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Abstract

Two paradigms for the evaluation of surrogate markers in randomized clinical trials have been 

proposed: the causal effects (CE) paradigm and the causal association (CA) paradigm [1]. Each of 

these paradigms rely on assumptions that must be made in order to proceed with estimation and to 

validate a candidate surrogate marker (S) for the true outcome of interest (T). We consider the 

setting in which S and T are Gaussian and are generated from structural models that include an 

unobserved confounder. Under the assumed structural models, we relate the quantities used to 

evaluate surrogacy within both the CE and CA frameworks. We review some of the common 

assumptions made in order to aid in estimating these quantities and show that assumptions made 

within one framework can imply strong assumptions within the alternative framework. We 

demonstrate that there is a similarity, but not exact correspondence between the quantities used to 

evaluate surrogacy within each framework and show that the conditions for identifiability of the 

surrogacy parameters are different from the conditions which lead to a correspondence of these 

quantities.
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1. Introduction

The validation of an intermediate marker (S) as a surrogate marker for the true outcome of 

interest (T) in clinical trials has attracted much attention [2–4]. An intermediate marker 

shown to be a valid surrogate would allow trials to be run more cheaply and quickly by 

basing analyses on the earlier or more cheaply measured surrogate. To use an example we 

will refer to throughout this paper, in a clinical trial assessing the efficacy of a new therapy 

on lengthening overall survival (OS) time in ovarian cancer, the duration of the trial could be 

reduced if the treatment effect on progression free survival (PFS) time could be used to infer 

a treatment effect on OS time. However, in practice demonstrating the validity of a surrogate 

marker has proven challenging, possibly due to the disease process affecting T through 
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pathways not mediated through the surrogate, or due to unobserved confounders, U, of S and 

T [5]. For instance, suppose PFS time (S) is being assessed as a surrogate marker for OS 

time (T) in ovarian cancer patients in a trial with a binary treatment (Z), where Z = 0 is 

standard of care and Z = 1 is a new treatment. If patients experiencing longer PFS are also 

more likely to eat a healthy diet (U) which is also associated with longer OS, a treatment 

that prolonged PFS would also appear to prolong OS, indicating PFS as a potentially valid 

surrogate marker even though the survival benefit was not due to the induced treatment 

effect on PFS.

Several causal frameworks have been explored to identify intermediate markers as valid 

surrogates. Joffe and Greene [1] group these frameworks into two paradigms. The first, 

termed the “causal-effects” (CE) paradigm, attempts to separate the direct effect of the 

treatment (Z) on T from the effect of Z on T that is mediated through S. The second 

paradigm, termed the “causal-association” (CA) paradigm, focuses on the association of the 

treatment effect on the surrogate and the treatment effect on the true endpoint. VanderWeele 

[6] argued that conceptually the CA paradigm is more appealing when assessing surrogacy, 

although that may not be universally accepted. Each of the approaches to surrogacy 

assessment rely on certain assumptions that one must be willing to make in order to proceed 

with estimation and the evaluation of S as a surrogate. Ten Have and Joffe [7] and Ensor et 
al. [8] provide a comprehensive reviews of the estimation methods used and the assumptions 

made within both the CE and CA paradigms. Here, we explore the connections between 

some of the typical assumptions made within each paradigm, and examine the implications 

of these assumptions on the quantities used to determine the validity of S as a surrogate 

marker within each of the CE and CA paradigms.

The consideration of surrogacy from a causal perspective has some similarities to causal 

considerations of compliance and mediation, which can both be considered as intermediate 

variables between an intervention or exposure and an outcome. A number of the 

assumptions we consider originate in the compliance and mediation literature [7, 9–12].

The CE paradigm can be represented as a structural model in which one can explicitly 

change the values of Z or S or both, and the model specifies how the outcome T would then 

change. The indirect effect of Z on T is then the part of the effect of Z that is explained by 

changes in S holding Z constant, and the direct effect is the part of the effect of Z on T when 

the value of S is held constant. If S is a good surrogate for T, the direct effect of Z on T 
should be zero for all values of S. The Prentice [2] criteria for assessing surrogacy can be 

considered to be in the CE paradigm. These criteria require that S and T be correlated, that S 
be affected by Z, and that T and Z be conditionally independent given S. If the coefficient of 

Z is zero in the regression model for T|Z, S, then S would be considered a valid surrogate. 

Since this model conditions on the post randomization variable S, it will in general not have 

a causal interpretation. For the Prentice criteria to be valid from a causal perspective requires 

the assumption of no unmeasured confounders of S and T. This assumption is often unlikely 

to hold in the surrogate marker setting, where S and T are frequently involved in the same 

disease process. In general, the parameters in the CE paradigm are not estimable without 

assumptions, of which no unmeasured confounders is an example. In the PFS and OS 

example in ovarian cancer, this would preclude the possibility of a healthy diet affecting 
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both PFS and OS. Assumptions weaker than no unmeasured confounders have been 

suggested in the literature, and these will be considered below.

The assessment of surrogacy within the CA paradigm includes methods based on principal 

stratification [13], which consider the distribution of the potential outcomes of T conditional 

on principal strata based on the values of the potential outcomes of S. In this framework, 

each subject has two potential outcomes (in the case of a binary treatment), one under Z = 0 

and one under Z = 1, for each of the surrogate and the final outcome. Measures of surrogacy 

are derived from the distribution of the potential outcomes of T conditional on principal 

strata based on the potential values of the outcomes of S. S is considered to be a valid 

principal surrogate if there is no expected treatment effect on T within the principal stratum 

where there is no treatment effect on S. As the potential outcomes of S are pre-

randomization variables, they can be regarded as baseline covariates, thereby avoiding the 

issue of potential unobserved confounding between the post randomization observed values 

of S and T. However, as only two of the four potential outcomes of S and T are observed for 

each person, assumptions must be made to aid in the estimation of unidentifiable parameters. 

Common assumptions often involve restrictions or assumptions on certain model parameters 

through the use of prior distributional assumptions [14], or conditional independence 

assumptions between certain counterfactual outcomes [15–17] or concepts of monotonicity, 

under which negative effects of the treatment on the surrogate marker or outcome are 

precluded [18]. For the ovarian cancer example, the potential outcomes for S are the two 

PFS times that would have arisen under each of the treatment arms, and the potential 

outcomes for T are the two OS times that would have arisen under the two treatments. The 

CE paradigm additionally requires consideration of what the OS time would be if the PFS 

time could be externally manipulated. While it is hard to specify how that could be achieved, 

it is never the less part of the conceptual framework of the CE paradigm.

The CE paradigm is consistent with a mechanistic view of causality as it describes how the 

output will change if the inputs are separately manipulated. By allowing the manipulation of 

S for fixed values of Z, this framework represents a larger, more general model. By 

considering the potential outcomes of S and T under each treatment arm, the CA framework 

does not require manipulations of S, as it is concerned with how the causal treatment effect 

on S is associated with the causal treatment effect on T and not with the effect of S on T. 

Pearl [19] invited a discussion on the uses and limitations of estimating effects using 

potential outcomes. A common argument against the use of potential outcomes and the 

principal stratification approach is the unidentifiability of the principal strata. It is argued 

that this lack of identifiability makes it difficult to make progress in estimation within this 

framework. However, estimation methods within the CE framework also rely on untestable 

assumptions and on conceiving of interventions on S, which may not always be possible [6, 

20].

