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ABSTRACT Genome-wide association studies (GWAS) have been widely used for identifying common variants associated with
complex diseases. Traditional analysis of GWAS typically examines one marker at a time, usually single nucleotide polymorphisms
(SNPs), to identify individual variants associated with a disease. However, due to the small effect sizes of common variants, the power
to detect individual risk variants is generally low. As a complementary approach to SNP-level analysis, a variety of gene-based
association tests have been proposed. However, the power of existing gene-based tests is often dependent on the underlying genetic
models, and it is not known a priori which test is optimal. Here we propose a combined association test (COMBAT) for genes, which
incorporates strengths from existing gene-based tests and shows higher overall performance than any individual test. Our method does
not require raw genotype or phenotype data, but needs only SNP-level P-values and correlations between SNPs from ancestry-matched
samples. Extensive simulations showed that COMBAT has an appropriate type I error rate, maintains higher power across a wide range
of genetic models, and is more robust than any individual gene-based test. We further demonstrated the superior performance of
COMBAT over several other gene-based tests through reanalysis of the meta-analytic results of GWAS for bipolar disorder. Our method
allows for the more powerful application of gene-based analysis to complex diseases, which will have broad use given that GWAS
summary results are increasingly publicly available.
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GENOME-WIDE association studies (GWAS), which ex-
amine millions of common single nucleotide polymor-

phisms (SNPs) across the genome, have been widely used for
identifying common variants associated with complex dis-
eases. These studies have uncovered numerous risk variants
andprovidednovel insights intodisease biology.Despite these
successes, genetic variants identified to date explain only a
small fraction of the heritability for most complex diseases,
which raises the question of “missing heritability” (Manolio
et al. 2009). One explanation is that a large number of com-

mon variants remain to be discovered, but their effect sizes
are generally too small to be detected individually (Eichler
et al. 2010). In the search for additional common risk variants,
one approach is to amass ever larger samples, in order to have
adequate power to detect their small effects when variants are
analyzed individually. However, collecting both genotypic and
phenotypic data on large samples is time-consuming and ex-
pensive. As an alternative strategy, more sophisticated analy-
ses of existing GWAS data can enhance the capture of true
genetic signals in an efficient and cost-effective manner.

As a complementary approach to SNP-level analysis, gene-
based association analysis has been proposed for GWAS
(Neale and Sham 2004). Gene-based analysis aims to derive
an overall gene-level P-value by examining associations of all
SNPs within a gene with a trait of interest. Compared with
SNP-level analysis, gene-based analysis has several advan-
tages. First, a susceptibility gene may contain multiple inde-
pendent causal variants. In this case, gene-based analysis
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may increase power by aggregating the disparate signals
within a gene. Second, gene-based analysis may further in-
crease power by reducing the multiple testing burden from
one based on �1,000,000 million SNPs to one based on
�20,000 genes. Third, gene-based analysis can deal with
the problem of allelic heterogeneity and hence lead to more
consistent results across studies. Fourth, gene-based analysis
can provide greater insights into disease biology since the
genes are basic functional units of the genome. In addition,
the gene-based P-value approach can be readily extended to
pathway or network-based analysis of GWAS.

A variety of methods have been proposed for gene-based
association analysis, many of which involve the combination
of SNP-level P-values. One group of methods has the advan-
tage of detecting genes with a single causal variant, for ex-
ample, the smallest P-value method (Wang et al. 2007). This
type of approach takes the smallest P-value over all SNPs
within a gene as an overall gene-based P-value. Because
larger genes tend to have SNPs with smaller P-values by
chance, permutation is usually needed to adjust for the total
number of SNPs within a gene. However, permutation is not
only computationally demanding, but, in addition, there are
situations in which permutation is not easy or possible, such
as in family-based GWAS designs and gene-based analyses
for GWAS meta-analytic results from large consortia. There
are also scenarios in which multiple independent SNPs
within a gene contribute to disease risk. Accordingly, another
group of methods were developed to detect genes with mul-
tiple independent causal variants. For example, to capture
multiple independent weak signals and increase detection
power, the Fisher’s combination test of P-values method has
been proposed (Curtis et al. 2008). However, because of the
extensive linkage disequilibrium (LD) between SNPs within
the gene, there are no theoretical distributions for the test
statistics. Permutation is still needed to estimate the empiri-
cal P-value.

