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ABSTRACT Changes in chromatin state may drive changes in gene expression, and it is of growing interest to understand the
population genetic forces that drive differences in chromatin state. Here, we use the phenomenon of position effect variegation (PEV),
a well-studied proxy for chromatin state, to survey variation in PEV among a naturally derived population. Further, we explore the
genetic architecture of natural variation in factors that modify PEV. While previous mutation screens have identified over
150 suppressors and enhancers of PEV, it remains unknown to what extent allelic variation in these modifiers mediate interindividual
variation in PEV. Is natural variation in PEV mediated by segregating genetic variation in known Su(var) and E(var) genes, or is the trait
polygenic, with many variants mapping elsewhere in the genome? We designed a dominant mapping study that directly answers this
question and suggests that the bulk of the variance in PEV does not map to genes with prior annotated impact to PEV. Instead, we find
enrichment of top P-value ranked associations that suggest impact to active promoter and transcription start site proximal regions. This
work highlights extensive variation in PEV within a population, and provides a quantitative view of the role naturally segregating
autosomal variants play in modifying PEV—a phenomenon that continues to shape our understanding of chromatin state and
epigenetics.
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CHROMATIN states, defined broadly as the combination of
chromatin and bound factors that together impact chro-

matin accessibility and gene expression, have clear evolution-
ary importance (Schulze andWallrath 2007). TheModEncode
project has generated valuable data for use in understanding
determinants and classification of chromatin states and corre-
lation with functional consequences (modENCODE Consor-
tium et al. 2010; Kharchenko et al. 2011; Ernst and Kellis
2012; Filion et al. 2016). Despite rapid progress in chromatin
biology, we still know little about variation in chromatin states
among individuals and naturally segregating genetic variants
thatmay be involved in generating these differences (Richards
2006, 2008; Bossdorf et al. 2008; Hu and Barrett 2017). Any
natural variant that serves to impact chromatin state may be a

target of natural selection, and it is of great interest to under-
stand population genetic forces that drive differences between
chromatin and genome accessibility of individuals.

Originally discovered by H. J. Muller, position effect varie-
gation (PEV) has long been studied in Drosophila melanogaster
and is widely accepted as a valuable tool in understanding
dynamics of chromatin state and gene expression, especially
with regards to the boundary between heterochromatin
and euchromatin. The most commonly used form of PEV is
the result of a specific X chromosome inversion whitemottled-4,
or simply wm4 (Muller 1930), which relocated the normally
euchromatic white gene next to pericentromeric heterochro-
matin. The molecular impact of this relocation is now un-
derstood to be a spreading of chromatin-associating factors
that results in altered chromatin structure and gene silenc-
ing of white without known modification to coding sequence
(Wallrath and Elgin 1995). Depending on the genomic back-
ground, the phenotypic manifestation of this particular si-
lencing is mosaic across the facets of the eye, resulting in a
“mottled” eye phenotype with local clones of cells in each eye
showing an apparently stochastic response. Of significance,
PEV is triggered by gene-chromosome rearrangements in
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many organisms, producing modified gene expression as a
result of modified chromatin environment (Girton and Johansen
2008; Elgin and Reuter 2013).

Manifestation of PEV in the Drosophila eye allows for ease
of visible phenotyping and has generated a large body of
work leading to the discovery of numerous PEV modifying
factors, both genetic and environmental, that also impact
chromatin and genome accessibility. These modifiers are typ-
ically described as positively influencing gene expression at
the wm4 locus, termed suppressors of variegation, or Su(var),
or negatively influencing gene expression at wm4, termed
enhancers of variegation, or E(var). Screens for modifiers
have identified over 150 loci that modify PEV (Ebert et al.
2004). Examples of modifiers of PEV and chromatin include
Su(var)3-9, Su(var)2-5 and piwi. Su(var)3-9, Su(var)2-5, or
HP1a, and maternal Piwi help to establish heterochromatin
(Schotta et al. 2002; Gu and Elgin 2013). HP1a interacts with
Su(var)3-9, and is also required for the spreading of hetero-
chromatin (Hines et al. 2009). It is important to understand,
however, that the vast majority of these modifiers have been
identified through mutation screens, and may or may not
represent loci harboring natural variation that impact the
PEV phenotype. Despite the extensive literature on modifiers
of PEV, there is currently little information on the range of
PEV variationwithin a natural population—an important first
step to assessing any determinant of PEV in a population.