In this paper, in order to illustrate the connections between the CE and CA frameworks, we 

consider the setting in which S and T are Gaussian. While the relationship between the CE 

and CA frameworks has been considered previously in a general setting [1, 21], restricting to 

the Gaussian setting facilitates consideration of a larger number of different assumptions and 

also allows algebraic development, providing a more clear and concrete understanding of the 
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relationship between these two frameworks. We assume that S and T are generated from 

structural models that include an unobserved confounder. This model is detailed in Section 

2. In Section 3, we explore the relationship between the parameters of the assumed Gaussian 

structural model and the model parameters in the principal surrogacy framework, and relate 

the structural model parameters to the parameters used to evaluate surrogacy within both the 

CE and CA frameworks. In Section 4, we briefly explore the role of baseline covariates in 

aiding in parameter estimation and in surrogacy evaluation. In Section 5, we review some of 

the common assumptions made within the CE framework to achieve identifiability and 

consider the impact of these assumptions on the parameters and quantities used to evaluate 

surrogacy in the CA framework. Section 6 explores some of the assumptions used to aid in 

estimation within the CA framework and their impact on the parameters within the CE 

framework. Section 7 presents a numerical study of the correspondence between the metrics 

of surrogacy under the various assumptions described in sections 5 and 6. Section 8 briefly 

outlines estimation methods for the parameters that are typically made in the two 

frameworks and explores how the explicit expressions derived for the relationship between 

the parameters and identifying assumptions of the two frameworks could aid in the 

estimation of surrogacy evaluation quantities. We conclude with a discussion in Section 9.

2. The structural model

Throughout the paper we will assume that the truth is a fairly general structural model, 

which is a model within the CE framework. We assume that both the surrogate marker S and 

the true endpoint T are continuous. We assume that the observed Si is generated from a 

structural model which depends on the treatment, Zi (Zi = 0 or 1), and on an unobserved 

confounder, Ui, for each subject i, i = 1, ..., n. The observed value of Ti is also generated 

from a structural model that depends on Zi, Ui and on Si. Figure 1 provides a graphical 

representation of the assumed model.

We use the potential outcomes framework, and assume no interference, i.e. the potential 

outcomes of individual i are unaffected by the treatment and surrogate value of all other 

individuals. The assumed structural models for Si and Ti are given by:

(1)

(2)

where Ui ~ N(0, 1), 

and Ui, eSi (0), eSi (1), eTi (0), eTi (1) are all uncorrelated. Note that the model is quite general 

in the sense that it does allow the outcome to depend on interactions between Z and U and 

between Z and S. To preclude having non Gaussian error terms, the model for Ti(Zi, Si) does 

not include any interactions between Ui and Si. Additionally, while the error associated with 

the potential outcome of Ti(Zi, Si) changes with Z, there is no additional measurement error 

associated with S beyond that induced by the error of the selected S(z), only a location shift 

Conlon et al. Page 4

Stat Med. Author manuscript; available in PMC 2018 November 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



for T(Z, S(z)) conditional on eS(z). Also note that the model does not include any other 

baseline covariates except for the intervention, which we assume to be randomly assigned. 

The situation with baseline covariates will be discussed later.

From the structural model we have the following for the four potential outcomes:

Si(0) = α0 + α2Ui + eSi (0)

Si(1) = α0 + α1 + (α2 + α3)Ui + eSi (1)

Ti(0) = Ti(0, Si(0)) = β0 + β2α0 + (β2α2 + β3)Ui + β2eSi (0) + eTi (0)

Ti(1) = Ti(1, Si(1)) = β0 + β1 + (β2 + β4)(α0 + α1) + [(β2 + β4)(α2 + α3) + (β3 + 

β5)]Ui + (β2 + β4)eSi (1) + eTi (1)

In addition to no interference, the structural model (2) assumes consistency, Ti = Ti(z, s) if 

Zi = z, Si = s, which allows the observed outcome to be related to the potential outcome; and 

positivity, P(Zi = z | Ui = u) > 0, P(Si(z) = s | Zi = z,Ui = u) > 0 for all z, u ∈ , and s ∈ . 

This implies that all treatments can be observed at all levels of potential confounders and 

that all levels of the surrogate marker are observable at all levels of potential confounders for 

all levels of treatment. The first part of the positivity assumption is trivially satisfied in the 

setting of a randomized trial.

The structural model described above has 14 parameters, which is the same number of 

parameters as the principal surrogacy model described in the following section. For the data 

that can be collected in a randomized trial, under the assumption that S and T are Gaussian, 

there are ten estimable quantities corresponding to the means and variances of S(0), S(1), 

T(0) and T(1) and the correlations of (S(0), T(0)) and (S(1), T(1)). While the structural 

model is a mechanistic model, the parameters still cannot all be estimated without untestable 

assumptions. Similarly, in the principal surrogacy model, there are ten estimable parameters; 

in the following section, we explicitly link the parameters of these two models. When there 

are no unmeasured confounders in the structural model, (i.e. α2 = α3 = 0 or β3 = β5 = 0 or 

both), then all of the remaining parameters of this model are identifiable, as are the 

parameters of the principal surrogacy framework. In Sections 4 and 5, we explore some of 

the common assumptions made within the CE and CA frameworks and the impact of these 

assumptions on the quantities used to evaluate S as a surrogate marker.

3. The CA and CE frameworks

3.1. The causal association model

The CA paradigm of surrogacy evaluation includes methods based on the “principal 

surrogacy” framework of Frangakis and Rubin [13]. This framework focuses on the 

distribution of the potential outcomes of T conditional on principal strata defined by the 

values of the potential outcomes of S. Let Si(z) and Ti(z) denote the potential outcomes of Si 

and Ti, respectively, for subject i under treatment assignment Zi = z. We assume the joint 

distribution of (Si(0), Si(1), Ti(0), Ti(1)) is multivariate normal [14] with mean μ and 

covariance matrix Σ, and has the following distribution:

Conlon et al. Page 5

Stat Med. Author manuscript; available in PMC 2018 November 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(3)

The mean μ and the variances corresponding to the diagonal elements of Σ, as well as the 

correlation parameters ρ00 and ρ11 are fully identifiable from the observed data. However, 

because only one of the counterfactual pairs of outcomes is observed for each subject, the 

correlation parameters ρs, ρ01, ρ10, and ρt are not identifiable from data. The parameters of 

the structural model detailed in Section 2 can be directly related to the principal surrogacy 

model when the joint distribution of the potential outcomes of S and T is multivariate 

normal. The formulas for all the μs, σs and ρs in terms of the αs, βs and δs are given in 

Appendix A.

While there is a direct mapping of the 14 parameters of the structural model to the 14 

parameters of the principal surrogacy model, there is not an explicit formula to map the 

parameters of the principal surrogacy model back to the structural model parameters. For 

some combinations of parameters within the parameter space of the principal surrogacy 

model no parameter combinations within the parameter space of the structural model exist.

3.1.1. Measures of surrogacy—To evaluate S as a surrogate marker within the principal 

surrogacy framework, Gilbert and Hudgens [15] proposed two properties that a good 

surrogate should possess, “average causal necessity” (ACN) and “average causal 

sufficiency” (ACS). ACN requires that there be no conditional treatment effect on T within 

the principal stratum where there is no treatment effect on S, while ACS requires a non-zero 

conditional treatment effect on T within principal strata where there is a non-zero treatment 

effect on S. For the ovarian cancer trial example with PFS as a potential surrogate for OS, 

ACN would be met if patients who would experience the same PFS under either treatment 

arm would on average experience the same OS under either treatment. ACS would be met if 

patients who would experience greater PFS in one treatment arm would on average 

experience greater OS under this treatment arm. The primary quantities of interest from the 

multivariate normal model used to evaluate surrogacy can be derived from the conditional 

distribution of (T(1) − T(0) | S(1) − S(0) = s), which in the joint Gaussian setting is normal 

with mean given by E[T(1) − T(0)|S(1) − S(0) = s] = γ0 + γ1s, where:

(4)

(5)
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ACN is then satisfied if γ0 = 0 and ACS is satisfied if γ1 ≠ 0. We note that neither γ0 nor γ1 

depend on ρt, however, the variance of [T(1) − T(0)|S(1) − S(0) = s] does depend on ρt.

