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ABSTRACT Admixed populations result from recent admixture of two or more ancestral populations with divergent allele frequencies.
The genome of each admixed individual is a mosaic of haplotypes inherited from the ancestral populations. Despite the substantial work
to assess power and sample size requirements for association mapping in genetically homogeneous populations of European ancestry,
power and sample size estimation methods for mapping genes in genetically heterogeneous admixed populations such as African
Americans are lacking. Admixture mapping is a method that traces the ancestral origin of disease-susceptibility genetic loci in the admixed
population. We developed AdmixPower, a freely available tool set based on the open-source R software, to perform power and sample
size analysis for genetically heterogeneous admixed populations considering continuous or dichotomous outcomes with a case-only or
case-control study design. AdmixPower can be used to compute the sample size required to achieve investigator-specified statistical
power under several key parameters including ancestry odds ratio, genotype risk ratio, parental risk ratio, an underlying genetic risk
model, trait type, and admixture model (hybrid-isolation or continuous gene flow model). We demonstrate that differences in the key
parameters in the admixed population results in substantial differences in the sample size required to achieve adequate power in
admixture mapping studies. Our tool provides a resource for researchers to develop a strategy to minimize cost and maximize the success
of identifying disease-susceptibility loci in an admixed population. R code used in the sample size and power analysis is freely available
from https://research.cchmc.org/mershalab/Tools.html.
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ADMIXEDpopulations are the result of gene flowbetween
distinct, historically divergent, parental populations,

such as those fromdifferent continents like Africa andEurope.
The rate, extent, and timing of gene flow between genetically
distinct populations have resulted in unique genetic complex-
ity in almost all populations in theUnitedStates (Li et al.2008;
Baye and Wilke 2010). Understanding the genetic structure
of admixed populations is not only important to reconstruct
human evolutionary history, but also has implications for the
study of disease risk (Hellenthal et al. 2014). However, re-

search into the link between ancestry and disease risk in an
admixed population is sparse and lacks rigorous statistical
methods. For example, sample size and statistical power
analysis in gene mapping studies are well developed and
successfully applied for genetically homogeneous samples
of European ancestry (Purcell et al. 2003; Skol et al. 2006;
Feng et al. 2011). However, these methods are not applicable
for mapping susceptibility loci in admixed populations such
as African Americans and Latinos. Admixed populations are
not ancestrally homogeneous but rather ancestrally hetero-
geneous with ancestry from more than one parental popula-
tion (Rosenberg et al. 2002; Mersha 2015). In European
ancestry populations, the underlying hypothesis is homoge-
neity in ancestry background. However, the general hypoth-
esis to map susceptibility loci for samples of admixed
individuals is that the disease-causing genetic variants are
transmitted to the admixed population in higher proportion
from the ancestral population with the higher rate of disease
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prevalence. The genetics underlying human disease pheno-
type variation in admixed populations has been underre-
searched. Understanding the role of ancestry in disease risk
in an admixed sample could help to identify novel “ancestry-
related disease risk” in the most vulnerable populations.

Admixture mapping methods are used to investigate the
association between a phenotype and the ancestry of alleles at
a marker locus by comparing the observed proportion of
alleles at a marker locus from the high-risk population to
the expected proportion in the admixed population. A signif-
icant difference in the observed and expected proportion of
ancestrywould suggest anassociationbetween thephenotype
and the ancestry origin (Mersha 2015). Calculating statistical
power in an admixed population for admixture mapping
studies is a complicated process that requires the researcher
to specify several factors including (a) risk allele frequency
differences between ancestral populations, (b) disease prev-
alence (penetrance) differences between ancestral popula-
tions, (c) parental risk ratio, (d) admixture proportion, (e)
mode of inheritance, (f) number of generations since the
admixture, (g) recombination rate between the disease locus
and the candidate marker, (h) study design (case-only or
case-control design), and (i) admixture process [hybrid iso-
lation (HI) or continuous gene flow (CGF)]. In this article, we
describe a freely available tool set, AdmixPower, for power
and sample size analysis of admixed populations to conduct
admixture mapping. AdmixPower computes (a) the power of
an admixture mapping study given the population parame-
ters and study sample size, and (b) the sample size required
for a study design to achieve investigator-specified power to
map risk loci using admixture mapping.

In implementing AdmixPower, the trait under study can be
either dichotomous or quantitative. For a dichotomous trait,
there could be a case-only or case-control study design with
additive, multiplicative, recessive, or dominant genetic mod-
els. Also, the admixture process can be described as a HI
model or a CGF model (Pfaff et al. 2001; Rosenberg and
Nordborg 2006). For the HI model, AdmixPower performs
the power and sample size analysis based on the analytical
approach proposed by both Montana and Pritchard (2004)
and Zhu et al. (2004). For a CGF model, a similar analysis is
conducted using the Zhu et al. (2004) approach. Under the
model of Montana and Pritchard (2004), the power analysis
is performed for both case-only and case-control designs us-
ing the multiplicative mode of inheritance. The power anal-
ysis using the Zhu et al. (2004) approach is also carried out
under additive, multiplicative, recessive, and dominant ge-
netic models for both case-only and case-control study de-
signs. For quantitative traits, we developed a linear regression
framework modeling the genetic effect as additive and the
nonadditive effects as covariates. Even though power and sam-
ple size analysis to test associations usingmultiple regression is
well established in genetically homogeneous populations, to
our best knowledge, this is the first tool set developed for
estimating power and sample size for quantitative traits in
admixed populations.