Genome-wide association studies (GWAS) initially gained
favor in human studies as a way to perform a relatively
unbiased search for common natural variants involved in a
phenotype of interest. Using sets of inbred reference lines of
D. melanogaster, GWAS has proven to be a powerful resource
for generating unbiased, data-driven hypotheses, where a
genome-wide search of candidate loci may be coupled with
the extensive functional annotation and genetic tools already
available. The Drosophila Genetic Reference Panel (DGRP)—
a collection of genome-sequenced inbred lines of D. mela-
nogaster (Mackay et al. 2012;Huang et al. 2014)—has become
a handy resource for initial GWAS screens with Drosophila.
Several groups have already successfully used the resource
to identify novel variants involved in a wide range of traits,
including sleep (Harbison et al. 2013), leg development
(Grubbs et al. 2013), sperm competition (Chow et al. 2012),
host–microbiota interaction (Dobson et al. 2015), fecundity
and fitness (Durham et al. 2014), and nutritional indices
(Unckless et al. 2015).

To better understand variation in PEVwithin a population,
and theunderlyinggenetic architectureof segregatingnatural
variants involved in heterochromatin dynamics, we per-
formed GWAS on F1 progeny of DGRP lines crossed to wm4—

a line bearing an X-linked inversion that displays PEV of the
white eye phenotype. PEV was quantified by novel digital
image analysis of visible images captured with a dissecting
microscope. We found extensive variation in PEV, our proxy
for chromatin state, in the DGRP population. Despite this
detailed work, we find little evidence of association for seg-
regating variants within known Su(var) and E(var) genes.

However, we do find variants having association with PEV
to be over-represented in regions having a chromatin state
indicative of active promoter and transcription start site
(TSS)-proximal features. Furthermore, a comprehensive search
across binding sites for factors that modify chromatin accessi-
bility link numerous binding sites to PEV-associated variants,
emphasizing regionswith bistable chromatin states. Altogether,
the evidence suggests autosomal dominant natural variation
interacts with PEV through numerous, small effect loci that
are enriched for transcription factor (TF) binding and sites of
open chromatin, implying influence through gene expression
or subtle changes to chromatin balance.

Materials and Methods

Drosophila stocks

Lines from theDGRP (Mackay et al. 2012)were a gift from the
Mackay laboratory. Line 1712 (Bloomington), which harbors
the whitemottled-4, In(1)wm4 (or simply wm4) locus on the X
chromosome and a second chromosome deletion and bal-
ancer, Df(2L)2802/CyO, was used to assess variegation
across the DGRP population. Canton-S and mutant eye color
stocks, 245 (bw1) and 3605 (w1118) (Bloomington) provided
biological context in our eye color phenotype assay. All flies were
maintained on a standard cornmeal-molasses-sucrose-yeast me-
dium and kept at 25� on a 12-hr light/dark cycle.

Experimental cross

In each of two replicate vials, 10males fromeachof 124DGRP
lines were crossed to three virgin females of the 1712 stock
and allowed to mate for 1 day. Mated 1712 females were
then transferred to new food, allowed to lay eggs, and re-
moved from the vial after 5 days. Variegating male prog-
eny segregated into two phenotypic classes based on the
second chromosome, curly winged (CyO), and noncurly
winged (Df(2L)2802), and were aged at least 4–8 days
before imaging.

Image capture and eye color quantification

Pigments in the eye ofD.melanogaster are synthesized by two,
well-characterized metabolic pathways (Summers et al.
1982). These pigments are typically quantified through sep-
arate extractions based on chemical properties (Ephrussi and
Herold 1944). Often, only a single extracted pigment is used
to describe eye color, and, although useful for detecting gen-
eral differences, this method results in considerable loss of
information. Even casual inspection of eye color patterns that
manifest PEV reveals a farmore complex range of differences,
including pigment intensity, different hues of pigmentation
including yellow, orange, brown, and red, and variation in
patch size and morphology. To better capture the multidi-
mensional aspects of eye color and PEV, and improve map-
ping, we developed an imaging method that retains and fully
describes eye color within a single assay.