Based on the mapping of the parameters, the surrogacy quantities of interest in the CA 

framework γ0 and γ1 can be rewritten as:

(6)

and

(7)

The principal surrogacy criteria requiring that γ0 = 0 and γ1 ≠ 0 will be met if 

 and these quantities are greater than −β2α1 for 

γ1 > 0 and less than −β2α1 for γ1 < 0. Thus the requirements of the structural model within 

the CE framework for achieving principal surrogacy under the CA framework are not 

simple.

3.2. The causal effects model

3.2.1. Direct and indirect effects—The causal effects framework for surrogacy 

evaluation attempts to quantify the direct effect of Z on T, and the indirect effect of Z on T 
that is mediated through S. The notions of direct and indirect effects [22, 23] are defined by 

the counterfactual outcomes Si(z) and Ti(z, s), where Si(z) is the value of S for subject i 
under treatment assignment Zi = z and Ti(z, s) is the counterfactual outcome of T for subject 

i when Zi is set to z and Si is set to s. Robins and Greenland [22] and Pearl [23] provide 

definitions of the natural direct effect (NDE(z)), natural indirect effect (NIE(z)) and total 

effect (TE). The NDE(z) measures the effect of Z on T when S is set to its potential value 

under treatment assignment z. The NIE(z) measures the effect on T when Z is set to z and S 
is changed to what it would have been if Z were set to 1 compared to what it would have 

been if Z were set to 0. Finally, the TE of Z on T is equal to the sum of the NIE(1) and 

NDE(0) or to the sum of NIE(0) and NDE(1). Imai, Keele and Yamamoto [11] focus on the 

average causal effects of NDE(z), NIE(z) and TE defined by E[NDE(z)], E[NIE(z)], E[TE] 

respectively. From the assumed structural model, these average causal effects are given in 

Table 1. The average causal effects correspond to the relevant component parameters in the 

structural model. For example, E[NDE(0)] equals the direct effects of Z on T plus the effect 

of Z on S brought through the interaction between S and Z on T. Since U ~ N(0, 1), the 

expected effects in Table 1 do not depend on the parameters associated with the unmeasured 

confounders. An additional notion to measure the direct effect of Z on T is the controlled 
direct effect [22, 23]. It measures the effect of a treatment on an outcome after intervening to 

fix the value of the surrogate S to the same value s for the whole population; in the context 
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of the ovarian cancer example, this would correspond to an intervention that sets the PFS 

time to be equal across the population before estimating the treatment effect on OS. In terms 

of the counterfactuals, we can define it as CDE = E[T(1, s) − T(0, s)] = β1 + β4s.

Note that if there is no interaction between the surrogate and the treatment in the structural 

model, then the CDE and the NDE coincide. However, the total effects decomposes into the 

sum of the NDE and the NIE, but such decomposition is not available when using the CDE, 

so we shall not consider the CDE any further in this paper.

3.2.2. Measures of surrogacy—A measure of surrogacy in the CE framework is the 

ratio of the indirect effect to the total effect, denoted by PE(Z), which can also be interpreted 

as the proportion of treatment effect on T explained by S. From the assumed structural 

model, PE(z) is given by:

(8)

and

(9)

For S to be considered a perfect surrogate marker, E[NDE(z)] should be zero and E[NIE(z)] 

should be non-zero, indicating that all of the effect of Z on T is mediated through S. The 

PE(z) provides a measure of the proportion of treatment effect on T that is explained by S, 

and should be large for good surrogate markers and equal to one for a perfect surrogate. In 

the ovarian cancer example, an E[NDE(z)] of zero would imply that the treatment only 

effects OS time through its effect on PFS time and a non-zero E[NIE(z)] would be the effect 

on OS time due to the treatment effect induced on PFS time, net of any treatment effect.

3.2.3. Relationship to Prentice criteria—Special cases of the direct and indirect effects 

approach to determine surrogacy are the Prentice [2] criteria and the closely related 

mediation methods proposed by Baron and Kenny [9]. The Prentice criteria considers the 

regression model

and S is considered a perfect surrogate if θ1 = θ3 = 0. From the structural model it can be 

shown that,
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and

The coefficients of the Prentice model (θ0, θ1, θ2, θ3) depend on the coefficients of the 

confounding variables in equations 1 and 2 (i.e. they depend on α2, α3, β3, β5). Therefore, 

for the assessment of surrogacy using the Prentice criteria to be a valid causal assessment of 

surrogacy, there must be no confounders of S (α2 = α3 = 0) or no confounders of T (β3 = β5 

= 0) so that we have θ1 = β1 and θ3 = β4. In the absence of confounders, S will be 

considered a perfect surrogate marker for T based on the Prentice criteria if α1 ≠ 0, β2 ≠ 0, 

β1 = 0 and β4 = 0 and subsequently θ1 = θ3 = 0. In this case, the direct effect of Z on T will 

be zero and all of the treatment effect will be completely mediated through S. The methods 

of Baron and Kenny [9] also require no unobserved confounders and additionally require 

there to be no interaction of Z and S (β4 = 0). Then, if α1 and β2 are non-zero, α1β2 can be 

interpreted as the mediation effect, or the effect of Z that is explained by S.

In the absence of unobserved confounders and no interaction effect of S and Z, Freedman, 

Graubard, and Schatzkin [3] proposed a quantity to measure the proportion of treatment 

effect explained by S, derived from the ratio of treatment effects estimated from two 

regression models for T, one with no adjustment for S and the other adjusting for S. 

Freedman’s proportion explained is one minus this ratio, given by , where p = 

1 corresponds to a perfect surrogate. Wang and Taylor [24] proposed an estimate of the 

proportion of treatment effect explained by S that can be estimated from the observed data in 

the presence of an interaction of S and Z. For the structural model assumed here, this 

quantity is equivalent to PE(z) in equations 8 and 9.

3.3. Correspondence between the CA and CE models

Within the CE framework, S will be considered a valid surrogate when the natural direct 

effects are zero, corresponding to β1 = 0 and β4 = 0 and the natural indirect effects are non-

zero (α1 and β2 are non-zero). Within the CA framework, S is considered a valid surrogate if 

γ0 = 0 and γ1 ≠ 0. VanderWeele [21] referred to the expected treatment effect on T within 

principal strata where there is no treatment effect on S, here corresponding to γ0, as the 

“principal strata direct effect” and the expected treatment effect on T within principal strata 

where there is a treatment effect on S, here corresponding to γ1, as the “principal strata 

indirect effect”. Working at the individual level, VanderWeele [21] showed that when the 

natural direct effects are zero for all subjects, corresponding to the assumption β1 = β4 = β5 

= 0 and , there is no principal strata direct effect, corresponding to γ0 

= 0, therefore meeting the CA surrogacy criteria. In our case, where we are interested in the 

expected natural direct effects, which are zero when β1 = 0 and β4 = 0, the surrogacy 

quantities of the CA model will be  and  when the 

expected natural direct effects are zero. Therefore, when the criteria for surrogacy are met 

within the CE framework, the criteria within the CA framework will not always be satisfied, 
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but will be met if either α3 = 0 or β5 = 0, i.e. if either of the UiZi interactions in Equation 1 

or Equation 2 are zero.

When there is no interaction effect between S and Z on T (β4 = 0), and no interaction 

between the unmeasured confounder U and Z for either the outcome (β5 = 0) or the 

surrogate marker (α3 = 0), then there is a simple relationship between the proportion 

explained (PE(z)) measure in the CE framework and the ACN and ACS parameters γ0 and 

γ1 in the CA framework. In particular, β4 = 0 implies NDE(0) = NDE(1) = NDE = β1, α3 = 

0 implies E(s) = E(S(1)) − E(S(0)) = α1, while β4 = 0 and β5 = 0 together imply that γ0 = β1 

and γ1 = β2. Thus

Thus γ0 can only be treated as analogous to the direct effect in the CE framework if there is 

no interaction effect of S and Z on T and there is no treatment interaction with the 

unobserved confounder on either the outcome or the surrogate marker.

