurocognitive 

effects of AAU, nor is it known to what degree neurocognitive dysfunction is a manifestation 

of the genetic propensity to abuse alcohol versus a consequence of misuse. In addition, 

recent theoretical models of alcohol and substance abuse implicate dysregulation of 

cognitive control processes, mediated by the prefrontal cortex as an important risk factor for 

early alcohol engagement and misuse (Iacono et al., 2008; Zucker et al., 2011). During 

normative adolescent development, the early maturation of limbic and striatal systems 

associated with reward-seeking and appetitive motivation occurs concomitantly with the 

gradual development of control-related prefrontal cortex areas (Casey et al., 2008; Luciana 

and Collins, 2012). Protracted prefrontal cortex maturation may be exacerbated in 

adolescents with a familial liability towards behavioral disinhibition/undercontrol (Iacono et 

al., 2008; Zucker et al., 2011), which predisposes them towards engaging in immediately 

gratifying, yet harmful, behaviors (e.g., excessive alcohol use) that may further potentiate 

prefrontal dysfunction (e.g., deleterious causal effects of alcohol exposure; Goldstein and 

Volkow, 2002). Despite these influential models, empirical work testing the association 

between AAU and specific neural correlates of cognitive control remains scarce.

Situations requiring cognitive control, such as when competing responses are activated but 

only one should be selected (response conflict), have been strongly associated with theta-

band (3–8 Hz) electrophysiological signatures that are thought to underlie conflict detection 

and control-related processes (reviewed in (Cavanagh and Frank, 2014; Clayton et al., 2015). 

Theta-band power enhancement over the medial frontal cortex (MFC) has been consistently 

observed following demands of response conflict/interference (Cohen et al., 2008; Nigbur et 

al., 2011; Nigbur et al., 2012; Cohen and Donner, 2013), and current models of cognitive 

control implicate the MFC in monitoring the environment for situations of conflict/

uncertainty (Ridderinkhof et al., 2004a; Ridderinkhof et al., 2004b; Ullsperger et al., 2014). 

Upon conflict detection, the MFC is thought to signal the need for increased control to 

regions of the dorsal medial/lateral prefrontal cortex (dPFC), which further implements top-

down control/behavioral adaptation processes to resolve response conflict (Ridderinkhof et 

al., 2004a; Ridderinkhof et al., 2004b; Cohen and Cavanagh, 2011; Cavanagh and Frank, 

2014; Cohen, 2014a; Clayton et al., 2015). Empirical and theoretical work suggests that this 

interregional communication between the MFC and dPFC is biophysically realized through 

coordinated theta-band rhythmic activity (phase synchronized oscillations; Fries, 2005), 

which forms a dynamic functional network for information transfer among distant cortical 

areas (Cavanagh and Frank, 2014; Cohen, 2014a; Clayton et al., 2015).

Harper et al. Page 2

Clin Neurophysiol. Author manuscript; available in PMC 2018 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Given the importance of theta-band MFC power and MFC-dPFC functional connectivity 

during response conflict/cognitive control, and research suggesting a link between AAU and 

reduce grey and white matter prefrontal cortex volume (Jacobus and Tapert, 2013; Malone et 

al., 2014; Wilson et al., 2015), reduced frontal theta dynamics constitutes a plausible 

neurophysiological mechanism linking AAU and suboptimal cognitive control.

The present investigation was designed to examine whether AAU has any long-term 

association with prefrontal cortex neurocognitive functioning and the degree to which 

genetic risk and the possible deleterious consequences of use might account for the observed 

association. Several lines of research support as relevant causal factors both the potential 

neurotoxic effects of early alcohol exposure (Jacobus and Tapert, 2013) and the heritability 

of alcohol-related brain dysfunction (Iacono et al., 2008). Because of this, quasi-

experimental research designs/methods, such as comparing members of twin pairs who 

differ in their degree of early alcohol exposure, are needed to permit stronger etiological 

inferences (Vaidyanathan et al., 2015).

One such design is the cotwin control (CTC) method, which capitalizes on the genetic and 

rearing environment similarity of twins discordant for their level of environmental exposure 

to some agent (e.g., alcohol; McGue et al., 2010). In this design, since monozygotic (MZ) 

twins share all genetic and shared environmental influence, comparisons between members 

of an MZ twin pair account for all familial genetic/shared environmental influences, whether 

measured or not, that may confound any potential nonshared environmental causal effect of 

AAU on some outcome (e.g., EEG dynamics). As dizygotic (DZ) twins share half of their 

genetic material, comparisons between members of a DZ twin pair account partially for 

genetic and fully for shared environmental influence. The CTC method provides a powerful 

test of the causal effects of alcohol exposure on the brain, since the neural dynamics of the 

lesser-drinking twin are a close approximation of the expected dynamics of the heavier-

drinking twin had he/she drank less. When testing the causal effects of AAU on 

neurocognitive functioning, if early alcohol exposure has a deleterious causal effect on 

cognitive control-related theta-band dynamics, the twin who drank more during adolescence 

should display less activity than the cotwin who consumed less alcohol. In contrast, if a 

familial vulnerability towards both AAU and weak theta-band dynamics underlies the 

association, the brain dynamics of both the heavier- and lesser-drinking twins should not 

differ substantially (McGue et al., 2010).