The left or right eye was randomly selected from each
adult male and imaged using an Olympus SMZ-10 dissecting
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microscope with an attached Cannon Rebel 6 megapixel dig-
ital camera in a windowless room. Images were captured and
stored using software from the camera manufacturer. After
removing outliers and lines with more than three images, an
average of 17.5 eyes (SD = 9.2) were imaged from each
line, resulting in a total of 3966 images across all lines and
second chromosome combinations. A standard gray card
(Kodak, 18% gray) was imaged before and after each set
of conditions to normalize against fluctuating light condi-
tions. Ommatidia from images were isolated using a pipeline
built in Cell Profiler 2.0 (Lamprecht et al. 2007) and visually
inspected. Images that failed to process were individually
assessed and isolated in Photoshop. Isolated ommatidia
and standard gray card images were then processed using
custom scripts in R (R Development Core Team 2008). Om-
matidia image files were separated into red, green, and blue
color channels and values were bounded between 0 and 1.
Color channel values from each pixel of every image were
normalized against the mean value of individual color chan-
nels frommatched gray card pairs according to a generalized
gamma adjustment using the formula,

Vg ¼ Vout; where g ¼ log 0:82
log�s

(1)

where �s is the individual mean color channel (red, green, or
blue) for the gray card imaged before and after samples; 0.82
refers to the idealized 18% gray card value in RGB color
space. V is the color channel value for an individual pixel
within the image, g is the normalizing function, and Vout is
the normalized color value. The final summarized output for
each eye and image resulted in three values, including the
mean of each normalized red, green; and blue color channel.

Image assay validation

Eye-color stocks (Figure 1A) were imaged, and Principal
Component Analysis (PCA) using the values from the indi-
vidual red, green, and blue color channels of each image,
sufficiently described the multivariate data. Nonpigmented
(white) and pigmented stocks (bw1, wm4, and Canton-S)
exhibited large differences described by principal compo-
nent 1 (PC1), and pigmented stocks (bw1, wm4, and Can-
ton-S) exhibited differences primarily described across
principal component 2 (PC2) (Figure 1B). PC1 accounted
for 87.4% (SD = 24.4%) of variance in the data, and PC2
accounted for 12.5% (SD = 9.2%). Component loadings
provide detail on how each color channel contributes to
the dispersion of the data, where blue and green channels
have a similar impact on PC1 (20.72 and 20.68, respec-
tively), while the red channel has a minor impact (20.12).
This is in contrast to PC2, where the red channel is the pri-
mary driver (0.94), and blue and green channels have minor
roles (20.30 and 0.15, respectively). MANOVA using PC1
and PC2 from each individual image (Equation 2) highlights
the ability of this approach to discriminate across eye groups
of the four stocks (P-value ,2.2 3 10216).

Statistical analysis of phenotype

All subsequent analysis was performed in R (R Development
Core Team 2008). The mean red, green, and blue color val-
ues for each image were used input for PCA. Eye groups were
assessed using MANOVA and the formula,

Ypc1;pc2;pc3 ¼ mþ Sþ e (2)

where Y is PC1, PC2, and PC3 from each image, and S is the
stock of origin (1712, 245, or 3605; Canton-S). Differences
between experimental groups were assessed using ANOVA
and fit using separate principal components from each image
with the formula,

Y ¼ mþ Lþ C þ V þ LxC þ e (3)

where Y is either PC1, PC2, or PC3, L is the DGRP line of
origin, C is the second chromosome background (CyO or Df

Figure 1 (A) Examples of imaged eyes from various D. melanogaster
alleles; (a) w1118, (b) wm4 with the Df(2L)2802 second chromosome, (c)
wm4 with the CyO second chromosome, (d) bw1, (e) wm4 with Df (2L)
2802/CyO, and (f) Canton-S. (B) Scatter plot of PC1 and PC2 values for
mutant and experimental PEV eyes. Black and white points represent
individual images and average values of eye colors from stocks; (a) wm4,
(d) bw1, (e) wm4 with Df(2L)2802/CyO, (f) Canton-S. Experimental indi-
viduals with just the Df(2L)2802 (periwinkle), in general, show greater
variegation and eyes that are closer to the w1118 allele (a), an eye that
lacks pigmentation. Experimental siblings with the CyO allele (red) show
less variegation, or more pigmentation. (C) Boxplot of PEV summarized by
line (x-axis) and separated by second chromosome, Df(2L)2802 (periwin-
kle) vs. CyO (red). PEV is represented PC1 (y-axis), where lower values
indicate less pigmented eyes, and higher values indicate more pigmented
eyes. Among-line variance is greater than within-line variance, suggesting
natural genetic variation is involved in observed differences in PEV.
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(2L)2802), and V is the replicate vial (A or B). Although the
experimental design contained fully crossed factors, interac-
tion terms LxV; CxV; and LxCxV were not statistically signifi-
cant andwere dropped from themodel. Proportion of variance
for each effect is calculated as,

eta2 ¼ SSeffect
SStotal

(4)

where SS is the sum of squares. Broad-sense heritability (H2)
was calculated using