In the Analytical Theory section, we first define study designs
for dichotomous and quantitative traits followed by the mathe-
matical derivation of power and sample size analysis for Admix-
Power. AdmixPower is implemented in the R program. In the
Program availability and implementation section, we describe
different functions developed in AdmixPower and investigate
the relationship between power, sample size, and various pop-
ulation-specific parameters and risk factors. Our goal is to pro-
vide a resource tool for the analysis of power and sample size for
both dichotomous and quantitative traits under various genetic
model assumptions and disease prevalence in the parental pop-
ulations, admixture proportion, as well as for the presence of
polymorphic markers between ancestral populations.

Analytical Theory

Admixed population: dichotomous phenotype

Suppose we have an admixed population resulting from an
admixture of two ancestral populations X and Y, where the
proportion of genome from population X in the admixed pop-
ulation is u: Suppose there are Mmarkers genotyped in n1 cases
and n2 controls in the study samples. The objective here is to find
markers with a significantly higher-than-average proportion of
risk alleles from ancestral population X with higher disease risk.
This can be done through one of two study designs: (i) case-
only study design, and (ii) case-control study design.

Case-only design: In a case-only study design, the observed
ancestry proportion at a marker locus is compared with the
genome-wide averageancestry across thegenome.Theunit of
observation is a single gamete. LetPdð jÞ be the proportion of
the alleles from the ancestral population X among cases at
marker locus j. If Pd0 is the average ancestry across the ge-
nome in cases, then the null hypothesis is Pdð jÞ ¼ Pd0:

If bPdð jÞ is the estimate of Pdð jÞ; the test statistic for the
case-only design is:

T ¼
bPdð jÞ2Pd0

s½bPdð jÞ�
: (1)

Under the null hypothesis, T has a central t-distribution,
which can be approximated by the normal distribution N(0,
1), when the sample size is large.

Case-control design: In a case-control study design, the an-
cestry proportions at a marker locus in cases and controls are
compared. The unit of observation is a single individual. Let
PdðjÞ and PcðjÞ be the proportion of the alleles from the an-
cestral population X among cases and controls at a marker
locus j, respectively. Let Pd0 and Pc0 be the average ancestry
across genome in cases and control, then the null hypothesis is

Pdð jÞ �Pd0 ¼ Pcð jÞ �Pc0: (2)

Let bPdð jÞ and bPcð jÞ be the estimates of Pdð jÞand PcðjÞ; the
test statistics for a case-control study design based on (2) is
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Tð jÞ¼ ½bPcð jÞ2Pc0�2 ½bPdð jÞ2Pd0�
sð½bPcð jÞ2Pc0�2 ½bPdð jÞ2Pd0�Þ

:

Similar to the situation of the case-only design, TðjÞ can be
approximated with the standard normal distribution N(0, 1)
when the sample size is large.

In practice, we compute the estimates of admixture from
the sample data (Zhu 2012). Let xdij and xcij be the proportion
of alleles from the ancestral X for the i-th individual at marker
j in cases and controls, respectively, then

bPdð jÞ ¼
1
n1

Xn1

i

xdij ;

bPd0 ¼ 1
Mn1

XM
j¼1

Xn1

i¼1

xdij;

bPcð jÞ ¼ 1
n2

Xn2

i¼1

xcij;

bPc0 ¼ 1
Mn2

XM
j¼1

Xn2

i¼1

xdij;

s2½bPdð jÞ� ¼
1
M

XM
j

�bP
d
ð jÞ2bPd0

�2
;

and

s2ð½bP dð jÞ2Pd0�2 ½bPcð jÞ2Pc0�Þ

¼ 1
M

XM
j¼1

½ðbPcð jÞ2bPdð jÞÞ2ðbPc02bPd0Þ�2;

where bPd0 and bPc0 are the estimate of the genome-wide
average ancestry for cases and controls, respectively.

We have defined the test statistics for the case-only and case-
control study design and provided a general approach of comput-
ingtheteststatisticsbasedonsampledataundertheassumptionof
constant genome-wide average ancestry for cases and controls.