A second complementary method to examine etiology is biometric modeling, which 

estimates the amount of genetic and environmental influence shared across both AAU and 

theta-band dynamics that explains their observed phenotypic association. In this method, the 

genetic (or environmental) factors underlying AAU are allowed to correlate with the same 

genetic (or environmental) factors underlying theta activity. Evidence of a causal effect of 

AAU on reduced theta dynamics would be consistent with a significant overlap between the 

same nonshared environmental influences on both AAU and theta activity. In contrast, 

evidence for a genetic (or shared environmental) influence underlying the AAU-theta 

association would be consistent with a significant overlap between the same genetic (or 

shared environmental) factors shared across AAU and theta dynamics.
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The current study was designed to evaluate whether normative levels of adolescent alcohol 

exposure are associated with reduced cognitive control-related theta dynamics in adulthood, 

and if so, whether the association is consistent with the potentially causal effects of AAU or 

a premorbid familial risk characteristic. A large prospective population-based sample of 

same-sex twins was assessed throughout adolescence and into adulthood, with 

comprehensive assessments of alcohol use (e.g., number of intoxications; maximum 

consumption; frequency/quantity of drinking) obtained at multiple points spanning 

adolescence (ages 11/14/17), and EEG correlates of cognitive control processes recorded at 

age 29. This prospective, genetically-informed twin design is thus well suited to test 

etiological hypotheses regarding the genetic and/or environmental influences underlying the 

link between adolescent alcohol exposure and adult cognitive control-related EEG 

components.

We hypothesized that greater AAU would be associated with reduced adult conflict-related 

theta-band MFC power and MFC-dPFC connectivity, which if true, would support a link 

between adolescent drinking and diminished cognitive control-related processes in 

adulthood. Significant drinking effects were followed up using two complementary methods 

to test etiological hypotheses. First, a cotwin control analysis of within-twin-pair differences 

in AAU was conducted to test the potential causal effects of AAU on adult theta dynamics. 

Second, biometric modeling was used to estimate the specific nature of any potential 

familial (genetic/shared environmental) or nonshared environmental influence underlying 

the AAU-EEG relationship. Given research supporting both the heritability of alcohol-

related brain dysfunction (Iacono et al., 2008) and the potential causal effects of adolescent 

drinking on the brain (Jacobus and Tapert, 2013), we had two hypotheses regarding 

etiological influences:

1. If adolescent drinking has a causal effect on theta-band dynamics in adulthood, 

then a) within a twin pair, the heavier drinking twin should exhibit decreased 

theta activity than the lesser drinking twin (reflected by a significant within-pair 

CTC effect), and b) biometric modeling should be consistent with a significant 

nonshared environmental correlation between AAU and theta.

2. If familial factors underlie the association between adolescent drinking and 

reduced adult theta dynamics, then a) within a twin pair, theta activity should not 

differ between the heavier and lesser drinking twin (reflected by a non-

significant within-pair CTC effect), and b) biometric modeling should be 

consistent with a familial influence underlying the AAU/theta covariation, with 

the relative magnitude of genetic/shared environmental correlations casting light 

on the specific nature of the familial influence.

2. Methods

2.1 Participants

Participants were MZ and same-sex DZ twins drawn from the community-based Minnesota 

Twin Family Study, who were initially assessed at age 11 and then followed up 

approximately every three or four years (for details, see Iacono and McGue, 2002; Iacono et 
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al., 2006). Twins who had adolescent alcohol use data at the target assessment ages of 11 

(age: M [SD] = 11.7 [0.4]), 14 (14.7 [0.5]), and 17 (18.1 [0.7]), and flanker EEG data at age 

29 (29.1 [0.5]) served as participants for the present study. The sample consisted of 718 

twins (395 females), with 459 MZ (196 complete pairs) and 259 DZ twins (105 complete 

pairs).

2.2 Adolescent alcohol use at ages 11, 14, and 17

To quantify adolescent alcohol use (AAU), a composite drinking index was calculated by 

summing responses from four self-report drinking items: (1) total number of times 

intoxicated from alcohol (0 = never to 6 = 150 times or more), (2) frequency of drinking in 

the past 12 months (0 = never to 5 = two or more times every day), (3) typical number of 

drinks consumed in one session in the past 12 months (0 = none to 6 = 30 or more), and (4) 

the maximum number of drinks consumed in a 24-hr period since last assessment (0 = none 

to 6 = 30 or more). At ages 11 and 14, the participants reported on their history of alcohol, 

nicotine, and other substance use using a computerized substance use (CSU) inventory that 

was conducted in a private room. At age 17, alcohol and other substance use history was 

obtained with the Substance Abuse Module (SAM) of the Composite International 

Diagnostic Interview (Robins et al., 1987), which was administered by trained interviewers. 

The composite drinking index was calculated separately for each adolescent assessment (11, 

14, 17), and then the sum of the three drinking index scores was calculated (possible range: 

0–69; see Table S1 in Supplement for descriptive statistics) and used as the measure of AAU 

in the current report.

Each of these four measures tap different aspects of alcohol exposure and exhibited high 

within-age item-level correlations (Table S2 in Supplement), and combining them into a 

single composite measure both produces a measure of AAU that arguably has greater 

construct validity than any single item while decreasing the risk of observing false-positive 

findings by conducting item-wise tests. Prior research offers strong support for the construct 

and psychometric validity of this composite index, including high internal consistency and 

expected parent-offspring correlations when assessed throughout adolescence (McGue et al., 

2014). In addition, higher index scores have been associated with reduced prefrontal grey 

matter volume and neurocognitive performance in adolescents (Malone et al., 2014; Wilson 

et al., 2015), and diminished response inhibition-related theta-band MFC power and MFC-

dPFC connectivity in young adults (Harper et al., 2016).