To overcome the limitations of permutation, Liu et al. pro-
posed a versatile gene-based test (VEGAS) that computes a
gene-level P-value using simulations from a multivariate nor-
mal distribution (Liu et al. 2010). One major advantage of
VEGAS is that the method does not require raw genotype
data; rather it only needs SNP-level P-values and genotype
data of ancestry-matched reference samples. Furthermore,
the test statistic is flexible because it can be constructed for
the most significant SNP or for the most significant subsets of
SNPs. Therefore, the test statistics of VEGAS have the poten-
tial to detect genes with either one or many causal variants.
However, it is unknown which test statistic is optimal in real
data analysis, because the power of a test statistic is depen-
dent on the underlying true genetic architecture of suscepti-
bility genes that is usually unknown. For example, if a gene
contains only one causal variant, a test statistic that uses the
most significant SNP may be the most powerful; in contrast,
the same test will be less powerful for another gene that
contains multiple independent causal variants. To further
improve the efficiency and accuracy of P-value computation,

Li et al. proposed GATES (gene-based association test using
extended Simes procedure), to rapidly compute a gene-level
P-value without using either permutation or simulation (Li
et al. 2011). While GATES is more computationally efficient
and analytically accurate, it suffers from power loss when a
gene contains multiple independent causal variants.

Theoretically, there are no uniformly powerful gene-based
analytical methods, and the best methods vary depending on
theunderlyinggenetic architecture.Althoughwedonot know
which method is optimal in real data, we do know that some
methods are more powerful than others under certain cir-
cumstances. Therefore, it is statistically important and chal-
lenging to choose the best method for real data analysis. Here
we propose a combined gene-based association test (COMBAT),
which incorporates strengths from a variety of gene-based tests.
Intuitively, themethod that produces the smallestP-valuewill be
the most powerful. COMBAT was developed to capture the best
method by choosing the one with the smallest P-value, but will
also correct for the number of gene-based tests using the ex-
tended Simes procedure. Extensive simulations showed that
COMBAT has appropriate type I error rates, maintains higher
power across awide range of geneticmodels, and ismore robust
than any single test. When applied to GWAS meta-analysis re-
sults for bipolar disorder from the Psychiatric Genomic Consor-
tium (PGC) (Psychiatric GWAS Consortium Bipolar Disorder
Working Group 2011), COMBAT outperformed alternative
gene-based tests. The proposed test allows for the more power-
ful application of gene-based analysis to complex diseases,
which will have broad use given that GWAS summary results
are increasingly publicly available.

Materials and Methods

An overview of COMBAT

An overview of COMBAT is provided in Figure 1. Briefly, given
the SNP-level P-values within a gene, and genotype data of
ancestry-matched reference samples, we first compute N
gene-based P-values for the gene using N different gene-
based association tests, which can take SNP-level P-values
as input, including GATES, a number of VEGAS test statistics,
and SimpleM (Gao et al. 2008). COMBAT will then scan all
individual gene-based tests and identify the most powerful
test while controlling for correlations among different tests. It
must be noted that COMBAT is flexible in its ability to take
statistics from other gene-based association tests as input.
Under the null hypothesis of no association, we use a simulation-
based approach to estimate the correlation coefficient matrix
of P-values fromN different gene-based tests. We note that the
correlation coefficient matrix of P-values can be estimated
based on the LD information of ancestry-matched reference
samples as shown in Supplemental Material, Figure S1 and
File S2. Once the P-value correlation coefficient matrix is
estimated, COMBAT then applies the extended Simes pro-
cedure to combine the P-values of N different gene-based tests
to an overall gene-level P-value.
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Extended Simes procedure