Admixed population: quantitative phenotype

For mapping quantitative traits in admixed population via an
admixturemapping framework, investigatorsmap the association
of quantitative traits with the excess ancestry from a high-risk
populationataputative locus in theadmixedgenome.Letvi be the
phenotype measurement and ui be the proportion of alleles from
population X of the i-th individual at the marker locus. Also, let u
be the admixture proportion of population X in the admixed pop-
ulation. The difference ui ¼ ui 2 u measures the excess ancestry
at the locus for the i-th individual. A linear regression model can
be used for finding the association between vi and ui as follows:

vi ¼ a0 þ a1ui þ zWi þ ei; (3)

whereWi is a vector of the covariates, a0is the intercept, a1is
the coefficient of ancestry effect, z is a vector of covariates
effect, and ei � Nð0;s2

e Þ is the residual. Such covariates may
include age, gender, age of disease onset, medication status,
average ancestry of the individual, and other clinical geno-
types and environmental exposure factors. A significant a1

indicates a possible association between the phenotype and
the ancestry. To assess the association between the pheno-
type and the excess ancestry, we will conduct a hypothesis
test of a1 ¼ 0 vs. a1 6¼ 0:

Power and sample size analysis for admixed population:
dichotomous phenotype

For a two-way admixed population with a dichotomous phe-
notype, the ancestry proportion of alleles at genomic loci can
be modeled as a binomial distribution. The power analysis to
localize loci in an admixed population via a case-only study or
a case-control study can be done following the one-sample or
two-sample proportion tests for binomially distributed ran-
dom variables, respectively.

Let bPdð jÞ and bPcð jÞ be the estimate of the proportion of
alleles at marker j from the ancestry population X in n1cases
and n2 controls. Also, we assume that all individuals (cases
and controls) have the average ancestry across the genome
from the ancestry population X with constant P0: Also, we
assume that the true ancestry information at each marker
locus is known. Under these assumptions, we derive the
power and sample sizes for the case-only and case-control
study designs as described below. As noted in Montana and
Pritchard (2004), these theoretical assumptions do not meet
in practice and the calculation results in the upper limit of the
power achieved in practice.

Case-only study design: test statistics: The case-only design
compares the locus-specific ancestry proportion, Pdð jÞ; at a
marker j to the average ancestry proportion P0: Then, the
null and alternate hypotheses are:

H0 : Pdð jÞ2P0 ¼ 0 vs: H1 : Pdð jÞ2P0 6¼ 0:

The test statistics for the case-only design is

T ¼
bPdð jÞ2P0ffiffiffiffiffiffi

V0
p ; where  V0 ¼ s2½bPdð jÞ� ¼ Poð12P0Þ

2n1
:

Under the null hypothesis, the test statistics T follows a cen-
tral t-distribution, which can be approximated asN(0, 1) for a
large n1:

If P1 is the ancestry from the population X in cases under
a disease model at the marker j, then under the alternate
hypothesis:

EðTjH1Þ ¼ P1 2P0ffiffiffiffiffiffi
V0

p and VðTjH1Þ ¼ V1

¼ 1
V0

�
P1ð12P1Þ

2n1

�
¼ P1ð12P1Þ

P0ð12P0Þ:
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Let a be the type-I error rate after the adjustment for multiple
testing. For example, using a Bonferroni adjustment to main-
tain the nominal level of a 5% type-I error rate for testing
M independent markers (such as ancestry informative
markers), a ¼ 0:05=M:

Letb be the type-II error rate of the test. Then, the power is
the probability 12b of flagging a true effect as statistically
significant (i.e., probability of correctly rejecting the null hy-
pothesis). These analyses are usually performed by fixing
power at a desired level (usually 80–90%) and estimating
the sample size required for a given effect size and signifi-
cance level with the test to be used.

If Za is the ð12aÞ100 percentile from the standard normal
variable, the power ð12bÞ for a one-sided test is given by:

12b ¼ PðT. ZajH1Þ

¼ P
�
T2 jEðTjH1Þjffiffiffiffiffiffi

V1
p .

Za 2 jEðTjH1Þjffiffiffiffiffiffi
V1

p
�

¼ P

0@Z.
Za2

��P12P0
��ffiffiffiffiffiffi

V0
pffiffiffiffiffiffi
V1

p
1A

¼ P
�
Z.

ffiffiffiffiffiffi
V0

p
Za 2 jP1 2P0jffiffiffiffiffiffiffiffiffiffiffi

V0V1
p

�
: (4a)

The sample size, n1; to achieve this power can be calculated

by solving z12b ¼
ffiffiffiffiffi
V0

p
Za 2 ðP1 2P0Þffiffiffiffiffiffiffiffiffiffi

V0V1
p for n1 which, after

some algebra, is

n1 ¼ 1
2

"
zb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P1ð12P1Þ

p þ za
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Poð12P0Þ

p
P12P0

#2
: (4b)

For a two-sided test, the power or the sample size to achieve
the power 12b can be obtained by replacing za with za=2 in
(4a) or (4b), respectively.

Case-control study design: test statistics: In a case-control
study design,we compare the locus-specific excess ancestry in
cases and control. The case-control test statistics is based on
the assumption that, at a disease-susceptibility locus, there is
excess transmissionofalleles fromtheriskpopulation in thecase,
but not in the control. Under the assumption of constant average
ancestry across all individuals in the cases and controls, the null
and alternate hypotheses of the case-control study design are:

H0 :Pdð jÞ �P0 ¼ Pcð jÞ �P0 vs: H1 : Pdð jÞ
�P0 6¼ Pcð jÞ �P0:

The test statistics is given as:

T ¼ ½bPdð jÞ2P0�2 ½bPcð jÞ2P0�ffiffiffiffiffiffi
V0

p ¼
bPdð jÞ2 bPcð jÞffiffiffiffiffiffi

V0
p ;

where

V0 ¼ Var½bPdð jÞ2 bPcð jÞ� ¼ P0ð12P0Þ
2n1

þP0ð12P0Þ
2n2

:

Under the null hypothesis, T can be approximated as N(0, 1)
when the sample sizes are large.