3.3.1. Simulation experiments—The above algebra showed that the metrics of 

surrogacy in the CE framework (NDE(Z), NIE(Z) and PE(Z)) do not correspond to the 

metrics of surrogacy in the CA framework (γ0 and γ1) unless special conditions are met. To 

further understand the magnitude of the differences between the parameters and measures of 

surrogacy in the CE model and the CA model, we undertook a simulation experiment. We 

simulated a broad range of reasonable parameter combinations in the structural model. 

Additionally, the average total effect (β1 + β2α1 + β4(α0 + α1)) was constrained to be 

positive. Drawing the CE parameters in this way ensured that α1 > 0, β2 > 0 and (β2 + β4) > 

0, which is a reasonable assumption in the surrogate marker setting where any S being 

considered as a potential surrogate for T would be known to have an association with the 

treatment and with T. Additionally, under the distributional assumptions, the magnitude of 

the coefficients of the confounding variable on S and on T must be less than the magnitude 

of the coefficient of α1 and β2, respectively, and  and  are constrained to have the same 

values, as are  and . Restricting the average total effect to be greater than zero ensures 

that PE(z) is greater than zero. For each parameter set, we calculated the corresponding 

parameters in the CA model and also the measures of surrogacy in both frameworks. Details 

of the distributions used to generate parameters for the simulations are provided in Appendix 

B. The range of R2 values for regression models of T|Z, T|S and T|U is also shown in 

Appendix B, and demonstrates that the way in which the parameters were simulated was not 

overly restrictive and leads to a wide spectrum of scenarios. We explored the sensitivity of 

the simulation results to the chosen distributions and found that the results appear 

generalizable to parameters arising from different distributions.

Figure 2 provides scatter plots of the correlation parameters of the CA model for the 

simulated CE model parameters. The plots show that ρs, ρt, ρ00 and ρ11 are almost always 

positive, that ρ00 and ρ11 are generally larger than the other four correlation parameters and 

Conlon et al. Page 10

Stat Med. Author manuscript; available in PMC 2018 November 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



that ρs and ρt are generally larger than ρ01 and ρ10. Figure 3 provides a scatter plot of 

E[NDE(0)] versus γ0. We see that there is a close correspondence between the direct effects 

and γ0. Figure 4 provides plots of γ0 vs. γ1 for different values of PE. When PE is small, γ0 

tends to be greater than zero. As PE increases, the distribution of γ0 becomes more centered 

around zero. The plots show that although there is not a perfect concordance between the 

surrogacy measures in the two frameworks, similar conclusions regarding the validity of S as 

a surrogate marker will often be drawn from the two frameworks.

The above figures represent the degree of agreement between the two concepts of surrogacy, 

as if the joint distribution of all the counterfactual outcomes were known, that is all the 

parameters in Equations 1 and 2 were known. In practice the parameters would have to be 

estimated from observed data.

4. Baseline Covariates

In many settings, observed baseline covariates (X) are available that may explain some of 

the dependence between S and T, and explain some of the effect of Z on S and T. Often 

baseline covariates are sought that will control for any confounding of S and T. If X is a 

binary or categorical covariate, the models and assumptions within both the CE and CA 

frameworks could be made within strata defined by X. If X is a continuous covariate or a 

continuous linear combination of covariates, additional parameters could be added to the 

structural model to give:

This model now has 18 parameters to estimate and leads to a new CA model given by: 

. 

The mean parameters of this model are estimable and, as the covariance matrix does not 

change with the addition of baseline covariates, there are still four correlation parameters 

that are not estimable. Full development of the structural model given in Equations 1 and 2 

can be assumed to be conditional on X, making the common assumptions of conditional 

independence and sequential ignorability discussed in the next section more plausible. In 

Appendix D we describe the consequence of including additional covariates on the natural 

direct and indirect effects, on the Prentice criteria and on γ0 and γ1.

5. Assumptions made within the CE framework

The structural model assumed in Section 2 is not identifiable from the observed data. 

Therefore, assumptions must be made in order to aid in the estimation of the parameters and 

identification of the direct and indirect effects. We review some of the common identifying 

assumptions made within the CE framework and explore the implications of these 

assumptions on the parameters of the principal surrogacy model. The no interference 
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assumption is expanded to mean that the treatment level of one individual has no effect on 

the surrogate of another, and we require generalized consistency, namely S(z) = S, and T(z, 

S(z)) = T when Z = z.

5.1. No unmeasured confounders

A critical assumption to identification within the causal effects framework is that there are 

no unobserved confounders driving the association between the outcome and the treatment 

or between the surrogate marker and the outcome. In the ovarian cancer example, the 

assumption of no unobserved confounders between the outcome and the treatment will be 

met because it is a randomized clinical trial. The assumption of no unobserved confounders 

between the surrogate marker and the outcome precludes the possibility that diet affects both 

PFS time and OS time, and therefore would only be a reasonable assumption to make in this 

context if diet was not thought to be associated with both of these outcomes, or if covariate 

information was available to be included in the model to sufficiently control for this 

association. Different versions of the no unmeasured confounders assumption are made in 

the literature.

Let X denote a set of measured covariates. Pearl [23] required conditional exchangeability, 

meaning that conditional on measured covariates X, treatment Z is “random”, and that once 

we stratify according to Z and X, their level of S is also essentially random. More formally,

for all z, z′ and x = , implying no Z − T confounding conditionally on observed covariates 

X, and no S − T confounding conditionally on observed covariates X and Z. The first 

assumption is automatically satisfied in randomized trials.

The conditional exchangeability assumption is replaced by Imai, Keele, and Yamamoto [11] 

by sequential ignorability, defined as

for all z, z′ and x ∈ . Again, the first assumption is automatically satisfied in randomized 

trials; the second is stronger, especially in the setting we have here without covariates.

Under our assumption of randomized treatment, Pearl and Imai, Keele, and Yamamoto 

correspond. Under the structural model (2) without covariates, sequential ignorability 

implies Pearl’s conditions for identification.

Petersen, Sinsi, and van der Laan [25] replace the assumption Ti(z′, s), Si(z) ⊥ Zi | Xi = x of 

Imai, Keele, and Yamamoto with the weaker assumption that the outcome rather than the 

joint distribution of the surrogate and the outcomes is independent of treatment: Ti(z′, s) ⊥ 
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Zi | Xi = x, but require the additional assumption that the magnitude of the direct effect is 

independent of the potential values of the surrogate marker conditional on observed 

covariates:

As with the assumptions of Pearl [23], the Petersen, Sinsi, and van der Laan requirements 

match those of sequential ignorability in a randomized trial setting.

While these identification assumptions hold without further parametric assumptions, we can 

translate them into our parametric structural model by noting

The requirement that Ti(z′, s) ⊥ Si(z) | Zi = z,Xi = x implies α2 = 0 or β3 = 0 when Z = 0, 

and α2 + α3 = 0 or β3 + β5 = 0 when Z = 1, or, more concisely, α2 = α3 = 0 or β3 = β5 = 0, 

so that either S(Zi) or T(Zi, Si) is independent of Ui and thus Ui no longer confounds the 

surrograte marker and the outcome.

5.2. No interaction

Recent work by VanderWeele [26] has highlighted the important role of interactions in 

mediation analysis. Baron and Kenny [9] propose methods for mediation analysis based on 

solving a system of linear equations. In order to obtain causal interpretations of the 

parameters of their models, an assumption of no unmeasured confounders as well as no 

interaction is necessary. This leads to the structural model of Section 2 with α2 = α3 = 0 or 

β3 = β5 = 0 and β4 = 0. Then, E[NDE(0)] = E[NDE(1)] = β1, E[NIE(1)] = E[NIE(0)] = α1β2 

and E[TE] = β1 + β2α1. Under these assumptions we have ρs = ρ01 = ρ10 = ρt = 0, and if 

 and  then ρ00 = ρ11. For our data example in ovarian cancer, these 

assumptions imply that diet does not affect both PFS time and OS time and OS time changes 

with PFS time to the same degree under both treatment arms. This assumption may therefore 

be reasonable to make if there is clinical knowledge to support the notion that longer 

(shorter) PFS times will result in similarly longer (shorter) OS times, regardless of treatment 

given. Under these assumptions, γ0 is equal to the natural direct effect (E[NDE(0)] = 

E[NDE(1)] = γ0 = β1) and γ1 = β2, leading to exact correspondence between the CE and 

CA measures of surrogacy. Therefore, if β1 = 0and β2 ≠ 0, S will be a valid surrogate for T 
from both the CE or CA model perspective.