Furthermore, we examined the degree to which this composite index of AAU is related to 

pathological alcohol use during adolescence. At the age 17 assessment, lifetime presence of 

Diagnostic and Statistical Manual of Mental Disorders, 4th edition (American Psychiatric 

Association, 1994), alcohol abuse or dependence was established using a best-estimate 

approach, which uses both adolescent self-reported symptoms as well as parental report on 

the child (see Iacono et al., 1999, for interviewing and diagnostic details). By age 17, 4.3% 

(n = 31) participants met criteria for alcohol dependence, and 11.8% (n = 85) met criteria for 

abuse. AAU scores were significantly higher in those individuals diagnosed with an alcohol 

use disorder (AUD; collapsed across dependence/abuse) by the age 17 assessment (M [SD] 

= 16.65 [6.15], n = 116) than those without (M [SD] = 5.16 [5.12], n = 602; F(1,696) = 
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307.34, p < 0.001), and AAU scores were highly correlated with total AUD symptom counts 

(r = 0.61). These results indicate that a portion of this sample were problematic drinkers by 

age 17 (at a rate comparable to those reported in similar samples; Elkins et al., 2006), and 

suggest that the continuously distributed composite AAU index is related to 

psychopathological measures of alcohol misuse.

2.3 Flanker task and EEG recording at age 29

Behavioral and EEG data were collected at age 29 during a modified version of the Eriksen 

flanker task (Eriksen and Eriksen, 1974). The task consisted of three blocks of 150 

pseudorandomized trials (100 congruent / 50 incongruent). During each trial, a target letter 

(S or H) was flanked by distractor letters that were either congruent or incongruent with the 

center target, which created a set of four stimulus array that occurred with the following 

frequencies: SSSSS (33.3%; congruent), HHHHH (33.3%; congruent), SSHSS (16.7%; 

incongruent), and HHSHH (16.75%; incongruent). Letters were presented centrally in white 

text on a black background. Participants were asked to respond quickly and accurately to the 

target letter H with one hand and the target letter S with the opposite hand. The target-

stimulus hand mapping alternated across blocks (Blocks 1 and 3: S = right button press, H = 

left button press; Block 2: S = left button press, H = right button press). Short breaks and 

feedback regarding accuracy were given after each block. The stimulus duration was 100 

ms, response window was 1150 ms, and intertrial interval (fixation point) varied between 

900 and 1100 ms. Participants completed a set of practice trials before EEG recording.

EEG signals were recorded from 61 scalp electrodes (10/10 placement) at 1024 Hz with an 

analog DC to 205 Hz bandpass filter using the BioSemi ActiveTwo system (Biosemi, 

Amsterdam, Netherlands). Vertical and horizontal electrooculogram (EOG) signals were 

recorded from four electrodes placed above and below the right eye and bilaterally on the 

temples, respectively, and electrodes were placed on both earlobes to serve as an offline 

average reference.

2.4 EEG signal processing

Signals were processed offline using MATLAB (version 7.1, Mathworks, Inc.) and 

EEGLAB software (Delorme and Makeig, 2004). First, continuous signals were down 

sampled to 256 Hz, highpass filtered at 0.1 Hz (firfilt EEGLAB plugin; Kaiser window, 

order of 1286), and re-referenced to the averaged earlobe signals. An automated pipeline 

was used to identify and remove instances of artifacts and inter-electrode electrolyte 

bridging (Tenke and Kayser, 2001). Descriptive statistics (e.g., absolute temporal variance) 

were calculated for each electrode and 1s time-range in the continuous data, and data that 

exceeded four normalized median absolute deviations relative to the median (Rousseeuw 

and Croux, 1993) in 25% or 75% of a 1s time-range or electrode, respectively, were deleted. 

To correct for ocular artifacts, EEG signals were decomposed into independent components 

(ICs) with the Infomax algorithm (Bell and Sejnowski, 1995). The spatial and temporal 

characteristics of each IC were correlated with the time course of a criterion channel (bipolar 

vertical or horizontal EOG) and the prototypical topography (inverse weight) of a blink or 

saccade IC. Components were subtracted from the data if the squared correlation coefficient 

Harper et al. Page 6

Clin Neurophysiol. Author manuscript; available in PMC 2018 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



exceeded an empirically derived threshold derived by an expectation maximization 

algorithm (Mognon et al., 2011).

Next, epochs of ±2 s aligned to stimulus onset were taken, and screened for artifacts (as 

detailed above). Deleted electrodes were interpolated via a spherical spline method (Perrin et 

al., 1989) within epochs containing ≥75% of the original data/electrodes; otherwise, the trial/

epoch was discarded. Error trials were excluded to avoid mixing processes related to conflict 

processing with error-related processes, and all trials were deleted from blocks in which 

accuracy was ≤50% (3.5% across all subjects/blocks). As recommended by published 

guidelines for preprocessing EEG data (Keil et al., 2014), epochs were baseline corrected by 

subtracting the mean prestimulus activity from −200 to −1 ms to remove any slow voltage 

drift. Finally, trial-level EEG signals were scalp Laplacian (current source density) 

transformed (Lagrange order = 50; m = 4; λ = 10−5) using a spherical spline surface 

(Kayser and Tenke, 2006). The Laplacian is a reference-free spatial filter recommended for 

connectivity analyses (Cohen, 2015a), which attenuates spatially-broad volume-conducted 

activity (e.g., single source projected to multiple electrodes) that can positively bias 

functional connectivity estimates (Winter et al., 2007).