IfP1is the ancestry from the population X in cases under a
disease model at the marker j, then under the alternate
hypothesis:

EðTjH1Þ ¼ ðP1 2P0Þffiffiffiffiffiffi
V0

p and VðTjH1Þ ¼ V1

¼ 1
V0

�
P1ð12P1Þ

2n1
þP0ð12P0Þ

2n2

�
:

Let a be the type-I and b be the type-II error rate. For a one-
sided test, the power ð12bÞ is given by

12b ¼ PðT.ZajH1Þ

¼ P
�
T2 jEðTjH1Þjffiffiffiffiffiffi

V1
p .

Za 2 jEðTjH1Þjffiffiffiffiffiffi
V1

p
�

¼ P
�
Z.

ffiffiffiffiffiffi
V0

p
Za 2 jP1 2P0jffiffiffiffiffiffiffiffiffiffiffi

V0V1
p

�
:

(5a)

For sample size computation, we assume n1 ¼ n2 ¼ n: Then,
by solving z12b ¼ ½ ffiffiffiffiffi

V0
p

Za 2 ðP1 2P0Þ�=
ffiffiffiffiffiffiffiffiffiffi
V0V1

p
for n, we

have:

n¼1
2

"
zb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P1ð12P1Þ þP0ð12P0Þ

p þ za
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2P0ð12P0Þ

p
P12P0

#2
:

(5b)

For a two-sided test, thepowerand sample sizes are computed
by replacing Zawith Za=2 in (5a) and (5b), respectively.

Power and sample size analysis for admixed population:
quantitative phenotype

The test statistics for quantitative traitmapping is basedon the
linear regression model (3), i.e., vi ¼ a0 þ a1ui þ zWi þ ei;

with or without covariates. In either case, we will be testing
H0: a1 ¼ 0 against H1: a1 6¼ 0:

Let â1 be an estimate of the slope (a1) of the model (3).
Under the null hypothesis, the distribution of â1 is the cen-
tral t-distribution with the degree of freedom = n - k, where
n is the sample size and k is the number of parameters
estimated in the regression model. It is not unrealistic in
current times to consider that the sample size of a typical
quantitative trait study will be a few hundreds and the num-
ber of covariates will be very low relative to n. As we collect
more samples and generate more genomic information from
the admixed population, we will have the sample size (n)
large enough that we can approximate the t-distribution
with the standard normal distribution N(0, 1). That is, un-
der the null hypothesis,
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T ¼ â1

SEðâ1Þ;

where SEðâ1Þ is the SE of â1;which is approximately Nð0; 1Þ:
For the type-I error rate a (adjusted for the multiple test-

ing) and the type-II error rate b; the power of the test for the
one-sided test is:

12b ¼ Pðt. zajH1Þ ¼ P
�

â1

SEðâ1Þ. zajH1

�
¼ P

�
â12a1

SEðâ1Þ . za 2
a1

SEðâ1Þ
����H1

�
:

So, we have

12b ¼ P
�
Z. za2

a1

SEðâ1Þ
�
: (6)

Here, SEðâ1Þ will be estimated as SEðâ1Þ ¼ s

su
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nð12 r2uÞ

p ;

where s = SE of model, su = SD of the variable u; and
r2u = multiple R2 from the linear model regressing u against
the rest of the covariates in the model. The sample size re-
quired to achieve the power 12b can be derived as:

n ¼ s2�za þ zb
	2

a2
1s

2
u
�
12 r2u

	: (7)

For a simple linear model, we also have the relation
s2 ¼ s2

v 2a2
1s

2
u: If r

2 is the proportion of the variation of
phenotype explained by the ancestry at the marker locus,

then a2
1 ¼ r2s

2
v

s2
u
: Using these relations, the power and sample

size calculation for a simple linear model can be written as:

12b ¼ P

0B@Z. za 2
a1su

ffiffiffi
n

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
v 2a2

1s
2
u

q
1CA

¼ P

0@Z. za 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
nr2

12 r2

r 1A: (8)

n ¼ �
za þ zb

	2�s2
v 2a2

1s
2
u
	

a2
1s

2
u

¼ �
za þ zb

	2 12 r2

r2
: (9)

For a two-sided test, za=2 will be used instead of za in the
Equations 6–9.

To estimate the power and sample size in quantitative trait
mapping, wemust have the prior knowledge ofs2;s2

u; r
2
u; and

the value of a1 under the alternate hypothesis. This informa-
tion may be obtained from similar published studies or by
analyzing preliminary data. If there is no covariate in the
model, then we will have r2u ¼ 0 in (6) and (7).