5.3. Conditional independence assumption

Daniels et al. [12] work under the assumption of conditional independence between potential 

outcomes which assumes that T(1, S(1)), T(1, S(0)) and T(0, S(0)) are conditionally 
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independent given S(0) and S(1). In the ovarian cancer example, this assumption implies that 

given two PFS times, s0 and s1, under Z = 0 and Z = 1, respectively, amongst the set of 

people who have potential outcomes s0 and s1, the OS times under Z = 0 and the OS times 

under Z = 1 are independent, and also independent of the OS time under Z = 1 for PFS time 

s0. They note that this assumption is not necessary to estimate the direct and indirect effects, 

however, in their Bayesian estimation strategy for estimating NDE and NIE, these 

assumptions are needed to estimate features of the posterior distribution of these quantities, 

such as the posterior variance. The conditional covariances of these three outcomes from the 

structural model of Section 2 are as follows:

In order for the three conditional independence assumptions to hold, in the structural model 

we must have (β3 + β5) = 0 and the possibly unrealistic assumption that , making this 

assumption difficult to satisfy in most scenarios. In terms of the parameters of the causal 

association model, this assumption does not change the correlation parameters ρs, ρ00 and 

ρ10, and only slightly alters ρt, ρ11 and ρ01. The surrogacy quantities of interest, γ0 and γ1, 

are unchanged by this assumption.

5.4. Exclusion restriction

Many of the assumptions discussed so far required no unobserved confounding. The 

instrumental variable approach does not make assumptions about S–T confounding, but 

instead assumes that all of the effect of Z on the outcome is mediated by the intermediate 

variable Si, i.e. that the direct effect of Z is zero, i.e. Ti(1, s) = Ti(0, s). This assumption is 

called exclusion restriction. More specifically, in the setting where the intermediate variable 

is binary (e.g. binary mediator or binary indicator of compliance to treatment), the exclusion 

restriction assumption requires that the distribution of the potential outcomes of T be 

independent of treatment assignment in the principal strata defined by the potential 

intermediate variable. So for the never-takers, (Si(0) = Si(1) = 0), and the always-takers 
(Si(0) = Si(1) = 1), this implies Ti(1, s) = Ti(0, s) = β0 + β2s + β3Ui [31], and thus β1 = β4 = 

β5 = 0. In the continuous setting, Holland [32] and Sobel [33] have a similar requirement for 

identifiability, requiring that β1 + β4s + β5U = 0. While in the compliance literature, it is 

often reasonable to assume that the treatment has no direct effect on the outcome, we note 

that the exclusion restriction is not compatible with the goals of surrogacy evaluation, as it 

assumes that the direct effect of treatment on the outcome is zero, which in turn assumes that 

S is a valid surrogate marker [7], and would therefore never be a reasonable assumption to 

make in this setting.
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6. Assumptions made within the CA framework

As in the CE setting, some parameters of the principal surrogacy model are unidentifiable 

from the data, requiring assumptions to be made to aid in estimation. The assumptions that 

are typically made vary based on the setting being explored and on the quantities of interest. 

In some settings, baseline covariate information is available that can aid in estimating the 

missing potential outcomes of S, or a “constant biomarker” assumption can be made about 

the potential outcomes of S in the control arm [15, 27]. Outside of these settings, 

assumptions must be placed on certain model parameters or on certain relationships between 

potential outcomes in order to proceed with estimation. While there is not a one-to-one 

mapping of the principal surrogacy model parameters to the structural model parameters as 

there is from the structural model parameters to the principal surrogacy model parameters, 

the assumptions made in the principal surrogacy setting have implicit effects on the 

parameters of the structural model.

6.1. Prior assumptions on correlation parameters

Within the setting of multivariate normally distributed outcomes of S(0), S(1), T(0), and 

T(1), Conlon, Taylor and Elliott [14] used a Bayesian estimation strategy and placed 

different plausible prior assumptions on the unidentified correlation parameters. These 

assumptions, along with the positive definite restriction of the covariance matrix aided in 

estimation. The assumptions made include restricting the correlation parameters to be 

positive and a restriction with respect to the ordering of the magnitudes of the correlations. 

These assumptions are reasonable in many surrogate marker settings, where the surrogate 

marker and the final outcome are often part of the same disease process. In the context of the 

ovarian cancer example, it would be reasonable to assume that the correlation parameters are 

positive, especially if the observed correlations between PFS time and OS time within each 

treatment arm are positive. It may also be reasonable to assume that the correlation between 

PFS time and OS time within the same treatment arm, the correlation between PFS times 

across treatment arms and the correlation between OS times across treatment arms are larger 

than the correlations between PFS time and OS time in opposite treatment arms. The 

implications of these assumptions on the parameters of the CE model are explored below.

6.1.1. Positivity of correlations—One assumption made by Conlon, Taylor and Elliott 

[14] restricts all of the correlation parameters to be positive. This assumption is motivated by 

the fact that S and T are usually scientifically or biologically related, and therefore if a 

person has an inherent frailty then this will result in both S and T being higher (or lower) 

irrespective of the treatment that they receive. In terms of the structural model, if we assume 

that (β2 + β4) ≥ 0, which would be expected in any setting where S is being considered as a 

potential surrogate marker, restricting the correlation parameters to be positive requires one 

of the following two settings: (1) α2 > 0, (α2 + α3) > 0, (β2α2 + β3) > 0 and (β3 + β5) + (β2 

+ β4)(α2 + α3) > 0 or (2) α2 < 0, (α2 + α3) < 0, (β2α2 + β3) < 0 and (β3 + β5) + (β2 + β4)

(α2 + α3) < 0. These settings imply that the effect of U must act in the same direction on 

both S and T. In our ovarian cancer data example, this implies that healthy diets are 

associated with both longer PFS time and longer OS time and would not be associated with 

a longer PFS time combined with a shorter OS time or vice versa. Figure 3 provides scatter 
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plots from the simulation experiment of the correlation parameters of the CA model for the 

simulated CE model parameters. The scatter plots show that under the assumed structural 

model, all six of the correlations are greater than zero a majority of the time, with ρ00 and 

ρ11 nearly always positive and ρs and ρt usually positive, indicating that the positivity 

assumption, at least for ρs, ρt, ρ00 and ρ11, would be reasonable in this setting.