2.5 EEG time-frequency analysis

Single-trial signals were transformed into time-frequency representations via wavelet 

convolution (Cohen, 2014b) by multiplying the EEG power spectrum (calculated via fast 

Fourier transform [FFT]) by the power spectrum of complex Morlet wavelets 

[  ], where f is frequency (ranging from 2 to 40 Hz in 25 logarithmic steps), t 
is time, and σ defines the width of each frequency band, which was set according to c/(2πf), 
where c is the number of wavelet cycles (increasing from 3.5 to 8 in 25 logarithmic steps to 

obtain comparable time/frequency precision), and then taking the inverse FFT. The complex 

signals were down sampled in time to 64 time bins/second. Since unequal trial numbers 

between conditions can bias power and functional connectivity estimates, for each subject, a 

random sample (without replacement) of congruent trials was selected to match the number 

of incongruent trials (M [SD] = 132.90 [34.35]) before calculating power and interelectrode 

connectivity. This was performed 25 times, and the results were averaged.

The decision to focus on time-frequency EEG activity instead of more traditional time-

domain event-related potential (ERP) components (e.g., N2 or P3) in the current report was 

based on several factors. Time-frequency components, such as theta power, have been 

demonstrated to more closely index response conflict and cognitive control-related 

processes, and possess greater statistical power, than conventional ERP measures (Nigbur et 

al., 2012; Cohen and Donner, 2013). Furthermore, as previous work suggests that the 

response conflict effect is primarily reflected in activity that is time-locked, but not phase-

locked, to stimulus onset (Cohen and Donner, 2013), which is, by definition, activity that is 

lost using ERP methods (Makeig et al., 2004), time-frequency analysis was required to 

optimally characterize the electrophysiological and neurocognitive dynamics during 

cognitive control.

Harper et al. Page 7

Clin Neurophysiol. Author manuscript; available in PMC 2018 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2.5.1 Time-frequency power—From the resulting complex signal Zt, an estimate of the 

frequency-specific power at each time point was calculated as [real(Zt)2 + imag(Zt)2]. The 

trial-averaged power was decibel transformed (dB Powertf = 10 × log10[Powertf/Baseline 

Powerf]), where, for each channel, frequency, and condition, the average prestimulus power 

from −450 to −250 ms served as the baseline power.

The baseline period for time-frequency analysis differed from that used during 

preprocessing for the time-domain signals (section 2.4) to avoid potentially mixing post-

stimulus activity with the baseline interval following wavelet convolution. Specifically, the 

temporal smoothing inherent in wavelets may cause some early post-stimulus activity to mix 

with the early pre-stimulus period (Cohen, 2014b), and because of this, it is important to 

choose a baseline that ends no closer to the event onset than one-half the wavelet width (σt) 

at the frequency of interest (Herrmann, Grigutsch, & Busch, 2005; Roach and Mathalon, 

2008). At the lower-bound of the theta region of interest (see section 2.6) σt equaled 194 ms, 

and so a baseline interval of −450 to −250 ms was chosen for the time-frequency power and 

connectivity analyses.

2.5.2 Functional connectivity—Interelectrode functional connectivity was calculated 

with the weighted phase-lag index (wPLI; for a discussion and mathematical definition, see 

Vinck et al., 2011), which is defined as:

where  is the cross-spectrum of the complex signals Z between electrodes 1 and 2 

(obtained from the wavelet analysis),  is the complex conjugate of, E{·} is the expected 

value operator, sgn is the sign function, |·| is the magnitude, and  is the imaginary 

component of the cross-spectrum. In other words, the wPLI is the absolute value of the 

average sign of phase differences over trials between two electrodes, weighted by the 

average distance of the phase differences from the real axis, and values can range from 0 (no 

connectivity, or 0°/180° phase lag differences due to volume conduction) to 1 (perfect 

non-0°/180° phase-lagged functional connectivity). Because single source volume conducted 

activity creates a cross-spectrum that has no phase lag (0°/180°) and can spuriously inflate 

connectivity estimates, the wPLI partials out no and random phase lag differences and is 

thus a measure of connectivity largely insensitive to volume conduction artifacts compared 

to other measures (Vinck et al., 2011; Cohen, 2015b). To remove tonic interelectrode 

connectivity not modulated by task demands, the wPLI values were baseline corrected for 

each electrode/frequency/condition by subtracting the mean prestimulus wPLI between −450 

to −250 ms (wPLItf = wPLItf − Baseline wPLIf).

2.6 Time-frequency component selection

As depicted in Figure 1A, theta power values were calculated as the average power over a 

region of interest (ROI) spanning 3–8 Hz and 250–578 ms post-stimulus separately for each 

condition and subject, defined by the grand average time-frequency power representation. 

As expected, the topographic map of theta power demonstrated a focal increase over 
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electrodes FCz and Cz, and the pooled power across these electrodes was chosen for 

statistical analysis of medial frontal cortex (MFC) theta power.

Guided by prior work (Cohen and Cavanagh, 2011; Harper et al., 2016; Nigbur et al., 2012) 

and a priori hypotheses regarding theta-band functional connectivity between MFC and 

dorsal prefrontal cortex (dPFC) electrodes during response conflict/cognitive control 

(Clayton et al., 2015), pairwise wPLI values were calculated between MFC seed electrode 

FCz and all other channels. As seen in Figure 1B, the grand averaged plots of connectivity 

between FCz and a cluster of dPFC electrodes (Fz/F1-4/AFz/AF3-4) revealed a focal 

connectivity enhancement across a 3–8 Hz and 344–594 ms post-stimulus window. The 

topographic map of the mean wPLI values across this ROI demonstrated robust connectivity 

between the MFC seed electrode FCz and electrodes over the dPFC. The mean wPLI across 

this ROI was calculated and pooled across dPFC electrodes for each subject and condition. 