For dichotomous traits, the power and sample size calcu-
lations in (4a, b) and (5a, b) depends on the parameters P0

and P1; the proportion of ancestry from the population X

under the null and alternate model, respectively. The estima-
tion of P0 and P1depend on several parameters such as the
risk allele frequencies in both populations X and Y, number of
generations since admixture, population admixture rate, ad-
mixture process, mode of disease inheritance, ancestry odds
ratio, genotype risk ratio, and the parental risk ratio. In
AdmixPower, we implement different approaches of estimat-
ing P0 and P1 for a two-way admixture of ancestry popula-
tion X and Y, with u being the ancestry proportion from the
population X.

In the next section, we describe three different approaches
of estimating P0 and P1 : (i) using the genotype risk ratio as
proposed by Montana and Pritchard (2004), (ii) using the
parental risk ratio as described by Zhu et al. (2004), and
(iii) using the ancestry odds ratio. Investigators can choose
the approach that is best suited for their own research specific
parameters (see Supplemental Material, File S1 II: Practical
examples).

Estimation of the parental allele frequency proportion
(P0 and P1) from the admixed population

Methods by Montana and Pritchard: The “ancestry associ-
ation” methods of Montana and Pritchard (2004) compare
the observed locus-specific ancestry proportion to the popu-
lation admixture rate u: The proportion of alleles from pop-
ulation X at disease locus in cases is u1:

Let px and py be the allele frequencies of the risk allele, say
allele “1,” in the ancestry population X and Y, respectively.
For a multiplicative mode of inheritance with the genotype
risk ratio l; the alternate u1 is computed as follows:

u1 ¼ u
1þ pxðl2 1Þ
1þ �pðl2 1Þ ;

where �p ¼ pxuþ pyð12 uÞ is the combined frequency of the
risk allele.

We can perform the power and sample size analysis for
case-only and case-control studydesigns for themultiplicative
mode under the HI model based on the ancestry association
methods of Montana and Pritchard (2004) by using the esti-
mates P0 ¼ u and P1 ¼ u1 in Equations 4a and 4b for case-
only, and 5a and 5b for case-control designs.

These formulas assume that the ancestry of individuals is
known with certainty. In real practice, we need to infer the
ancestry origin of the individuals, so thepower computedusing
the formulas are theupper bound, and the sample size required
to achieve a specified power represents the lower bound.

Methods by Zhu et al.: Zhu et al. (2004) analytically estab-
lished the admixture proportionPðrÞ at a marker locus in an
admixed population as a function of the recombination frac-
tion r between the marker locus, the disease locus, and the
number of generations since admixture g under two different
admixture mapping processes (HI and CGF) and four differ-
ent modes of inheritance (multiplicative, additive, recessive,
and dominant). However, the authors only describe the case-
only design. We extend the approach to a case-control study
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by assuming the control population is equivalent to the null
population with no linkage. We only report the formulas for
the multiplicative mode for both HI and CGF models. For
more details of the mathematical computation, we refer to
Zhu et al. (2004).

Let px and pybe the allele frequencies of allele 1 at a dis-
ease locus in the population X and Y, respectively. Also, let
f0 ¼ Pðcasej00Þ; f1 ¼ Pðcasej01Þ; and f2 ¼ Pðcasej11Þ be
the penetrances of the disease genotype 00, 01, and
11 (0 = nonrisk allele and 1 = disease risk allele). Then,
the parental risk ratio of the parental population X to Y is
r ¼ ðf2p2x þ 2f1pxqx þ f0q2xÞ=ðf2p2y þ 2f1pyqy þ f0q2yÞ:

In practice, thepenetrance functionsmaynot be accessible.
However, we can easily find the disease prevalence rate in
the ancestry population X and Y. Then, the parental risk
ratio can be alternately defined as r ¼ kx=ky: Note that
f2p2x þ 2f1pxqx þ f0q2x ¼ kx and f2p2y þ 2f1pyqy þ f0q2y ¼ ky
represent the disease prevalence in populations X and Y,
respectively.

For the HI process with the multiplicative mode
ðf2 ¼ lf1 ¼ l2f0Þ;where l is the genotype risk ratio (constant
for both populations), the proportion of the ancestry from the
population X after g generation of admixture is

PdðrjHI;mulÞ ¼ 22g

2
þ ð22 g22rÞgð12rÞg22

2
*

ffiffi
r

p
21

ð22gÞ ffiffi
r

p þ g
;

where g ¼ 2ð12 uÞ and “mul” indicates the multiplicative
mode.

For the case-only design, r ¼ 0:5 under the null hypothesis
and 0# r, 0:5 under the alternate hypothesis. So, the power
and the sample size for the case-only design for the multiplica-
tivemode under the HI process of admixture can be obtained by
using P0 ¼ Pdð0:5j HI;mulÞ and P1 ¼ PdðrjHI;mulÞ for
some nonzero r; in the Equations 4a and 4b.