6.1.2. Ordering of correlations—Another assumption explored by Conlon, Taylor and 

Elliott [14] restricts all of the correlation parameters to be positive and also restricts ρ10 and 

ρ01 to be less than the other four correlation parameters. This constraint is reasonable as ρ10 

and ρ01 are measures of the correlation between S and T in opposite treatment arms, which 

is unlikely to be larger than the correlation between the S and T within the same treatment 

arm, or the correlation between the surrogate responses or final treatment responses across 

treatment arms. As not all combinations of parameter values of the principal surrogacy 

model are possible under the assumed structural model, it can be shown that one such set of 

parameters arises under the restriction of positivity and ordering of the correlations. If only 

the assumption about the ordering of the correlations is imposed and positivity is not 

assumed, then one of the following two settings is implied in terms of the structural model: 

(1) α2 > 0, (α2 + α3) > 0, (β2α2 + β3) < 0, and (β2 + β4)(α2 + α3) + (β3 + β5) < 0 or (2) α2 

< 0, (α2 + α3) < 0, (β2α2 + β3) > 0, and (β2 + β4)(α2 + α3) + (β3 + β5) > 0. These settings 

imply that the effect of U on S must be in the same direction for Z = 0 and Z = 1 and the 

effect of U on T must be in the opposite direction as that of U on S, but the effect of U on T 
must be in the same direction for Z = 0 and Z = 1. In terms of the ovarian cancer example, 

this would imply that patients with healthy diets have longer (shorter) PFS time, regardless 

of their treatment assignment, but shorter (longer) OS time in either treatment arm. The 

scatter plots in Figure 3 show that under the assumed structural model, the assumption that 

ρ00 and ρ11 are greater than ρ10 and ρ01 appears to hold nearly all the time, and the 

assumption that ρs is greater than ρ10 and ρ01 holds the majority of the time. However, the 

assumption that ρt is greater than ρ10 and ρ01 holds only about half of the time

6.2. Conditional independence assumptions

Another approach to estimation in this framework involves reducing the number of 

unidentified parameters that must be estimated through assumptions about conditional 

independences. One common conditional independence assumption that has been considered 

is that of conditional independence of T(0) and T(1) given S(0) and S(1) [15, 16, 28, 29]. 

This assumption reduces the number of unidentified parameters by one, as ρt becomes a 

function of the other five correlation parameters. Specifically, this implies that 

. In terms of the structural model, conditional independence 

of T(0, S(0)) and T(1, S(1)) given S(0) and S(1) implies that β3(β3 + β5) = 0. Therefore, in 

order for this conditional independence assumption to hold we must have either β3 = 0 or 

(β3 + β5) = 0, i.e. there is zero effect of the unmeasured confounder in one of the treatment 

arms on the outcome T. This would imply in the ovarian cancer trial example that patients 

with healthy diets have similar OS times to those with unhealthy diets in at least one of the 

treatment arms, and would therefore only be reasonable to make if diet is not thought to be 

associated with both OS time and PFS time.
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A different conditional independence assumption was made by Parast, McDermott and Tian 

[17] who assumed S(0) and T(1) were conditionally independent given S(1) and that S(1) 

and T(0) were conditionally independent given S(0), implying in the ovarian cancer example 

that given knowledge of PFS time under one treatment arm, OS time in the same treatment 

arm and PFS in the opposite treatment arm are independent. The consequence of these 

assumptions is the following

The consequence if this, derived from the equations in Appendix C, requires α2 = α3 = β2 = 

β4 = 0 and also holds for selected other parameter combinations.

A similar, but weaker, conditional independence assumption [30] is that S(0) and T(1) were 

conditionally independent given S(1) and T(0) and that S(1) and T(0) were conditionally 

independent given S(0) and T(1), implying in the ovarian cancer example that given 

knowledge of both PFS time under one treatment arm and OS time in the opposite treatment 

arm, OS time and PFS in the other treatment arms are independent. The consequence of 

these assumptions are the following:

assuming S(0) ⊥ T(1)|S(1), T(0) gives

and assuming S(1) ⊥ T(0)|S(0), T(1) gives

6.3. Monotonicity assumption

Within the setting of a binary surrogate and final outcome, Li, Taylor and Elliott [18] impose 

a monotonicity assumption to aid in the problem of non-identifiability. Specifically, they 

require that Si(1) ≥ Si(0) and Ti(1) ≥ Ti(0) for all i. In terms of the structural model, this 

requires that α1 + α3Ui + eSi (1) ≥ eSi (0) and β1 + β4(α0 + α1) + β2α1 + [β4(α2 + α3) + β2α3 

+ β5]Ui + (β2 + β4)eSi (1) + eTi (1) ≥ β2eSi (0) + eTi (0), which cannot be satisfied with 

Gaussian random variables. If monotonicity is only required to hold in expectation so that 

E[Si(1)] ≥ E[Si(0)] and E[Ti(1)] ≥ E[Ti(0)], this reduces to α1 ≥ 0 and β1 + β4(α0 + α1) + 

β2α1 ≥ 0. As α1 and β2 are assumed to be positive within the surrogate marker setting, this 

assumption will hold as long as the average total effect of Z on T is positive. In the ovarian 

cancer setting, this holds if on average the combined effect of treatment and PFS time in the 

Z = 1 arm on OS time is greater than this combined effect on OS time in the Z = 0 arm, and 
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would be reasonable to assume in this scenario for a treatment thought to improve OS time, 

as PFS time is known to be positively associated with the OS time.

7. Numerical study of impact of assumptions on correspondence between 

the CE and CA metrics of surrogacy

The assumptions described in the previous sections are made either because they are 

reasonable in the scientific context or because they aid in estimation of quantities of interest. 

In this section we evaluate whether making these assumptions also leads to closer 

correspondence between the metrics of surrogacy in the two frameworks. Using the 

simulation experiment described in Section 3.3.1, we plot the distribution of γ0 and of γ1 

when |γ0| ≤ 0.25 for different ranges of PE(0). We note that the conditional independence 

assumption made by Daniels et al. [12] is not included, as the condition cannot be met under 

the parameter distributions used in our simulations. In the simulation experiment, for each 

assumption we only retain the draws of the parameters that either exactly or approximately 

satisfy the assumption.

7.1. Ordering of correlations assumption in CA framework

Under the assumption of Section 5.1.2 that ρs, ρt, ρ00 and ρ11 are all positive and that ρ01 < 

min(ρs, ρt, ρ00, ρ11) and ρ10 < min(ρs, ρt, ρ00, ρ11) the boxplots in Figure 5(b) show that the 

correspondence between the measures of surrogacy in the CE and CA frameworks is slightly 

improved as compared to the model without parameter restrictions (boxplot shown in Figure 

5(a)). There is an increase in concordance between γ0 and PE(0), with γ0 decreasing as 

PE(0) increases.

7.2. Conditional independence assumptions in CA framework

The first conditional independence assumption of Section 5.2 is that T(0) and T(1) are 

independent given (S(0), S(1)). The second conditional independence assumption of Section 

5.2 is that T(0) and S(1) are independent given S(0) and that T(1) and S(0) are independent 

given S(1) and the third conditional independence assumption of Section 5.2 is that T(1) and 

S(0) are independent given S(1) and that T(0) and S(1) independent given S(0).

Under the first two assumptions, the boxplots in Figures 5(c) and 5(d) show that the 

relationship between γ0 and PE(0) is brought into slightly higher concordance by making 

these assumptions. In our simulations there were no cases where |γ0| ≤ 0.25 when PE(0)= 

0.25, indicating that when S is a poor surrogate, the CA framework and the CE framework 

would always agree. However, the relationship between γ1 and PE(0) is in somewhat less 

concordance compared to the model with no parameter restrictions, with very little increase 

in γ1 as PE(0) increases. Under the third conditional independence assumption, the boxplots 

in Figures 5(e) also show an increased concordance between the CE and CA measures of 

surrogacy, with γ1 increasing as PE(0) increases but with slightly less concordance of γ0 

and PE(0) as compared to the first and second conditional independence assumptions.
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7.3. Sequential ignorability assumptions in CE framework

Under the assumption of Section 4.1 that α2 = α3 = 0 or β3 = β5 = 0 the boxplots in Figure 

6(b) and Figure 6(c) show some increase in the concordance between γ0 and PE(0), with γ0 

larger when PE(0) is small and moving toward 0 as PE(0) increases, but little additional 

concordance between γ1 and PE(0) is achieved by making this assumption.

7.4. Sequential ignorability and no interaction assumptions in CE framework

The sequential ignorability assumption of Section 4.3 together with the no interaction 

assumption of Section 4.4 is (i) β4 = 0 and (ii) α2 = α3 = 0 or β3 = β5 = 0. For the combined 

sequential ignorability and no interaction assumption, the boxplot in Figure 6(d) shows a 

similar relationship between the CE and CA measures of surrogacy as with the sequential 

ignorability assumption alone, with some increase in the concordance between γ0 and 

PE(0), but little additional concordance of γ1 with PE(0) as compared to the model with no 

parameter restrictions.