H2 ¼ Vg
Vp

(5)

and based on the linear model,

Y ¼ mþ Lþ e; (6)

where Y is a single principal component and single second
chromosome background combination, and L is the DGRP line
of origin. The proportion of variance explained by line differ-
ences was considered the variance attributed to genetic
components (Vg), and the total variance of the sample
was considered the variance attributed to phenotype (Vp).
For each second chromosome background, H2 was summed
across the three PCs and weighted according to the pro-
portion of variance explained by each PC (Supplemental
Material, Table S1).

Genotypes and association testing

Genotypes and annotation for DGRP lines were downloaded
from the website, dgrp.gnets.ncsu.edu, and all variants and
findings are reported using build BDGPR5/dm3. As others
have observed, the DGRP lines display small amounts of
cryptic genetic relatedness (He et al. 2014; Huang et al.
2014). Here, we used GEMMA (Zhou and Stephens 2012)
to both estimate a centered genetic relatedness matrix
(GRM), accounting for cryptic relatedness, and implement
the univariate mixed linear model (MLM). Individual genetic
variants were treated as a fixed effect, and the GRM was
included as a random effect. Each of the two experimental
populations [CyO and Df(2L)2802 second chromosome back-
grounds] were used as separate input, providing two inde-
pendent sources of association values. Response variables,
PC1 line means frommales only, were regressed against each
variant using single marker association (SMA). GRMs were
estimated separately for each background based on lines with
observed phenotypes. When selecting source variants for es-
timating GRMs, PLINK v1.07 (Purcell et al. 2007) was used to
prune SNPs for Linkage Disequilibrium (indep function with
parameters 50, 10, and 2), and to remove X chromosome
SNPs. Effect sizes (Cohen’s d) and 95% upper and lower
confidence limits were based on SMA P-values and respective
allele sample sizes, and determined using the function, pes,
within the R package compute.es (Del Re 2013). In all
107 lines were used with a CyO second chromosome back-

ground and 109 lines were used with a Df(2L)2802 second
chromosome background. Testing was performed across
775,689 (CyO) and 928,587 (Df(2L)2802) biallelic variants
(SNPs and indels) with a MAF of 0.05 or greater. Due to the
high correlation between phenotype and top associations of
the two experimental populations, subsequent analysis was
performed using only the Df(2L)2802 GWA data. Bootstrap
analysis was used to generated expected site class frequen-
cies. Site classes were counted from 1000 randomly selected
common variants, and an expected distribution was achieved
through 10,000 iterations of resampling. For variants with
more than one annotated class, only one class was selected,
and priority was ranked as follows; nonsynonymous .
ncRNA . synonymous . UTR . intronic . intergenic. The
prop.test in R was used to assess the ratio of nonsynonymous
to synonymous SNP counts within exonic variants between
that observed counts from top GWA SNPs and mean counts
from randomly selected SNPs of the above bootstrap analysis.
P-value enrichment was assess for the Df(2L)2802 �200 kb
deletion. Enrichment was quantified as the proportion of
variants within the region having P-values ,0.1. Expected
distributions for each chromosome arm were generated by
randomly sampling 1000 times identical length linked seg-
ments and similarly calculating P-value enrichment.

Candidate gene analysis

A total of 105 candidate genes was selected based on known
involvement in variegation. Genes were identified in Flybase
using the term “Modifier of Variegation.” Location of each gene
was extracted from Flybase and SNPs within the gene and
62 kb of the gene were examined using the above MLM for
each SNP having a MAF of 0.05 or greater. Bootstrap analysis
was used to generate an expected Site Frequency Spectrum
(SFS) for comparison against the SFS of the 105 candidate
genes. If genes contained multiple transcripts, only one tran-
script was randomly selected. Next, 105 genes were randomly
sampled from the full gene set and proportions of SNP allele
frequencies were binned into MAF groups of 0.05. First,
11,273 genes with known locations on chromosomes 2, 3,
and 4 were downloaded from Flybase. All SNPs sampled
were from the experimental population having the Df(2L)
2802 second chromosome background. The process of select-
ing 105 genes, at random, was repeated 10,000 times using
sampling with replacement. Observed proportions were com-
pared to the mean and SD for each expected MAF grouping.
The observed SFS was generated by querying the 105 candi-
date genes with known involvement in variegation, for all SNP
allele frequencies. Similarly, bootstrap analysis was used to
generate an expected distribution of counts of segregating sites
with sets of genes. The total number of segregating sites
(within62 kb)were counted within the sets of 105 randomly
selected genes throughout the autosomal genome. Counts
were normalized by the total number of base pairs summed
across all 105 randomly selected genes. This process was again
repeated 10,000 times using sampling with replacement to
achieve and expected distribution. The observed proportion
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of segregating sites in the 105 candidate genes was then com-
pared to the expected distribution of proportions.