Extending the case-only approach of Zhu et al. (2004) to a
case-control study design, we consider the control population as
an equivalent of a no linkage model. We extend the case-only
design to the case-control design by considering r ¼ 0:5 for the
control sample under both null and alternate hypotheses. Then,
we perform the power and sample size analysis of the case-
control study design for the multiplicative mode under the HI
process by usingP0 ¼ Pdð0:5jHI;mulÞ ¼ Pcð0:5jHI;mulÞ and
P1 ¼ PdðrjHI;mulÞ for somenonzero r in Equations 5a and5b.

In the CGF model, there will be a continuous contribution
from the population Y in the admixed population. If the
proportion of alleles contributed per generation by the pop-
ulation Y is ðg=2Þ in the admixed population, then in the g
generation, the contribution from the population X is given as
u ¼ ð12g=2Þgor g ¼ 2ð12 u1=gÞ: For the multiplicative mode
of inheritance, the proportion of the allele from the popula-
tion X after g generation of admixture is

PdðrjCGF; mulÞ

¼
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	 :

Hence, we can perform the power and sample size analysis for the
case-onlyandcase-controlstudydesignsforthemultiplicativemode
under the CGF process by usingP0 ¼ Pdð0:5j CGF; mulÞ and
P1 ¼ PdðrjCGF; mulÞ for some nonzero r in the Equations 4a
and 4b or 5a and 5b.

Estimation of ancestry proportion based on ancestry odds
ratio: For a two-way admixture between the populations X
and Y, with u being the admixture proportion from the high-
risk population X, the ancestral odds ratio per one copy of the
allele from X is defined as

h ¼ u1
12 u1

�
u

12 u
;

where h ¼ the  ancestral  odds  ratio  per  one  copy  of   allele  from
  X; u1 ¼ ancestry proportion in cases, and u=ancestry proportion
in control. So, for a given ancestral odds ratio (h) and the
admixture proportion (u), we can estimate u1 as below:

u1 ¼ hu

12 uþ hu
: (10)

The ancestry proportion u in the control is equivalent to the
admixture proportion under the null. We can perform the
power and sample size analysis for the case-control study
design for the multiplicative mode under the HI process by
using P0 ¼ u and P1 ¼ u1 in (5a, b) with u1 computed for
some h 6¼ 1 in (10).

Figure 1 Power as a function of sample size for different genotype risk ratios.
The graphs show the power as a function of sample size for case-control study
design assuming multiplicative mode of inheritance with genotype risk ratio (l) =
3, 2.5, and 2, respectively. Power is computed using the function Power-
DiscreteGRR() with the admixture proportion u = 0.8, risk allele frequen-
cies px ¼ 0:1 and py ¼ 0:4 for a one-sided test, and adjusted type-I error
rate = 0.000025. GRR, genotype risk ratio.
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Program availability and implementation

AdmixPower is implemented in theRprogramming language. The
program source code and some examples are available at https://
research.cchmc.org/mershalab/Tools.html. For a dichotomous
(or discrete) phenotype, three pairs of functions (within each pair
one function to compute the power and the other function to
compute sample size) are developed: (i) PowerDiscreteGRR()
and SampleDiscreteGRR() based on Montana and Pritchard
(2004), (ii) PowerDiscretePRR() and SampleDiscretePRR()
based on Zhu et al. (2004), and (iii) SampleDiscreteAOR()
and SampleDiscreteAOR() bases on the ancestry odds ratio-based

approach(fordetails see theAnalyticalTheory section).Thesemeth-
ods use a slightly different set of population-specific parameters in
the estimation of the ancestry proportion under the null and alter-
nate hypothesis. The output from functions SampleDiscreteGRR(),
SampleDiscretePRR(), and SampleDiscreteAOR() are the minimum
number of cases required to achieve the desired power of the test in
the case-only study design. For the case-control study design, the
output is the total of cases and controls required to achieve the
desired power, assuming an equal number of cases and controls.

Foraquantitative trait, twopairof functionsaredeveloped for
the power and sample size analysis: (i) PowerQTraitCoeff() and
SampleQTraitCoeff(), based on the Wald test for a regression
coefficient in the linear regression framework as defined by
Equations 6 and 7, respectively; and (ii) PowerQTraitRSquare
() and SampleQTraitRSquare(), based on the percentage of the
explained variation of the phenotype (r2) as defined by Equa-
tions 8 and 9, respectively.

Details of the AdmixPower functions and their arguments are
provided in File S1 (I: AdmixPower functions and arguments).
Based on the available set of parameters, we can choose different
AdmixPower functions to carry out the power and sample size
analysis for dichotomous and quantitative traits. Examples of
power and sample size analysis for admixed populations using
AdmixPower are provided in File S1 (II: Practical examples). TheR
code used to graphically describe the relationship of power, sam-
ple size, different population-specific risk factors, and model pa-
rameters by applying appropriate functions implemented in
AdmixPower are provided in File S1 (III: R code for figures).

Effect of sample size on power for different genotype
risk ratios

In planning a genetic association study, it is critical to de-
termine the sample size required to detect susceptibility loci

Figure 3 Sample size as a function
of number of generations since the
admixture for CGF (A and B) and HI
(C and D) processes of admixture.
Sample size is computed for the dif-
ferent parental risk ratios (r = 2, 3, 4,
and 5) to achieve 80% power with
genome-wide level of significance
0.001 under the multiplicative (A
and C) and additive (B and D) mode
of inheritance. The computation is
done using the function SampleDis-
cretePRR() with the recombination
rate of 0.05 and the admixture pro-
portion 0.80.