8. Estimation and Sensitivity Analyses

8.1. Estimation

In the CA framework, the approach to estimation of the parameters in the multivariate 

normal model (Equation 3) is relatively straightforward. Either equality types of 

assumptions are made to make the model identifiable and likelihood based methods are 

used, or inequality types of constraints can be expressed in the form of prior distributions 

and a Bayesian approach can be taken using MCMC methods. From the estimates, inference 

about γ0 and γ1 is easy either from the delta method or directly from the MCMC draws. The 

Bayesian approach for not fully identified models is not without its challenges [34], 

especially if non-informative or only very weakly informative priors are used. In our 

experience [18], MCMC algorithms can be slow to converge, and from a frequentist 

perspective the coverage rates of 95% credible intervals can deviate from the desired level. 

In the CE framework, estimation of the direct and indirect effects derived from the 

parameters in Equations 1 and 2 usually proceeds by making identifying assumptions, such 

as sequential ignorability, and then non-parametrically estimating the direct and indirect 

effects [7,11,35,36].

Since the parameters in the CA framework are a direct function of the parameters in the CE 

framework, a different approach to estimation of γ0 and γ1 is to undertake estimation of the 

CE parameters in Equations 1 and 2 using a Bayesian approach, making assumptions that 

are appropriate for the context, and then mapping these directly to the CA parameters to 

obtain γ0 and γ1. It may even be possible to make reasonable, but not strong assumptions in 

both frameworks simultaneously using prior distributions, and then undertake Bayesian 

estimation to obtain inference for γ0 and γ1. For example, one might assume approximate 

sequential ignorability (as in Section 4.2) and approximate conditional independence (as in 

Section 5.2) and make inequality assumptions (as in Section 5.1).
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8.2. Sensitivity Analyses

The estimation methods presented here for the CE approach assume no unobserved 

confounding. In the context of a randomized treatment, as is the case here, this assumption 

translates to “no unobserved confounding” of the surrogate-outcome relationship. Many 

sensitivity analyses to this unobserved confounding have been proposed, but the strategy to 

follow will depend on whether there is an interaction between the treatment and the 

surrogate and the type of the outcome (i.e. continuous or binary). In the absence of a 

treatment-surrogate interaction, the NDE and the CDE coincide, and thus simpler sensitivity 

analysis techniques, which are available for the CDE, can be employed. VanderWeele [37] 

develops an approach for binary confounders that computes bias in the CDE as the product 

of the expected difference in the outcome at the two levels of the confounder conditional on 

treatment and the expected difference in the confounder at the two levels of treatment. Imai 

et al. [11] propose a sensitivity analysis that fits more closely with the structural model 

proposed here, by introducing a correlation between the error terms in the structural 

equations for T and S. Beginning with equations analogous to Equations (1) and (2), we 

have,

(10)

(11)

Where X1 is a measured baseline confounder and allow for the error terms eS and eT to be 

correlated. The correlation between these error terms, ρ, thus becomes the sensitivity 

parameter that the user must specify. Imai et al. [11] then give expressions for the NDE and 

the NIE in terms of the correlation term, and other parameters that can be estimated from the 

observed data. This method works for both continuous and binary outcomes, and has been 

implemented in the command medsens, as part of the R software package mediation. In 

the context of Equations (1) and (2), if we assume no confounder treatment interaction then 

the correlation between eS and eT is proportional to α2β3. Thus a sensitivity analysis could 

consist of estimation with this product held fixed.

An alternative approach within the CE framework, not yet attempted to our knowledge, 

would be to study the sensitivity to departures from the identification assumptions by using 

prior distributions with small variances. For example, instead of sequential ignorability 

assumption 1 in Table 2 that α2 = α3 = 0 or β3 = β5 = 0 set 

and  where  and  are all small. For other 

parameters less informative priors would be used. Then proceed with Bayesian estimation.

9. Discussion

Within the setting of Gaussian surrogate and final outcome variables, we have explored the 

connection between the quantities used to evaluate surrogacy within the CE framework of 
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surrogacy assessment and the CA framework of surrogacy assessment. Under the assumed 

structural models for S and T, there is a direct mapping of the 14 parameters of these models 

to the 14 parameters of a Gaussian principal stratification model. Not all of these 14 

parameters can be identified from the observed data alone, and therefore assumptions must 

be made in order to proceed with estimation. We have reviewed some of the common 

assumptions made within the CE and the CA frameworks, and explored the consequences of 

these assumptions on model parameters and quantities used to determine surrogacy. With 

parameter values from the assumed structural model that are reasonable in the surrogate 

marker setting, there is a close correspondence between the natural direct effect and average 

causal necessity. Under the assumptions of Baron and Kenny [9] of no interaction (β4 = 0) 

and no unobserved confounding (α2 = α3 = 0 or β3 = β5 = 0) the surrogacy evaluation 

quantities in the CE and CA framework are equivalent, with E[NDE(0)] = E[NDE(1)] = γ0 = 

β1. This equivalence also holds under slightly weaker conditions of β4 = 0 and either α3 = 0 

or β5 = 0, however these conditions do not lead to identifiability. With the exception of the 

assumptions made by Baron and Kenny [9], the assumptions made within the CE or the CA 

framework that aid in estimation do not aid in bringing the surrogacy evaluation quantities in 

closer alignment.

Most estimation methods within the CE framework rely on assumptions about the absence 

of post-treatment unobserved confounders of S and T. This assumption is untestable and 

may be unlikely to hold in the surrogate marker setting, where S and T are usually involved 

in the same disease process. In contrast, the CA framework does not require assumptions 

about the absence of post-treatment confounders, as it focuses on the potential outcomes of 

S, which can be treated as baseline covariates. However, due to unobserved potential 

outcomes, assumptions must be made to aid in the estimation of unidentified parameters. If 

baseline covariate information is available, this may aid in the estimation of the unobserved 

principal strata of S. Baseline covariate information can also be used within the CE 

framework to relax assumptions about post-treatment confounding. However, estimation 

methods in this case require the presence of a baseline covariate that has an interaction effect 

with Z on S [1, 38], and we have shown in Appendix C that when such interactions exist, S 
will not be a valid surrogate within the CA framework.

The CE and CA frameworks have tradeoffs in terms of assumptions, bias in parameter 

estimation and variability [39]. Estimation methods within the CA framework have been 

shown to have less bias, but more variability than standard methods within the CE 

framework [40]. As the parameters of the proposed structural model have a direct mapping 

to the parameters of the CA model, these models offer the potential for assumptions that are 

reasonable to make in one framework to aid in informing the parameter values within the 

alternative framework. In this way, both the CE and CA models could be employed with 

reasonable, but not especially strong assumptions made in the evaluation of S as a surrogate 

marker. While the research in this paper has focused on the situation of surrogate markers, 

the frameworks of CA and CE have also been considered in mediation analysis. It would be 

of interest to evaluate the correspondence between the metrics of mediation in this setting 

too. We have focused on Gaussian variables and linear models and have shown a certain 

degree of correspondence for evaluating the surrogates, and the degree of correspondence 

increasing if certain assumptions are made. For non-Gaussian variables we hypothesize we 
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might expect broadly similar findings, but with possibly a lower degree of correspondence, 

due to the nonlinear link functions in the models.
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A. Relationship of CE and CA model parameters

The parameters of the principal surrogacy model (Equation 3) relate to those of the assumed 

structural model (Equations 1 and 2) assuming U ~ N(0, 1) in the following way:

μS0 = α0

μS1 = α0 + α1
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μT0 = β0 + β2α0

μT1 = β0 + β1 + (β2 + β4)(α0 + α1)

.