GCTA v1.25.2 (Yang et al. 2011) was iteratively called
using phenotypes and GRMs generated from lines containing
the Df(2L)2802 background chromosome. The options –reml
and –reml-alg 2 were used to estimate statistical explanation
of among-line phenotypic variance attributed to top rank and
random SNPs. Attempts to set –grm-cutoff resulted in an im-
perfect comparison between the three SNP groups (top hits,
PEV modifiers only, and random sets) as, across SNP counts,
different lines were dropped given the different GRMs. There-
fore, to maintain an equal comparison between all groups,
–grm-cutoff was not set. SE were reported for top hits and
top hits within PEV modifying genes; however, this informa-
tion was not reported for permuted sets of random SNPs. In-
stead, 100 iterations of random permutations were used to
generate lists of SNPs for further generating GRMs. The mean
of expected attributed variance was reported the randomly
permuted lists, along with a SD of means.

Genomic analysis

The nine-state genome-wide combinatorial chromatin state
annotation is described in Kharchenko et al. (2011), and anno-
tation files were sourced from www.modencode.org. Expected
nine-state distributions were generated in the experimental
population through sampling autosomal variants for state
assignment. 1000 variants were randomly selected and
chromatin states were counted. This process was repeated
100 times. ChIP-chip and ChIP-seq files were also down-
loaded from ModENCODE (www.modencode.org). If repli-
cate samples existed, only one file was randomly selected for
analysis and composite files, if they were made available,
were used instead of individual samples. Comparison be-
tween the expected distribution of variants within binding
sites and variants enriched with associations to PEV was
performed as described above; 1000 autosomal variants
were selected at random, and variants within binding sites
were counted. The distribution of counts, as generated
through 10,000 iterations, was then compared to observed
counts from 1000 of the top P-value ranked associating var-
iants. A full list of factors with respective ModENCODE IDs and
observed and expected counts has beenmade available (File S3).

Data availability

Original eye images are available upon request. File S1 con-
tains PEV phenotype values. File S2 contains a full list of
variants with respective association P-values. File S3 contains
observed and expected counts of top PEV associations within
annotated chromatin features.

Results

Natural variation in background genetic effects
on wm4 expression

To quantify natural variation in PEV, we made use of the
DGRP. The PEV phenotype was expressed by crossing males

from inbred DGRP lines to virgin females carrying the wm4

allele on the X chromosome. F1 variegating males were iden-
tical across a single X, third, and fourth chromosome, segre-
gating according to one of two second chromosomes, and
varying with respect to a full haplotype from each of the
DGRP lines assayed (Figure S1). The two second chromo-
somes differ primarily with respect to a �200 kb deletion
in 25F2–25F5 on the nonbalancing chromosome, Df(2L)
2802, and inversions on the balancing chromosome, CyO.
Experimental F1 progeny exhibited a wide range of eye pig-
mentation differences, showing variation that spanned a
complete lack of pigmentation to eyes that were heavily pig-
mented (Figure S2). The quantitative image assay further
detailed a broad phenotypic spread in PEV, with PC1 and
PC2 values spanning between an eye mutant that lacks pig-
mentation (white) and mutants of known pigment deficien-
cies (Figure 1B). Reapplying PCA to just the mean red, green,
and blue color values of images from each of the F1 variega-
tion males, indicates that PC1 captures the vast majority of
variance in the experimental data, 97.4% (SD = 18.6%),
while PC2 and PC3 only describe a small proportion of vari-
ance, 2.4% (SD = 2.9%) and 0.2% (SD = 0.9%). Using
PCA on color images of PEV individuals, effectively allows
the simplification of a multivariate data source to a single
describing variable, PC1, with minimal (2.6%) loss of data,
and provides a robust univariate phenotype for association
mapping.