Let (pð1Þ; pð2Þ;⋯; pðNÞ) be the ascending P-values from N dif-
ferent gene-based tests. COMBAT applies the extended Simes
procedure to combine the N P-values to an overall P-value
Pcombat as follows:

Pcombat ¼ Min

 
NepðjÞ
NeðjÞ

!
; 1# j#N;

where Ne is the effective number of independent P-values
among the N association tests and NeðjÞ is the effective number
of independent P-values among the top j association tests. To
obtainNe andNeðjÞ;we apply a robust technique as proposed in
GATES (Li et al. 2011). Specifically, Ne is estimated by

Ne ¼ N2
XN
i¼1

ðli 21ÞIðli 21Þ;

where li is the ith eigenvalue of the P-value correlation co-
efficient matrix of N association tests, and Iðli 21Þ is an in-
dicator function taking the value of 0 if li # 1 and 1 if li . 1:
When the N association tests are independent (correlation
coefficient of P-values is 0 between tests), then eigenvalues
are all one, thus Ne ¼ N:When the N association tests are the
same (correlation coefficient of P-values is 1 between tests),
the first eigenvalue isN and the rest are 0, so thatNe ¼ 1: For
intermediate situations, the correlations of P-values from dif-
ferent association tests are between 0 and 1; thus Newill usu-
ally be smaller than N; but .1: The computation of NeðjÞ is
similar to that ofNe; but the eigenvalues are computed for the
P-value correlation coefficient matrix of the top j association
tests.

Estimation of P-value correlation matrix under the
null hypothesis

To apply the extended Simes procedure, it is necessary to
obtain the correlation matrix of P-values among different
gene-based tests under the null hypothesis. We estimated
the correlation of P-values for each pair of gene-based tests
based on the LD matrix of SNPs within the gene. The LD
information can be obtained from ancestry-matched refer-
ence samples, such as those from HapMap, 1000 Genomes,
or a custom set of individuals if genotype data are available.
Figure S1 and File S2 show the schematic diagram of our
simulation process to estimate the correlation of P-values be-
tween two gene-based tests. The simulation is based on the
premise that under the null hypothesis of no association, the
joint z statistics of SNPs should follow a multivariate normal
distribution with mean 0 and covariance matrix being the
pairwise correlations of SNPs within the gene (Conneely
and Boehnke 2007). Briefly, for a list of SNPs within a given
gene, we first generate K number of multivariate normal
vector Z with mean 0 and covariance matrix of pairwise LD
values (r) between SNPs. Z is then transformed into a two-
tailed P-value vector P: For each P-value vector, we computed
a gene-level P-value for each gene-based test. Therefore, we
can get K number of gene-level P-values for each gene-based
test. The correlation of P-values between two gene-based tests
can then be calculated based on the K P-values obtained for
each test.

To investigate the validity of this LD-based simulation
approach, we compared COMBAT P-values estimated by the
simulation approach to those obtained from a permutation-
based approach, which can be considered a gold standard for
the correlations of P-values between different tests. Specifi-
cally, we constructed null data sets with individual level ge-
notype data for genes with varying numbers of SNPs (10, 30,
50, and 100) using GWAS data from the Atherosclerosis Risk
in Communities (ARIC) study (ARIC Investigators 1989). For
simplicity without loss of generality, 10 genes were randomly
sampled for each size (i.e., number of SNPs). We randomly
selected 1000 samples and assigned them quantitative trait
values from a standard normal distribution. The phenotype
values were permuted 1000 times. For each permuted

Figure 1 Overview of the COMBAT method. First, the input includes
P-values of SNPs mapped to a given gene and ancestry-matched LD
information. Second, it computes a gene-based P-value using each indi-
vidual gene-based test. It further derives the correlations of P-values of
individual gene-based tests under the null hypothesis using a simulation-
based approach. Third, COMBAT applies the extended Simes procedure
to combine the P-values of individual gene-based tests to an overall gene-
level P-value.
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phenotype, we computed SNP-level association P-values, fol-
lowed by computing a gene-based P-value for each gene-
based association test. We thus obtained 1000 gene-based
P-values for each gene-based test, which were subsequently
used to compute the correlation between gene-based tests.