Figure 2 Sample size as a function of allele frequency of the risk allele in
population X. The graph shows the number of individuals in case sample
to detect the allele frequency difference of 0.3 between the ancestry
populations for different value of px : (A) The graph with py ¼ px 20:3 (that
is, population X is the high-risk population) with px varying from 0.35 to 0.45.
(B) The graph with py ¼ px þ 0:3 (that is, the population Y is the high-risk
population). Sample size is computed using the function SampleDiscreteGRR()
with the admixture proportion admixture proportion = 0.8, the genotype risk
ratio (l) = 2, multiplicative mode of inheritance, and the two-sided test with
adjusted type-I error rate = 0.000025 and type-II error rate = 0.2.
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with sufficient power. Figure 1 shows the power as a function
of sample size in a case-control admixed sample study design
for different genotype risk ratios (l ¼ 2; 2:5; and 3), assum-
ing equal case and control samples. A larger sample size is
required to have adequate power if the genotype risk ratio in
the admixed population is low.

Sample size as a function of allele frequency of the risk
allele in admixed population

Figure 2 shows the total number of samples required to de-
tect an allele frequency difference of 0.3 between ancestral
populations and with power 0.8, assuming equal sizes for the
case and control in the case-control study design. We con-
sider a two-way admixture of two ancestral populations X
and Y with u = 0.8 as the average contribution from the
population X. When population X is the high-risk population,
we will then have px . py (Figure 2A, disease locus is mapped
to the higher proportion of admixed ancestry). On the other

hand, if the population Y is the high-risk population, we will
have py . px (Figure 2B, disease locus is mapped to the lower
admixture proportion in the admixed sample). To map the
disease locus that occurs in the ancestral population of the
lowest admixture proportion, we need to ascertain large
numbers of samples (Figure 2).

Sample size as a function of number of generations
since admixture and parental risk ratio

Recently admixed populations have larger chromosomal re-
gions, due to the shorter period of time for breaking up the
linkage disequilibrium created as a result of admixture, than
populations which are admixed for longer generations. We
expect admixture mapping to have a lower power for detect-
ing the ancestry–phenotype association from populations
with a relatively longer time since admixture, due to shorter
linkage disequilibrium, than recently admixed populations
(Smith and O’Brien 2005).

Figure 5 Sample size as a function
of a1: Sample size is computed for
0:5#a1 #3 with 80% power and
type-I error rate 0.00025. (A) The
sample size when there is a small
correlation between the ancestry
and other covariates (r2u ¼ 0:2). (B)
The sample size when the ancestry
is independent of the covariates
(r2u ¼ 0).

Figure 4 Power as a function of admixture pro-
portion and ancestry odds ratio. Power is calcu-
lated for different ancestry odds ratio (h = 1.2–
1.5 by 0.05) for case-control study design with
1000 cases and 1000 controls. Computation is
done using the function PowerDiscreteAOR()
with adjusted type-I error rate 0.00025.
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Figure 3 shows the sample size as a function of the num-
bers of generations since admixture to achieve a power of 80%
for the case-only study design with different parental risk ratios.
The graph suggests that the sample size required for detecting
the ancestry-linked marker increases with an increased number
of generations since admixture. As the generations of admixture
increases, recombination events break down the region of link-
age disequilibrium (due to admixture), causing decay in the
linkage between the marker locus and the disease locus and,
hence, reducing the power of admixture mapping. For the HI
model, the sample size increases at a much faster rate than that
for the CGF model. This is because, under the CGF admixture
process, steady inflow of recently admixed genome slows down
the breakdown of linkage disequilibrium due to admixture,
whereas in the HI process no such event occurs.

Power as a function of the odds ratio and
admixture proportion

The ancestry odds ratio is a commonly used parameter in the
study of the admixed population. Figure 4 shows the power as
the function of the admixture proportion for different ances-
try odds ratios. The power is higher for the admixed popula-
tion when the ancestry proportion is in the interval 0.4–0.5.
This result suggests that the highest power achieved for the
admixture proportion (u) will be slightly ,0.5. A higher an-
cestry odds ratio yields higher power. When the ancestry
odds ratio is 1.5, the power of admixture mapping is close
to 1 for the ancestry proportion in the range of 0.3–0.7.

Sample size as a function of the slope of the linear
regression model for the quantitative trait

Formapping quantitative traits in an admixed population, we
are interested in estimating the regression coefficient a1 from
the model (3). Figure 5 shows the sample size required for
detecting the phenotype–ancestry association with 80%
power for 0:5#a1 # 3 with and without a correlation (ru)
between the ancestry and covariates. A larger sample size is
required when the ancestry is correlated with the covariates
rather than when the ancestry and covariates are indepen-
dent. This is because the covariates explain some parts of the
association and hence reduce the explanatory power of the
ancestry. For a simple regression model without covariates,
the power can be calculated by assuming ru ¼ 0:

Sample size as a function of the percentage of explained
variation of phenotype

For a simple linear model without covariates, testing for a1is
equivalent to testing for correlation r between the phenotype
and the ancestry, or testing for r2 (the proportion of variance
of phenotype explained by the ancestry). Figure 6 shows the
sample size as a function of r2: In this figure, assuming
0:002# r2 # 0:01 for a single marker, a small r2 is expected.