For convenience, this measure is referred to as MFC-dPFC connectivity below. While MFC-

based connectivity was observed with other areas, particularly midcentral/lateral parietal 

regions, the decision to focus on dPFC connectivity was guided by a priori hypothesis 

regarding MFC-dPFC connectivity during cognitive control (Cavanagh and Frank, 2014; 

Cohen, 2014a; Clayton et al., 2015).

2.7 Statistical analyses

Statistical analyses were conducted in R (R Core Team, 2017). Linear mixed models 

(LMMs) were fit using lmer from the lme4 package (Bates et al., 2015) with Kenward-

Roger adjusted denominator degrees of freedom from the lmerTest package (Kuznetsova et 

al., 2014). LMMs are commonly used with nested designs, in which, for example, repeated 

measures are nested within individuals, who are in turn nested within twin pairs, as in the 

present study. Random intercepts at the individual and twin-pair level accounted for within-

individual and -pair correlations, respectively, with respect to all dependent measures, in all 

LMMs. The fixed effect of stimulus category (incongruent, congruent) on behavior and the 

EEG measures was evaluated with one-level LMMs.

To examine the (individual-level) association between adolescent alcohol use and each adult 

outcome of interest (i.e., incongruent or congruent theta-band MFC power, MFC-dPFC 

connectivity, error rates, reaction times), for each outcome, separate LMM regressions were 

fit with drinking index scores as the independent variable (fixed effect) and the adult 

outcome (e.g., incongruent theta-band MFC power) as the dependent variable.

For all significant associations between AAU and some outcome (e.g., adult theta power), 

two statistical methods (described below) were used to examine the etiological nature of the 

association.

Significant AAU effects were followed up with a cotwin control analysis (301 complete twin 

pairs, 196 MZ pairs), where LMM regressions were fit with the adult outcome (e.g., theta 

power) as the dependent variable and the within-pair AAU effect as the independent (fixed 

effect) variable (Begg and Parides, 2003), which is the deviation of each individual twin’s 

drink index score from his/her twin-pair drink index mean (e.g., Twin A drinking score – 

mean[Twin A score, Twin B score]). The within-pair effect reflects the nonshared 
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environmental effects of AAU unconfounded by familial factors (shared genetic/

environmental influences), and is therefore a more appropriate test of whether or not alcohol 

exposure has a causal effect on the outcome of interest (Begg and Parides, 2003; McGue et 

al., 2010). Within-pair comparisons of MZ and DZ pairs provide a complete shared 

environmental control, while MZ pairs provide complete genetic control and DZ pairs 

provide partial (50%) genetic control. A significant within-pair effect for theta dynamics 

suggests a causal effect of AAU on the EEG measure, while observing an effect at the 

individual level in the absence of a significant within-pair effect suggests that the individual-

level effect is due primarily to familial factors shared by twins that are confounded with 

exposure and theta dynamics (McGue et al., 2010).

Bivariate biometric models, which treat the twin pair as the unit of analysis, were estimated 

using a Cholesky decomposition, to determine the respective roles of genes and environment 

on the association between AAU and each respective theta measure. Figure 2 provides a 

graphical depiction of these models, which decompose the observed phenotypic correlation 

between theta dynamics and AAU into that due to latent variables representing additive 

genetics (A), reflecting the aggregate/additive effects of alleles over multiple loci, shared 

environment (C), reflecting the common environmental factors that contribute to twin 

(familial) similarity, and nonshared environment (E), reflecting the environmental factors 

unique to each individual twin (i.e., not shared by members of a twin pair) that contribute to 

twin differences. In these models, A and C are those factors that make twins similar, and E is 

the factor that make twins different. When observing two phenotypes, such as adolescent 

alcohol use and theta, biometric modeling tests whether the genetic (A), shared 

environmental (C), or nonshared environmental (E) factors that influence drinking are the 

same factors that also influence theta power by estimating the magnitude of the correlations 

between A, C, and E influences on AAU and the same influences on adult theta dynamics. 

The magnitude of the genetic, shared environmental, and nonshared environmental 

correlations between AAU and theta indexes the degree to which such influences are 

common to both phenotypes. The nonshared environmental correlation is analogous to the 

within-pair effect in CTC analyses, whereas the genetic and shared environmental 

correlations reflect the familial factors underlying AAU-EEG associations in the absence of 

a significant nonshared environmental (within-pair) effect. For example, if additive genetic 

factors primarily explain the association between drinking and the EEG measure, one would 

expect to observe a significant genetic correlation (i.e., the correlation between the genetic 

factors associated with drinking and the genetic factors associated with drinking) in the 

biometric modeling. These models also estimate the proportion of the phenotypic correlation 

between AAU and theta dynamics that is explained by genetic and environmental factors.

Biometric ACE models were fit to the raw data using full information maximum likelihood, 

which provides unbiased parameter estimates when data are missing under relatively mild 

assumptions, in the OpenMx package in R (Boker et al., 2011). ACE models were chosen 

based on previous work demonstrating that for many similar task-related frontal EEG 

components (Anokhin et al., 2008; Demiral et al., 2017; Malone et al., 2017), ACE models 

fit better than other potential twin models, such as ADE non-additive genetic dominance (D) 

effect models. The magnitude of the influence of each ACE latent variable on a phenotype is 

estimated by comparing the expected covariance matrix, derived from the known 
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correlations between family members with respect to A (expected twin correlation: MZ = 1, 

DZ = 0.5), C (MZ and DZ = 1), and E (MZ and DZ = 0), to the observed covariance matrix. 