A brief review of gene-based tests underlying COMBAT

COMBAT is built upon a number of gene-based tests, which do
not require raw genotype or phenotype data, but need only
the SNP-level P-values and pairwise SNP correlations from
ancestry-matched reference samples. The power of these
tests is often affected by the number of causal SNPs within
a gene. When there is only one or a few causal SNPs, tests
that aim to capture the most significant SNP, such as GATES,
VEGAS-max, and SimpleM, are more powerful. In the case
of multiple independent causal SNPs, methods that aggre-
gate signals across SNPs, such as VEGAS-sum, tend to be
more powerful. Below we briefly review these tests under-
lying COMBAT.

GATES: This method uses an extended Simes procedure to
derive a gene-based P-value. Basically, it combines P-values of

SNPs into an overall gene-based P-value by p ¼ Min
�
NepðjÞ
NeðjÞ

�
;

where Ne and NeðjÞ are the effective number of independent
P-values among all, and the top j SNPs, respectively. The
number of effective independent SNPs is estimated by the
correlation matrix of SNP P-values, which can be approxi-
mated by a high order polynomial function of the allelic cor-
relation matrix. Neither permutation nor simulation is
needed in GATES.

VEGAS: This is a versatile gene-based association test, which
combines SNP-level chi-square statistics into an overall gene-
based test statistic. The test statistic can be constructed for
either the top SNP or subsets of themost significant SNPs. The
empirical distribution of the test statistic is estimated by
simulating sufficient numbers of multivariate normal vectors
with mean zero and the covariance matrix being the LD
betweenSNPs.While themethod isflexible in its test statistics,
it is not known in advance which of these is optimal in real
data. To capture the test statistic that is most likely to be
powerful, COMBAT scans a series of test statistics from theone
that considers only the top SNP to those that combine various
proportions of top significant SNPs (e.g., the top 10, 20, and
100% of the most significant SNPs).

SimpleM: This method computes a gene-based P-value by
taking the smallest P-value of SNPs within a gene while cor-
recting for the effective number of independent tests through
a Bonferroni correction procedure (Gao et al. 2008). Specif-
ically, p ¼ 12 ð12minfpð1Þ; pð2Þ;⋯; pðmÞgÞk; where k is the
effective number of independent tests estimated from the
correlation matrix of SNPs using a principal component anal-
ysis approach.We set k so that the corresponding eigenvalues
explain 99.5% of the variation for the SNP data.

Conventional SNP-level analysis

To compare the performance of gene-based association anal-
ysis with conventional SNP-level analysis in simulations, we
also calculated the SNP-level P-value, which was defined as
the smallest P-value of SNPs within a gene with Bonferroni
correction for the total number of SNPs.

Simulation of genotype data

We evaluated the performance of COMBAT using simulated
genotype data. The simulation involved the generation of
genotype data for a gene with 50 SNPs. We set the minor
allele frequencies of all SNPs asa randomnumber from0.05 to
0.5. All SNPs were biallelic and under Hardy–Weinberg equi-
librium. We considered three different scenarios in terms of
LD structure: (1) SNPs are in linkage equilibrium (LE, i.e., r=
0); (2) SNPs are located in four moderate LD blocks with r=
0.5 for all pairwise SNP correlations within each block; and
(3) SNPs are located in four strong LD blocks with r = 0.9
for all pairwise SNP correlations within each block. The
numbers of SNPs in the four LD blocks are 10, 5, 15, and
20, respectively.