ANOVA using individual PCs provides an assessment of
importance ascribed to each of three experimental variables;
among-line differences, second chromosome differences, and
replicate environments (Equation 3 and Table 1). Combined
genetic components explain 80.5% of the phenotypic variance
attributed to PC1, where second chromosome differences sep-
arately explained 50.9% of the variance, among-line variation
(our source of natural variation) explained 27.7% of the
variance, and 1.9% of the variance was explained through
genetic interactions of second chromosome background
and individual lines. Partitioning the sample by presence/
absence of the second chromosome deficiency provides
two separate measures of broad-sense heritability (H2) of
PEV within the DGRP population. Among-line differences
explained over half of the phenotypic variance, 59.4 and
57.4%, for the DGRP populations within CyO and Df(2L)
2802 second chromosome backgrounds (Table S1). These
data suggest that a large portion of the observed variation
in PEV, within respective second chromosome backgrounds,
is attributed to segregating genetic variants among the nat-
urally derived DGRP haplotypes.

When comparing second chromosome backgrounds, lines
showed strongpositive correlation inPEVbetweenPC1values
(Pearson correlation of 0.84), where the Df(2L)2802 second
chromosome acts a clear E(var) with respect to the CyO sec-
ond chromosome balancer; showing greater variegation, or
less pigmented eyes, in nearly all lines (Figure S3). Although
not the focus of this study, it is important to recognize that
individuals differing only by second chromosome accounted
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for almost half (49.5%) of the phenotypic variance observed,
considerably more than explained through natural variation.
The consequences of this highlight two potential scenarios.
First is the possibility of an unannotated mutation in either a
Su(var) or E(var) between the second chromosomes. A sec-
ond possibility is that the totality of the deletion on Df(2L)
2802, a deletion of �200 kb, acts to enhance variegation
through a sponge or sink model, similar to what is proposed
to occur with the Y chromosome (Francisco and Lemos 2014);
we cannot distinguish between these possibilities.

Genome-wide association testing

Toassess the contributionof segregating variants to PEV, SMA
was performedgenome-wide using variegating F1males from
crosses between DGRP lines and the wm4 reporter. Full hap-
lotypes from each of the distinct DGRP lines provided source
variation for association mapping. PC1 from each of the two
second chromosome populations were used as separate input
into a univariate MLM accounting for cryptic relatedness (He
et al. 2014). Testing was performed across common biallelic
variants (SNPs and indels, MAF $ 0.05) using haplotypes
extracted from DGRP chromosomes 2, 3, and 4. The X chro-
mosome, carrying the wm4 reporter, was invariant across ex-
perimental populations. Quantile-quantile (Q-Q) plots indicate
P-values from each experimental population overall conform
well to the null distribution (Figure S4). Effect sizes follow a
trend where Cohen’s d increases as MAF decreases (Figure S5).
A comparison of the P-value rank ordered 1000 top associa-
tions shows 75.3% overlap between the two experimental
populations, consistent with a strong correlation in PEV between
the two groups.

The top-ranked associations are enriched for variants that
are located in exons, UTRs, and ncRNAs, with reduced rep-
resentation within intronic and intergenic regions (Figure
S6). From this set of 1000 top associations, a comparison of
synonymous to nonsynonymous SNPs within exonic sites
shows no significant difference between ratios of observed
counts when compared to randomly drawn sets of SNPs (pro-
portion test, P-value = 1). Among the smallest P-values,
only two variants were identified as resulting in a missense
mutation, and both showed reduced strength in association
across independent GWAS samples (Table S2). Although we
note general enrichment of top-ranked associations in exons,
we see no data to indicate a strong bias toward sites that
would result in change to protein function. We also note no

P-value enrichment within the Df(2L)2802 second chromo-
some deficiency region (Figure S7).

Despite many variants identified as having an effect
size$1, and with enrichment proximal to functional regions,
our small sample sizes, substantial background effect on phe-
notype, as noted through second chromosome differences,
and abundance of multiple variant classes in top associations
reduce confidence in traditional functional follow-up. A full
list of variants with association P-values has been made avail-
able (File S2).