Initially, a base model was fit that estimated all ACE influences, and the associated genetic 

and environmental correlations, on AAU and theta-band dynamics. Next, to test the overall 

relative influence of the two sources of familial influence on the AAU-theta associations, the 

fit of the base model was compared to more restrictive and parsimonious nested models 

dropping either A or C (i.e., CE and AE models) on two metrics. First, change in model fit 

was assessed via the difference in the −2 log-likelihood values (−2LL), which approximates 

a χ2 distribution, between the base and nested models using a 3 degree of freedom 

likelihood ratio test. A non-significant change in −2LL is considered evidence that the 

nested model (e.g., AE) does not significantly worsen model fit. In addition, change in 

model fit was compared using the Bayesian Information Criterion (BIC), which is a 

combined metric of goodness of fit and model parsimony, where a difference in BIC of > 2 

is considered positive evidence in support of the model with lower BIC (Raftery, 1995).

3. Results

3.1 Behavioral results

The expected conflict effect on behavior was observed, with greater error rates and longer 

reaction times in the incongruent than the congruent condition. Specifically, error rates were 

higher for incongruent (M [SD] = 4.50% [5.58]) than for congruent stimuli (M [SD] = 3.14 

[4.54]; t(717) = 13.26, p < 0.001). Mean reaction time was slower following incongruent (M 
[SD] = 564.39 ms [66.87]) than congruent stimuli (M [SD] = 519.38 ms [67.24]; t(717) = 

63.05, p < 0.001). Adolescent alcohol use was not related to error rates or reaction time in 

either condition (ps ≥ .19).

3.2 Descriptive statistics and intraclass correlations

Table 1 presents descriptive statistics and twin intraclass correlations for adolescent alcohol 

use, MFC theta power, and MFC-dPFC theta-band connectivity. In all cases, the MZ 

intraclass correlations were highly significant, and larger than the DZ correlations, 

suggesting a genetic influence on these measures.

3.3 Response conflict modulation of theta-band dynamics

As depicted in the incongruent minus congruent difference plots in Figure 1A, MFC theta 

power was greater during incongruent trials than congruent trials [t(717) = 29.59, p < 0.001]. 

Incongruent trials were also associated with greater theta-band functional connectivity 

between MFC electrode FCz and a cluster of electrodes over the dorsal prefrontal cortex 

(Figure 1B) than congruent trials [t(717) = 15.84, p < 0.001].

3.4 Adolescent alcohol use (AAU) and adult theta-band EEG dynamics

Table 2 presents the results from the separate LMMs between AAU and adult theta-band 

dynamics. Adolescent alcohol exposure was negatively associated with MFC power and 

MFC-dPFC functional connectivity during incongruent trials. Congruent MFC power and 

MFC-dPFC connectivity were not significantly related to AAU. These results suggest that 
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AAU is specifically associated with diminished cognitive control/conflict-related theta-band 

dynamics, rather than overall power and connectivity, in adulthood.

Two complementary analytic methods (cotwin control analysis; bivariate biometric 

modeling) were used to investigate the etiological basis of these two significant AAU–EEG 

associations.

3.5 Cotwin control analysis of potential causal AAU effects

Within the separate CTC models, the within-pair effect was not significantly associated with 

either incongruent MFC power [t(300) = −1.47, p = 0.142] or incongruent MFC-dPFC 

connectivity [t(300) = −1.04, p = 0.301]. In both cases, the within-twin pair effect did not 

differ between MZ and DZ twins; adding fixed-effect terms for zygosity and the zygosity by 

within-pair interaction did not improve model fit [Δχ2s(2) ≤ 1.54, ps ≥ 0.463]; thus, these 

terms were removed from the final models reported above. This pattern of CTC results is 

consistent with a preexisting familial risk, and not a causal effect of early drinking, 

underlying the association between AAU and reduced adult conflict-related theta-band 

dynamics.

3.6 Bivariate biometric modeling of AAU and adult theta-band dynamics

Model fitting results for the two separate bivariate models of AAU and either incongruent 

MFC power or incongruent MFC-dPFC connectivity are presented in Table 3. In both cases, 

the model fitting results indicated that dropping A from the models significantly worsened 

fit, as evidenced by significant likelihood ratio tests and more positive BIC values compared 

to the base ACE model. In contrast, dropping C from both models had a negligible effect on 

model fit, as indicated by non-significant likelihood ratio tests and more negative BIC values 

than the base ACE model, which suggests no significant contribution of shared 

environmental effects to AAU or adult theta-band dynamics.

Table 4 presents the parameter estimates and 95% confidence intervals derived from the best 

fitting bivariate AE models for each separate theta-band measure. AAU and conflict-related 

theta-band dynamics showed significant genetic heritability. There were modest but 

statistically significant negative phenotypic correlations between AAU and adult theta-band 

measures. As expected given the cotwin control results, the nonshared environmental 

correlations (rE) between each EEG measure and AAU were effectively zero, while the 

genetic correlations (rG) were modest and statistically significant. In addition, a large 

majority (79–96%) of the phenotypic correlation between AAU and each respective theta 

measure was due to genetic influences.

Overall, the results of the bivariate biometric modeling are consistent with those obtained 

from the cotwin control analysis, which together suggest that heritable genetic factors, and 

not a nonshared environmental alcohol exposure effect, underlie the association between 

AAU and diminished adult conflict-related theta-band dynamics.