Type I error rate estimation

To examine the type I error rates of COMBAT, we generated
null data sets by simulating a continuous phenotype of sample
size 1000 from a standard normal distribution. We then
permuted this phenotype 1000 times to generate 1000 null
data sets. For each null data set, we tested the association of
each SNP with the phenotype using linear regression. After
obtaining the SNP-level P-values, we applied individual gene-
based tests (GATES, VEGAS, and SimpleM) and COMBAT to
get gene-level P-values. The empirical type I error rate was
calculated as the proportion of 1000 P-values from the null
data that was equal to or less than a given nominal a level
(0.05 and 0.01). To evaluate the effect of sample size on type
I error rates, we repeated the simulation for a sample size of
2000.

As the above simulations might not reflect realistic gene or
LD structure, we also evaluated the type I error rates of
COMBAT and individual gene-based tests using real GWAS
genotype data from the ARIC study. In this analysis, 30 genes
with different numbers of SNPs (30, 50, or 100) were ran-
domly sampled from the real genotype data in such away that
there were 10 genes for each SNP size. Null phenotype data
were generated from a standard normal distribution and the
type 1 error rate was estimated for each gene-based test in a
similarway as described for simulated genotype data analysis.

Power analysis

To compare the power of COMBAT and individual gene-based
tests, we used simulated genotype data with different LD
blocks, as described above, and generated phenotype data
under alternative hypotheses of various genetic models. Spe-
cifically, we generated a quantitative trait of sample size
1000 using a linear regression model:
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y ¼ b1g1 þ b2g2 þ⋯þ bKgK þ e;

where K is the number of causal SNPs, biði ¼ 1; 2;⋯;KÞ are
the additive effects for causal SNPs, giði ¼ 1; 2;⋯;KÞ are the
effect allele counts for causal SNPs, and e is a random term
that follows a standard normal distribution. Within each LD
block, one causal SNP was randomly chosen with a genetic
effect of logð1:1Þ: We considered four genetic models: (1)
one causal SNP; (2) two causal SNPs; (3) three causal SNPs;
and (4) four causal SNPs. We created 1000 causal data sets
under each model. For each causal data set, COMBAT and
each individual gene-based test were run to get a gene-level
P-value. The power was defined as the proportion of P-values
from 1000 causal data sets that were less than or equal to a
given a level of 0.01. To evaluate the effect of sample size on
power, we repeated the simulation for a sample size of 2000.

Real data analysis

To evaluate the performance of COMBAT on real data and
compare it with other individual gene-based tests, we applied
COMBAT and other methods to GWAS meta-analysis results
for bipolar disorder from the PGC. Summary results for
2,427,220 autosomal SNPs were downloaded from the PGC
website (https://www.med.unc.edu/pgc/). The sample in-
cluded 7481 subjectswith bipolar disorder and 9250 controls.
We focused our analysis on autosomal SNPswithMAF$ 0.01
and imputed quality score .0.8. To reduce systematic bias
and minimize the chance of false positive findings, we used
genomic control-corrected SNP-level P-values. Considering
the potentially important roles of noncoding variants in com-
plex traits and diseases (Ward and Kellis 2012) and previous
studies that have performed gene-based analyses with non-
coding variants (Gamazon et al. 2015; Kilaru et al. 2016), we
also included noncoding variants in gene-based tests for bi-
polar disorder. We assigned an SNP to a gene if it was located
within the gene, based on NCBI 37.3 gene annotation, or
within 20 kb upstream or downstream of the gene, to capture
regulatory variants. We limited analysis to genes with at least
five SNPs. In total, there are 20,701 genes with 1,174,071
SNPs. We estimated pairwise SNP correlations within a gene

based on the genotype data of unrelated CEU samples from
the 1000 Genomes Project.

Data availability

The method, along with each individual gene-based test, has
been implemented in the R package COMBAT, which is avail-
able on CRAN (https://cran.r-project.org/web/packages/
COMBAT/).