Dominant, common variants within known autosomal
PEV modifiers fail to fully account for among-
line differences

Despite low power to identify individual causal variants with
high confidence, an extensive literature on known genic
modifiers of PEV affords the opportunity to assess significance
of ensembles of variants. To quantify the impact of naturally
occurring dominant polymorphism in known modifiers of
PEV, we identified variants in Su(var) and E(var) genes.
The term, “Modifier of Variegation” was searched within
FlyBase, and over 200 genes satisfied this criterion. As our
experimental setup resulted in individuals sharing a common
X chromosome, the set of modifiers was reduced to 105 auto-
somal genes (Table S3). Variants within, or extending62 kb
of identified autosomal modifiers were grouped and results
from the above SMA were used. A total of 16,640 variants
(6153 having MAF$ 0.05) was identified in autosomal mod-
ifiers of PEV within the 109 lines having the Df(2L)2802
second chromosome background. Importantly, of common
variants (MAF $ 0.05) in this reduced set of PEV genes, only
five were also identified in the top 1000 genome-wide SMA
hits, making up ,0.5% of top associated variants. These five
variants hold overall P-value ranks of 379, 553, 772, 820, and
821, indicating that a majority of natural variants with likely
impact to phenotypic variance of PEV do not reside in, or
near, genes with known impact to PEV. GCTA (Yang et al.
2011) was used to compare the cumulative statistical expla-
nation of the among-line phenotypic variance between clas-
ses of variants as grouped by top GWA variants and top
variants within PEV modifier. Top variants identified through
GWA, rank-ordered by P-value, consistently explained a
greater proportion of among-line variance than variants
within prior known genic PEV modifiers (Figure 2 and Figure
S8). The 1000 top ranking overall variants statistically

Table 1 Partitioning the variance in PEV attributed to genetic and environmental factors

Variable

Principal Component 1 Principal Component 2

Proportion of
Variance (%) P-value

Proportion of
Variance (%) P-value

Among line 27.7 ,1.0 3 10222 15.3 ,1.0 3 10222

Second chromosome 50.9 ,1.0 3 10222 ,0.1 0.88
Vial ,0.1 0.33 ,0.33 1.6 3 1026

Among line 3 second chromosome 1.9 ,1.0 3 10222 31.2 ,1.0 3 10222

Within line and residuals 19.5 — 53.2 —
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explained 93.7% (SE = 24.8%) of variance due to genetic
differences, and the 1000 top ranking variants in known PEV
genes explained considerably less at 56.0% (SE = 22.2%).
These sets are both compared to variants randomly drawn
from the autosomal genome which explained, on average,
2.3% (SD = 2.7%) of phenotypic variance.

Although there is strong evidence for involvement of genes
from Table S3 in PEV, there is little data indicating natural
variation within these genes is responsible for differences in
PEV among lines. This is not completely surprising, however,
as many known Su(var) and E(var) genes show conservation
across species (Fodor et al. 2010), suggesting little room for
variation in coding sequence. Indeed, two additional pieces
of data further explain the lack of association with variants in
known PEV modifiers, and suggest purifying selection within
the modifiers. First, the observed SFS, within the experimen-
tal population, shows an increase in low MAF variants, and a
decrease in variants $0.05 within known PEV genes, com-
pared to sets of genes randomly selected from the autoso-
mal genome (Figure 3A). Second, known PEV modifying
genes exhibit a paucity of segregating sites compared to an
expected distribution, having fewer segregating sites than
99.7% of gene sets randomly selected from autosomes (Fig-
ure 3B).

General feature enrichment of top associations

Aswesee little evidence forassociationwithin knownSu(var)s
and E(var)s, we then ask if other genomic features show an
over-representation of association with PEV. Regulatory re-
gions are a logical next set of features to query given that we

findnostrongevidence linkingnaturalPEVvariation toprotein
coding variation, hypothesizing instead that PEV-associated
variants primarily impact regulation of protein quantities and
not protein function and quality. We make use of extensive
public data from ModEncode to classify genomic regulatory
regions. Feature-predictive combinations of specific histone
modifications have been shown to strongly correlate with
functional elements of the genome (modENCODE Consor-
tium et al. 2010), and are an excellent source of labeled data
for quick surveys. We next asked if particular signatures were
over or under-represented in the top P-value ranked associa-
tions. Using a previously built combinatorial 9-state (c1–c9)
assignment from S2 and BG3 cells (Kharchenko et al. 2011),
we queried the genome labeled with discrete, nonoverlapping
c1–c9 for an over-representation of PEV-associations. First, we
generated an expected proportion of labels using all autosomal

Figure 2 Proportion of among-line phenotypic variance explained within
the Df(2L)2802 second chromosome population using GCTA. Compari-
sons between SNP groupings include; the most significant GWA variants
(black line), variants within know PEV modifiers only (blue line), and
randomly selected autosomal variants (gray line). Shading represents SE.