Harper et al. Page 12

Clin Neurophysiol. Author manuscript; available in PMC 2018 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



4. Discussion

The present study evaluated the association between adolescent alcohol use and adult EEG 

correlates of cognitive control processes in a large population-based twin sample 

prospectively assessed at ages 11, 14, 17, and 29. Consistent with past work reporting an 

association between AAU and various brain anomalies, we found that greater adolescent 

alcohol exposure was associated with reduced theta-band MFC power and MFC-dPFC 

functional connectivity during demands of response conflict/cognitive control processes at 

age 29. A novel contribution of the current study derived from our use of a longitudinal twin 

design to examine the genetic and environmental influence on the prospective association 

between AAU and adult theta. Findings from two complementary tests of etiology (cotwin 

control analysis of within-twin-pair differences in drinking; bivariate biometric modeling) 

jointly suggested that the relationship between diminished adult theta-band dynamics and 

AAU was best explained by heritable genetic influences. The current report provides, to the 

best of our knowledge, the first evidence that adolescent drinking is related to reduced adult 

theta-band processes during demands of cognitive control, and that a premorbid genetic risk 

towards early alcohol use, and not the direct causal effect of alcohol exposure, likely 

underlies the relationship between adolescent drinking and diminished adult theta dynamics. 

As such, deviations in theta dynamics appear to possess key characteristics required of an 

endophenotype for AAU (Iacono et al., 2016). Should genetic variants associated with theta 

dynamics be identified, our findings have the potential to provide insights into how these 

variants are related to brain function associated with AAU liability.

Heavier adolescent drinking was negatively associated with reduced adult theta-band power 

over the MFC and functional connectivity between the MFC and dPFC regions during 

demands of response conflict (incongruent trials). This finding supports the hypothesis that 

AAU is related to diminished prefrontal cortex processes related to cognitive control, and is 

consistent with previous work detailing prefrontal cortex dysfunction in early drinkers 

(Jacobus and Tapert, 2013; Welch et al., 2013). In the context of recent models of cognitive 

control (Cavanagh and Frank, 2014; Clayton et al., 2015), the consequence of diminished 

theta-band dynamics may be a reduced ability to ignore irrelevant distracting information to 

suppress an inappropriate competing response (MFC power), and decreased execution of 

behavioral adaptation/cognitive control processes to resolve conflict (MFC-dPFC 

connectivity).

Converging evidence from the cotwin control analysis of within-pair differences in 

adolescent alcohol exposure and bivariate biometric modeling suggested that the association 

between AAU and theta dynamics was consistent with a premorbid genetic risk towards both 

early drinking and reduced theta in adulthood. Results of the cotwin control analysis 

suggested that within-pair differences in AAU were not related to conflict-related MFC 

power or MFC-dPFC connectivity; in other words, within a twin pair, the heavier drinking 

twin exhibited MFC power and MFC-dPFC connectivity comparable to his/her lesser 

drinking cotwin. The CTC results argue against a causal effect of adolescent alcohol 

exposure on adult theta-band dynamics, as a deleterious causal effect should produce a 

difference between heavier- and lesser-exposed twins (e.g., decreased theta in the greater 

exposed twin), and these findings are instead consistent with a familial confounding 
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underlying the individual-level association (McGue et al., 2010). In addition, the bivariate 

biometric modeling provided corroborating support for a familial association between AAU 

and theta-band dynamics. The modeling suggested that AAU and theta dynamics were 

heritable, and, though the genetic correlations between AAU and each theta measure were 

modest in size, shared genetic factors accounted for a majority of the phenotypic association 

between AAU and reduced adult theta. Taken together, the results of these two methods of 

testing etiological hypotheses provide strong evidence that the association between 

adolescent alcohol use and reduced theta-band correlates of cognitive control/conflict in 

adulthood is better explained by genetic influences common to both phenotypes, rather than 

a direct effect of alcohol exposure on the brain.

The finding that conflict-related theta-band EEG activity and AAU share a common 

premorbid genetic liability is consistent with recent theories of alcohol and substance use 

disorder development, which broadly propose that a core risk pathway to substance misuse 

is through poor cognitive control processes and behavioral disinhibition. In these models, a 

genetic vulnerability towards early-onset substance misuse is partly expressed through a 

preexisting dysregulation of cognitive control-related brain mechanisms, which may then 

lead to difficulty inhibiting inappropriate responses/impulses and/or a bias towards 

immediate over long-term rewards (Iacono et al., 2008; Dick et al., 2010; Zucker et al., 

2011). Given the established role of MFC theta power and MFC-dPFC connectivity during 

demands of cognitive control (Cavanagh and Frank, 2014), it is plausible that these EEG 

dynamics may be candidate brain-based mechanisms or expressions of this genetic 

vulnerability towards alcohol/substance misuse. Taken together, these findings reflect a step 

towards understanding the neurophysiological correlates/potential mechanisms of alcohol-

related cognitive control dysfunction and disinhibition (Iacono et al., 2008; Dick et al., 2010; 

Zucker et al., 2011), and strongly suggest that diminished cognitive control-related theta 

dynamics are part of a constellation of heritable characteristics associated with adolescent 

drinking.