Results

Estimation of simulations needed for computing
COMBAT P-values

Using a simulation-based approach, we first estimated the
correlation matrix of P-values among different gene-based
tests under the null hypothesis, which was then used for
computing COMBAT P-values. To investigate how many sim-
ulations are needed to get a stable estimate of a COMBAT
P-value, we varied the number of simulations and compared
the corresponding results with those from standard permu-
tations. Table 1 summarizes the correlation coefficients
between simulation-based and permutation-based COM-
BAT P-values for genes with varying number of SNPs. In
all simulation settings, a high correlation (r $ 0.97) was
observed between simulation-based and permutation-based
approaches. It turned out that the smaller the gene size, the
fewer the number of simulations were required to achieve a
high correlation. Based on our empirical observations, 10 to
50 simulations will generally be sufficient for a stable and
accurate estimate of P-value compared to a permutation-
based approach (r . 0.98).

Type I error

We evaluated the type I error of COMBAT, conventional SNP-
level analysis, and individual gene-based tests. Table 2 shows
the empirical type I error rates at two a levels (a= 0.05 and a

=0.01) for simulated genes with different LD patterns, using a
sample size of 1000. Overall, COMBAT and all individual gene-
based tests maintained an appropriate type I error rate under
different LD structures. Conventional SNP-level analysis
tended to be conservative when there was strong LD among
SNPs. We found a similar pattern of type I error rates based on
simulations with a sample size of 2000 (Table S1 in File S1).

We further evaluated type I error rates using real GWAS
genotype data from the ARIC study. As shown in Table 2, all
the methods still offered effective control of false positive
rates at two a levels (a = 0.05 and a = 0.01), suggesting
the appropriate type I error rates of individual gene-based
methods and of COMBAT in analysis of real genotype data.
Type I error rates were conservative for conventional SNP-
level analysis in all real genotype data.

Power

Using a number of simulated genetic models, we investigated
the power of COMBAT and compared its performance with
individual gene-based tests andconventionalSNP-level analysis.

Table 1 Correlation coefficients between simulation-based and
permutation-based COMBAT P-values

Number of simulations

Gene size (number of SNPs)

10 30 50 100

5 0.98 0.98 0.97 0.97
10 0.99 0.99 0.98 0.98
20 0.99 0.99 0.98 0.98
30 0.99 0.99 0.98 0.98
40 0.99 0.99 0.98 0.98
50 0.99 0.99 0.99 0.98
60 0.99 0.99 0.99 0.98
70 0.99 0.99 0.99 0.99
80 0.99 0.99 0.99 0.99
90 0.99 0.99 0.99 0.99
100 0.99 0.99 0.99 0.99
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We considered 12 genetic models with combinations of various
numbers of causal SNPs (1, 2, 3, and4) anddifferent LDpatterns
(LE, moderate LD, and strong LD). Figure 2 shows the radial
power plot for COMBAT and individual gene-based tests across
12 genetic models with a sample size of 1000 and a P-value
significance level of 0.01. As expected, the statistical power is
affected by the number of independent causal SNPs and LD
patterns for all individual gene-based tests. When there was
only one causal SNP and the SNPs were in LE, we observed
the highest power for the tests that aim to capture the top
significant SNPs within a gene, such as GATES, VEGAS-max,
and SimpleM. On the other hand, for disease models with
multiple independent causal SNPs, the highest power was
observed for the tests that aggregate signals across SNPs
within the gene, e.g., the VEGAS tests that combine a certain
proportion of SNPs. In comparison with all individual gene-
based tests, COMBAT was clearly the winner in all simulated
genetic models. COMBAT was similar to or superior in power
to the best performing individual gene-based tests in all sit-
uations. When there was no LD, the performance of conven-
tional SNP-level analysis was similar to gene-based tests that
capture the top significant SNPs, but was less powerful when
strong LD existed. We observed a similar pattern for genetic
models with moderate and strong LD patterns, but the sta-
tistical power was generally increased for all tests due to the
increased signal to noise ratio. Power simulations using a
larger sample size of 2000 yielded the same conclusions
(Figure S2 and File S2). The empirical power values at two
a levels (a = 0.05 and a = 0.01) for all gene-based tests
across 12 genetic models and conventional SNP-level analy-
sis are shown in Table S2 in File S1 (sample size = 1000) and
Table S3 in File S1 (sample size = 2000).