Data availability

AdmixPower is implemented in the R programming language
and the program source code and some examples are available

at https://research.cchmc.org/mershalab/Tools.html. Supple-
mental materials include the text in File S1 which describes
functions, the arguments, practical examples, and R code for
Figure 1, Figure 2, Figure 3, Figure 4, Figure 5, and Figure 6.

Discussion

Over thepastdecade, genome-wideassociation studiesusing
single nucleotide polymorphism markers have been highly
successful in the study of complex diseases, with power
analysis aided by software packages such as Genetic Power
Calculator (Purcell et al. 2003) and CaTS (Skol et al. 2006).
Currently, there is growing interest in detecting complex
trait-associated variants in admixed populations using ad-
mixture mapping. Due to disease prevalence and genome
variation among ancestral populations, admixed popula-
tions offer distinctive advantages over homogeneous popu-
lations in localizing ancestry-specific genetic risk variants.
This is because admixture analysis efficiently tests regions
that exhibit different risk allele frequencies among ancestral
populations (within admixed samples) and allows for the
efficient detection of genomic regions with an exponentially
smaller sample size and increased power compared to ge-
nome-wide association studies (Mersha 2015). In present-
ing sample size and power analysis for the research
community, we first consider power and sample size calcu-
lations for case-only and case-control studies, and then ex-
tend the approach for quantitative traits using a linear
regression model for additive effects with or without cova-
riates. To our knowledge, this is the first tool set for deter-
mining power and sample size for admixture mapping using
admixed populations.

Sample size and power analysis are the most crucial steps
in designing complex genetic trait association studies. Sev-
eral investigators have presented power and sample size
guidelines for association studies of genetically homoge-
neous populations. In contrast, the genetic complexity aris-
ing from an admixed population makes power and sample

Figure 6 Sample size a function of the percentage of variation explained.
Sample size is computed with 80% power and 0.00025 type-I error rate.
The x-axis represents r2 in percentage.
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size estimations challenging. As a result, information on
power and sample size analysis for admixed population
studies is lacking. The purpose of the present article is to
provide sample size and power analysis guidelines for ad-
mixture studies to map dichotomous (or qualitative) and
quantitative (or continuous) traits under a variety of genetic
and disease phenotype models. Specifically, we consider the
effects of (1) study design, including case-only and case-
control designs; (2) genetic models, including dominant,
recessive, additive, and multiplicative models; (3) odds
ratio; (4) admixture models, including HI and CGF models;
and (5) allele frequency and disease prevalence differences
between ancestral populations.

Theoretically, a larger sample size leads to higher confi-
dence in detecting significant effects in a given clinical study.
However, in reality, clinical samples are often limited and/or
the cost of sampling is high.Witha smaller sample size, a study
maynot be able to detect the small ormoderate effects. On the
other hand, a larger sample size results inwastage of precious
resources and the researchers’ time. Ensuring adequate sam-
ple sizes for detecting expected power is an essential part of
study design to approve/reject the stated hypothesis. This
article presents sample size and power calculation methods
for determining ancestry–phenotype associations for a spec-
ified sample size or for estimating the sample size for a given
(prespecified) power for a variety of genetic models and sta-
tistical methods.

Conclusion

Acting as a natural experiment, admixed populations pro-
vide insight into unique genomic recombination and seg-
mental reshuffling of their parental chromosomal ancestry.
One of the major opportunities in these populations is the
potential to apply an admixture mapping method, which
evaluates the association of local ancestry with phenotypic
traits, especially with regard to diseases with different
frequencies across parental populations. In this study, we
addressed the two most common questions researchers
have to answer before undertaking an admixture mapping
project: (1) “How large a sample size do I need?” (2) “How
do I decide the sample size of a given study to ensure ad-
equate power for observing a given effect size?” In this
study, we provided an easily accessible and easy-to-use
R-based application that provides power and sample size
estimates for investigators planning genetic studies in
admixed populations. Even though the true underlying ge-
netic model may be unknown, using a range of genetic
models, odds ratio, effect sizes, and admixture processes
extrapolated from the literature, an investigator can deter-
mine whether a study has adequate power to detect ances-
try–phenotype associations.

There are several areas where AdmixPower will be ex-
panded. First, we will expand to determine sample size and
power analysis for multiple ancestral populations in an
admixed population. Second, we plan to expand the com-
mand-line use and develop a Web application for interactive

use via a simple “point-and-click-of-a-button” function that
enables researchers to calculate power with user-friendly
queries through a single Web interface. We hope that this
tool will prove of value for investigators planning admixture
mapping studies for publication and for determining the sam-
ple size required in grant applications.
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