Overt behavioral performance did not relate to AAU. This may suggest the presence of some 

compensatory mechanism (e.g., sensorimotor beta; attention-related alpha) that prevents 

behavioral slips even when prefrontal response conflict processes are lacking, that other 

cognitive control-related processes important to optimal task performance are relatively 

intact in the presence of decreased conflict-related theta, or that EEG correlates of response 

conflict/cognitive control may be more closely associated with adolescent drinking than 

performance-based measures. In addition, despite the finding that theta dynamics were 

significantly related to drinking only during response conflict trials, given the lack of 

association between AAU and behavioral performance, it is possible that individual 

differences in other more global cognitive states that may affect EEG characteristics, such as 

wakefulness or general vigilance (Rangaswamy and Porjesz, 2014; Clayton et al., 2015), 

may have contributed to the observed effects. Further work is needed to tease apart the 

relationship between adolescent drinking and the various subdomains (e.g., sustained 

attention, conflict processing) of cognitive control.

There are of course some limitations to this study. As this report focused on normative levels 

of adolescent drinking in an epidemiologically-derived sample, the results may not easily 
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generalize to clinical populations or adolescents with severe alcohol exposure. However, it 

should be noted that 16% of our sample (n = 116) did meet clinical criteria for an alcohol 

use disorder by age 17, suggesting that problematic adolescent drinking was represented in 

our sample. Similarly, these results may not generalize to cases of very early exposure, as 

very few twins reported any alcohol use prior to age 11. Additionally, given our focus on 

adolescent drinking, we did not explore the effects of adult alcohol use on brain dynamics. 

As the genetic and environmental influences on alcohol use behaviors changes with age 

(Vrieze et al., 2012), future work should explore whether the etiological influence 

underlying the alcohol-theta association changes across the lifespan. Given that AAU did not 

relate significantly to behavioral performance, more work is needed to determine the clinical 

significance of reduced midfrontal theta. Along this line, future studies should investigate 

whether diminished conflict-related theta is present in other psychopathologies characterized 

by frontal lobe dysfunction (e.g., illicit drug addiction, attention-deficit/hyperactivity 

disorder, antisocial personality disorder), and test whether reduced theta can be used to 

predict future problematic alcohol use. Finally, despite having a sample that exceeded 700 

participants, it is possible that an environmental influence could be detected in an even 

larger sample, and thus a potential environmental influence cannot be unequivocally ruled 

out.

These results provide strong evidence suggesting that a heritable genetic vulnerability 

underlies the comorbidity between adolescent drinking and diminished adult conflict-related 

prefrontal theta-band dynamics, and offer empirical support for theoretical models 

implicating poor cognitive control processes as an expression of the genetic liability towards 

behavioral disinhibition and early-onset substance misuse.
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Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Adolescent alcohol use (AAU) predicted reduced adult conflict-related frontal 

theta EEG dynamics.

• Genetic factors primarily accounted for the association between AAU and 

adult theta dynamics.

• These novel results advance prefrontal theta dynamics as an endophenotype 

for adolescent drinking.
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Figure 1. 
Time-frequency theta-band (3–8 Hz) EEG dynamics. (A) Left: The grand average time-

frequency plots of stimulus-locked (time = 0, dashed line) medial frontal power at channels 

FCz/Cz for incongruent and congruent conditions. Note the strong increase in theta-band 

power following incongruent stimuli. Right: The response conflict effect (difference between 

incongruent and congruent trials) on time-frequency power. The time-frequency plot of the 

response conflict effect for power pooled across FCz/Cz (white electrodes) and the 

associated topographic distribution of theta-band power show robust theta power 

enhancement over the medial frontal cortex for incongruent trials. (B) Left: Same as (A), but 

for FCz–seeded (purple electrode) functional connectivity as measured by the weighted 

phase lag index (wPLI). These plots illustrate enhanced connectivity between a medial 

frontal cortex channel (FCz) and a cluster of dorsal medial and dorsolateral prefrontal 

channels (dPFC; white electrodes), which is augmented during incongruent trials. The black 

outline boxes denote the region of interest used for statistical analyses.
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Figure 2. 
Graphical depiction of a general ACE bivariate model illustrating the variance in each 

individual observed phenotype (indicated in rectangular boxes) parsed into that explained by 

latent variables (indicated in circles) reflecting additive genetic (A), shared environmental 

(C), and nonshared environmental (E) effects, and the associated genetic (rA), shared 

environmental (rC), and nonshared environmental (rE) correlations, between adolescent 

alcohol use and incongruent theta-band power. The rE correlation is analogous to the within-
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pair exposure effect in the cotwin control analysis, while rA and rC capture the familial risk 

effect.
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Table 1

Descriptive statistics and twin intraclass correlations

Mean
(SD)

Intraclass Correlations
(95% CI)

MZ DZ

AAU 7.01
(6.78)

0.79
(0.74, 0.83)

0.53
(0.40, 0.63)

Incongruent MFC theta power 2.50
(141)

0.61
(0.53, 0.68)

0.25
(0.09, 0.39)

Congruent MFC theta power 1.78
(112)

0.59
(0.50, 0.66)

0.24
(0.08, 0.38)

Incongruent MFC-dPFC theta functional connectivity 0.10
(0.09)

0.38
(0.27, 0.48)

0.23
(0.07, 0.37)

Congruent MFC-dPFC theta functional connectivity 0.06
(0.06)

0.30
(0.19, 0.41)

0.12
(−0.04, 0.27)

Notes: Abbreviations: AAU = adolescent alcohol use; MFC = medial frontal cortex (electrodes FCz/Cz); dPFC = dorsal prefrontal cortex 
(electrodes Fz/F1-4/AFz/AF3-4); MZ = monozygotic; DZ = dizygotic; CI = confidence interval. Values are in decibels for power, and weighted 
phase lag index units for theta-band connectivity (all relative to a −450 to −250 baseline). Sample sizes for intraclass correlations were 459 MZ 
twins (196 full pairs) and 259 DZ twins (105 full pairs).
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