Application to meta-analysis of GWAS for
bipolar disorder

We applied COMBAT, as well as all individual gene-based
tests, to the GWAS meta-analysis results for bipolar disorder
downloaded from the PGC website. At a genome-wide signif-
icance level of 0.05, COMBATdetectedmore significant genes
than any other individual gene-based test or SNP-level anal-
ysis (minimum P-value within a gene, with genome-wide
significant threshold of 5.0 3 1028). All significant genes
identified by the individual gene-based tests were also signif-
icant by COMBAT. Table 3 shows nine genes identified by
COMBAT that remained significant after Bonferroni correc-
tion (Pcorrected , 0.05). It was noteworthy that none of the
individual gene-based tests could detect all of these nine
genes at a significance level that survives Bonferroni correc-
tion (P , 2.4 3 1026). For example, GATES did not identify
SYNE1, DDN, PRKAG1, and ITIH3; VEGAS-sum did not iden-
tify ANK3; both VEGAS-max and SimpleM missed SYNE1,
KMT2D, DDN, PRKAG1, and ITIH3. Among these nine genes
identified by COMBAT, ANK3 and SYNE1were reported to be
associated with bipolar disorder in the primary meta-analysis
from PGC. Of note, none of the individual gene-based tests
detected both ANK3 and SYNE1 as genome-wide significantTa
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after Bonferroni correction. Interestingly, COMBAT also de-
tected another two genes, ITIH3 and DDN, which were not
genome-wide significant in the primary SNP-level PGC
meta-analysis, but did meet the genome-wide threshold
for association with BP in larger samples (Psychiatric GWAS
Consortium Bipolar Disorder Working Group 2011; Hou
et al. 2016).

Discussion

Motivation for the proposed COMBATmethod is based on the
key considerations that the genetic underpinnings may vary
across susceptibility genes, and that the statistical power of
existing gene-based tests is often dependent on the true
genetic architecture underlying susceptibility genes. There-
fore, it is important and desirable to develop a robust test
statistic that can take into account the unique association
patterns of susceptibility genes. Accordingly, COMBAT was
designed to choose themost powerfulmethod fromavariety
of gene-based tests while correcting for the correlations
among methods. Our extensive simulations demonstrated
the superior performance of COMBAT as compared to sev-
eral individual gene-based tests over a wide range of
geneticmodels.Moreover, COMBAT requires only SNP-level
P-values and ancestry-matched LD information, and therefore

it can be applied to almost any GWAS design for which results
have been generated.

We previously developed a Flexible and Adaptive test for
Gene Sets (FLAGS) using summary statistics (Huang et al.
2016), which adaptively combines gene signals for gene
set-based association tests, taking into account the unique
association patterns of gene sets. The intuitions underlying
both FLAGS and COMBAT are similar: there is no universally
powerful approach for either gene-based or gene set-based
testing; both methods are designed to identify the best test
among a group of different tests. But their ways of correcting
for the number of tests are different: FLAGS uses a simulation-
based approach, whereas COMBAT uses an extended Simes
procedure.

