Skip to main content
. 2017 Aug 3;8(11):7521–7527. doi: 10.1039/c7sc02622f

Fig. 6. Implications of the GriE crystal structures on the reaction mechanism. (A) Active site as observed in the crystal structure of the substrate complex. O2 would bind to the vacant coordination site (purple arrow). After the decarboxylation of α-ketoglutarate, the reactive oxygen intermediate (O) would abstract a hydrogen atom from the nearest methyl group of l-leucine (red arrow), leading to (2S,4R)-5-hydroxyleucine (see also Fig. S9 and S10). (B) Reaction scheme derived from the crystal structures of the GriE ligand complexes. Starting with the state corresponding to the Co2+/substrate-containing crystal structure (highlighted in blue), dioxygen can bind to the vacant coordination site trans to His110 and perform a nucleophilic attack on the carbonyl group of α-ketoglutarate, forming a Fe(iv)-peroxy-hemiketal transition state. In order to react with the substrate, the reactive oxygen species has to swap its position with CO2 during the subsequent decarboxylation step. Alternatively, CO2 might already have left the active site and been replaced by a water molecule (not shown). The oxo-ferryl intermediate abstracts a hydrogen from the closest Cδ methyl group of l-leucine, leaving a radical at the substrate which then reacts with the hydroxyl group of the Fe(iii)-hydroxo species. The state with the reaction products succinate and (2S,4R)-5-hydroxyleucine still bound to the metal, but CO2 being replaced by a water molecule, corresponds to the crystal structure of the Mn2+/product complex (highlighted in red).

Fig. 6