B. Parameter distributions and R2 values for regression models of T|Z, T|S 

and T|U from simulation experiment

For the simulation experiment, the CE model parameters were generated such that

α0, β0 = 0,

α1 ~ U(0.25, 1.5),

α2 ~ U(max(−0.5,min(−α1 + 0.05, α1 − 0.05)),max(−α1 + 0.05, α1 −0.05)),

α3 ~ U(min(−α2/2, α2/2),max(−α2/2, α2/2)),

β1 ~ U(−0.3, 1.5),

β2 ~ U(0.1, 1.5),

β3 ~ U(max(−0.5,min(−β2 + 0.05, β2 − 0.05)),max(−β2 + 0.05, β2 − 0.05)),

β4 ~ U(min(−β2/3, β2/3),max(−β2/3, β2/3)),

β5 ~ U(min(−β3/2, β3/2),max(−β3/2, β3/2)),

,

,
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.

Figure B.1 below provides boxplots of the R2 values across all of the parameter draws for 

regression models of T|Z, T|S and T|U, where S and T are 10,000 random samples from each 

set of parameter draws. The plots show that the simulated parameters lead to a broad range 

of R2 values, indicating that the way in which the parameters were simulated was not overly 

restrictive and leads to a wide spectrum of scenarios.

Figure B.1. 
Proportion of variance of T explained by Z, S and U for a range of plausible values from the 

assumed structural model.

C. Consequence of conditional independence assumptions in the CA 

framework on parameters in the CE model

In terms of the structural model, the assumptions that S(0) and T(1) are conditionally 

independent given S(1) and that S(1) and T(0) are conditionally independent given S(0) 

requires the following
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D. Baseline covariates

Under the structural model with covariates, the direct and indirect effects of the CE 

framework become: E[NDE(0)|X = x] = β1 + α0β4 + (β4ψ1 + ω2)x, E[NDE(1)|X = x] = β1 

+ β4(α0 + α1) + (β4(ψ1 + ψ2) + ω2) x, E[NIE(0)|X = x] = β2(α1 + ψ2x), E[NIE(1)|X = x] = 

(β2 + β4)(α1 + ψ2x), and E[TE|X = x] = (β2 + β4)α1 + α0β4 + β1 + ((β2 + β4)ψ2 + β4ψ1 + 

ω2) x. If there is no interaction effect of X and Z on S (ψ2 = 0), then the indirect effect will 

not be changed by the presence of baseline covariates. Under the assumption of sequential 

ignorability, estimates of the direct and indirect effects in the presence of a baseline 

covariate can be obtained non-parametrically by integrating over the distribution of X. The 

Prentice model in the presence of baseline confounders becomes: E[T|S,Z] = θ0 + θ1Z + θ2S 
+ θ3SZ + θ4X + θ5XZ, where θ1 and θ3 are as in Section 3.2 and 

 and 

. 

Therefore, if there are no unmeasured confounders, the Prentice criteria will be a valid 

measure of surrogacy (θ1 = θ3 = θ5 = 0) if there is no interaction effect of X and Z on either 

S or T (ω2 = ψ2 = 0) and additionally if either ψ1 or β4 is zero. In this case, the baseline 

covariate information aids in estimation and does not affect the ability to determine 

surrogacy. Under certain conditions, it is possible to relax the sequential ignorability 

assumption when baseline covariates are available. For example, when sequential 

ignorability cannot be assumed and baseline covariates are available for which E[S(1) | X] − 

E[S(0) | X] varies with X (i.e. ψ2 ≠ 0), and there is no interaction effect of either Z and S on 

T or of Z and X on T (i.e. β4 = ω2 = 0), Joffe and Greene [1] showed that a two-stage least 

squares procedure can be used to estimate the direct and indirect effects. Ten Have et al. [38] 

estimate the direct and indirect effects under the same conditions as Joffe and Greene [1] by 

assuming the following rank preserving model for T: T(z, s) = g(x) + γZz + γSs + ε and 

using a G-estimation procedure. Within the CA framework, if baseline covariates are 

present, the surrogacy quantities of interest become: 

. When there is no interaction of X and Z on either S or T (ψ2 = ω2 = 0), neither γ0 nor γ1 

are affected by the presence of baseline covariates. In this case, controlling for X is helpful 

in explaining some of the variance of the potential outcomes and does not affect the ability 

to estimate γ0 or γ1. When there is an interaction of X and Z on either S or T, γ1 is not 

affected but γ0 becomes a function of x: 
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. In this case, when 

there is no treatment effect on S, the expected treatment effect on T depends on the baseline 

covariate, implying that S may only be a valid principal surrogate for T within certain 

subgroups defined by X. In order for ACN to be met and S to be considered a valid principal 

surrogate, we would need to have γ0 = 0 for all X, requiring ∫x E[T(1) − T(0) | S(1) − S(0) = 

0,X = x]f(X | S(1) − S(0) = 0)dx be equal to zero, which is unlikely to hold. Therefore, in 

order for S to be considered a valid principal surrogate, there can be no interaction of the 

baseline covariate X with Z, so that both ψ2 and ω2 are equal to zero. In the CA framework, 

baseline covariates have also been used to aid in estimating the principal strata of S. For 

example, a model for f(S(1) | X,Z = 1) can be estimated using the surrogate response values 

in the Z = 1 arm and a model for f(S(0) | X,Z = 0) can be estimated using the surrogate 

response values in the Z = 0 arm. These models can then be used to impute missing S(1) 

values in patients in the Z = 0 arm and missing S(0) values in patients in the Z = 1 arm, 

respectively [15,16]. Implicit in this assumption is that [S(1) | X, S(0)] = [S(1) | X], requiring 

that ρs = 0, i.e. that either α2 = 0 or α2 + α3 = 0.
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Figure 1. 
Causal graph for the intervention (Z), the surrogate (S) and the final outcome (T) with an 

unmeasured confounder (U).
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Figure 2. 
CA model parameters for a range of plausible values from the assumed structural model.
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Figure 3. 
Correspondence between NDE and γ0 for a range of plausible values from the assumed 

structural model.
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Figure 4. 
Correspondence between CA surrogacy measures (γ0 and γ1) and CE surrogacy measures 

(PE(0)) for a range of plausible values from the assumed structural model.
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Figure 5. 
Correspondence between CA surrogacy measures (γ0 and γ1 shown on vertical axis) and CE 

surrogacy measure (PE(0) shown on horizontal axis) under assumptions made in the CA 

framework
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Figure 6. 
Correspondence between CA surrogacy measures (γ0 and γ1) and CE surrogacy measure 

(PE(0)) under assumptions made in the CE framework
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Table 1

Expressions for direct, indirect and average causal effects

E[NDE(0)]: E[T(1, S(0)) − T(0, S(0))] = β1 + α0β4

E[NDE(1)]: E[T(1, S(1)) − T(0, S(1))] = β1 + β4(α0 + α1)

E[NIE(0)]: E[T(0, S(1)) − T(0, S(0))] = α1β2

E[NIE(1)]: E[T(1, S(1)) − T(1, S(0))] = α1(β2 + β4)

E[TE]: E[T(1, S(1)) − T(0, S(0))] = β1 + β2α1 + β4(α0 + α1)
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Table 2

Consequence of the sequential ignorability and no interaction assumptions on parameters within the CA 

framework.

Assumption

1. α2 = α3 = 0 2. β3 = β5 = 0

No unmeasured confounders for S No unmeasured confounders for T

ρs 0

ρ00

ρ01 0

ρ10 0

ρ11

ρt

γ0

γ1

Assumption

3. β4 = α2 = α3 = 0 4. β4 = β3 = β5 = 0

No interaction, no unmeasured confounders for S No interaction, no unmeasured confounders for T

ρs 0

ρ00

ρ01 0

ρ10 0

ρ11
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Assumption

1. α2 = α3 = 0 2. β3 = β5 = 0

No unmeasured confounders for S No unmeasured confounders for T

ρt

γ0 β1 β1

γ1 β2 β2
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