Although the COMBAT method has been developed for
GWASsummarydata,we reason that the same framework can
be applied to gene-based tests for rare variants, such as those
generated from whole genome or exome sequencing studies.
As with common variations, disease susceptibility genes may
also have differing genetic architectureswhen it comes to rare
causal variants, and the statistical power of gene-based tests
for these variants may also depend on the underlying genetic
models. Therefore, COMBAT can be designed to scan a num-
berof gene-based tests of rare variants andchoose thebest one
while controlling for correlations among tests. However, since

Figure 2 Radial power plots for SNP-level
analysis and various gene-based tests under
12 different genetic models given a sample
size of 1000 and a P-value significance
threshold of 0.01. Genes with 50 SNPs were
simulated and the SNPs formed 4 LD blocks.
One or zero SNP was chosen as a causal SNP
in each LD block. r, correlation among SNPs
within each LD block; #, number of causal
SNPs. Dotted tracks denote power levels.
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raw data are required for most gene-based tests for rare
variants, a permutation-based approach would be necessary
to estimate the correlations of P-values among different
methods under the null. Nonetheless, our experience with
common variants leads us to expect that a limited number
of permutations should generally be sufficient to obtain a
stable and accurate estimation of P-value correlations among
methods.

In the analysis of GWAS meta-analytic data for bipolar
disorder, COMBATdetected anumber of significant genes that
may underlie the illness. Of these, ANK3 and SYNE1 were
reported in the primary meta-analysis from the PGC; how-
ever, none of the individual gene-based tests could detect
both of them after multiple testing correction, reinforcing
the advantage of COMBAT. It was noteworthy that COMBAT
not only detected genes reported in the primary meta-analysis
from PGC, but also identified two genes (ITIH3 and DDN)
that were not genome-wide significant in the original PGC
meta-analysis, but were in studies with larger samples. In
particular, DDN reached genome-wide significance in a re-
cent large-scale meta-analysis of GWAS for bipolar disorder
(Hou et al. 2016). This gene encodes a synaptic protein,
dendrin, which has been linked to synaptic plasticity, memory
formation (Kremerskothen et al. 2006), and sleep depriva-
tion (Neuner-Jehle et al. 1996), a core symptom of bipolar
disorder, and therefore is a biologically plausible candidate.
ITIH3 was genome-wide significant in the cross-disorder
analysis of bipolar disorder and schizophrenia from the
PGC (Psychiatric GWAS Consortium Bipolar Disorder Work-
ing Group 2011), suggesting it may be a common suscepti-
bility gene for both disorders. ITIH3 belongs to the family of
inter-a-trypsin inhibitors and plays an important role in reg-
ulation of differentiation of neural stem cells (Han et al.
2015). A recent study showed that a variant within ITIH3
influences response to antipsychotic medication (Brandl
et al. 2016).

Thisworkshouldbeviewed in lightof two limitations. First,
our simulations indicated that gene-based association analy-
ses are more powerful than SNP-level analyses for genes with
multiple independent causal variants. If a gene contains only
one causal variant, however, the inclusionof a largenumber of
noncausal variants may reduce the power for detecting risk
genes. Therefore, gene-basedmethods should not be seen as a
replacement for traditional SNP-level analyses, but rather a
complement. Second, COMBAT utilizes summary test statis-
tics rather than raw genotype data from association studies,
and caution must be taken when the test statistics at different
SNPs involve different subsets of individuals from across the
multiple samples. In fact, it is not uncommon that association
tests of different SNPs were generated from different subsets
of samples, especially in large-scale GWAS meta-analyses.
However, this is a common issue to most, if not all, existing
gene-based tests that use summary statistics. Accordingly,
COMBAT, which is built upon existing gene-based tests, is
also affected by the same issue. When raw genotype is avail-
able, the missing genotype data in a subset of samples can beTa
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imputed to a common reference panel to avoid sample in-
consistency. In the absence of such raw data, each individual
gene-based test should be extended with more advanced
modeling techniques to tackle this issue.

In summary, we have developed a robust and powerful
gene-based test for common variants using summary statis-
tics. Given the fact that GWAS summary results are increas-
inglypubliclyavailable, andgiven thedifficulties that canarise
in accessing raw data, our method will allow for the broader
applicationofgene-basedanalysis toGWASofcomplexdiseases.
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