Figure 3 Variants within known autosomal PEV modifiers compared to
expected distributions. (A) SFS of variants within known autosomal
modifiers of PEV (black), and variants within sets of randomly selected
autosomal genes (gray). Error bars reflect SD. (B) Proportion of known
autosomal PEV modifiers that contain segregating sites compared to sets
genes drawn randomly 10,000 times. The shaded area highlights 95% of
the expected distribution; 99.7% of randomly selected gene sets contain
a greater proportion of segregating sites than 105 known genic PEV
modifiers.
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variants (Figure S9). We then selected the top 1000 SMA
variants, as rank-ordered by P-value, and compared the
observed counts to an expected distribution. We found an
over-representation of signature, c1, consistent across BG3
and S2 cells (.1 SD) and lowered representation of signa-
tures c4, c6, and c7 (,1 SD). Signature c1 is described as
representing active promoter and TSS-proximal regions.

We next hypothesized that enrichment of top P-value
ranked associations at active promoter and TSS regions
may be the result of a small number of factors driving a signal,
i.e., altered binding of a single TF at multiple regions in the
genome is the causative force driving natural differences
PEV. To test for enrichment of top P-value ranked associa-
tions within binding sites of individual chromatin-binding
factors, analysis was extended to survey ChIP-chip and
ChIP-seq data, also made available through themodENCODE
project (modENCODE Consortium et al. 2010; Kharchenko
et al. 2011). This resource is comprised of hundreds of exper-
iments, sampled across various developmental states and cell
types, and contains observed binding sites of factors such as
histone modifications, TFs, and non-TFs. Again, for each fac-
tor, we search for enrichment of top rank-ordered SMA var-
iants within the observed binding sites (Figure S10). Instead
of finding one or two factors having variants with enriched
P-values located within binding sites, we note that several
factors displayed a strong enrichment with PEV-associated
variants (Figure 4). We observed enrichment within chroma-
tin binding sites of know PEVmodifiers, such as JIL-1 (Lerach
et al. 2006), LSD1 (Di Stefano et al. 2007), and BEAF-32
(Gilbert et al. 2006), among others. Further, we note enrich-
ment of top ranked associations in sites that suggest natural
variation has a particular impact on TSS regions that show a
“balanced” or “bistable” chromatin state. Bistable chromatin
sites are sites that may be influenced to either exhibit active
or repressed gene expression. We note statistically significant
differences in nearly all bound factors that strongly charac-
terize bistable sites; ASH1, H3K4me1, H3K4me2, H3K4me3,
andRNAPol II, including depletion ofH3K27me3 (Kharchenko
et al. 2011). Although purely statistical, the over-representation
of associations in sites bound by known PEV modifiers further
suggests that natural autosomal genetic variation primarily
modify PEV through influencing genome-wide expression rates
or chromatin state occupancy and balance, not through altering
protein function of individual genic modifiers.

Discussion

We designed an assay to identify autosomal nonrecessive
variants involved in differences in PEV between naturally
derived lines of D. melanogaster. We identified a wide range
of PEV in the population, indicating presence of natural var-
iation in chromatin state and epigenetic features. Despite
large PEV-induced pigmentation differences between pheno-
typed lines, we find little evidence for involvement of poly-
morphic sites within known Su(var) and E(var) genes that
contribute to these differences in PEV. Our top SMA associa-

tions further indicate that natural differences in response to
PEV are not the primary result of changes in protein function
among lines. We instead find that regions of enriched asso-
ciation to PEV are over-represented for promoter and TSS-
proximal regions with an additional emphasis on sites that
display bistable chromatin features. This suggests that

Figure 4 Observed enrichment of variants with association to PEV and
chromatin features from S2 cells only. Black bars represent 95% of the
expected distribution and gray bars represent the left and right 2.5% tails
of the distribution. Numeric values are the average number of variants
expected to fall within each chromatin feature. Observed counts from
variants within the 1000 top P-value ranked associations are represented
in red. Only features with observed values in the 5% tails of the expected
distribution are shown. False discovery rate was used to assess statistical
significance across the multiple tests, and significant values are noted.
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autosomal interactions with differences in PEV, i.e., differ-
ences in heterochromatin formation and/or maintenance,
are the combined result of many small effect loci that accu-
mulate differences, and are linked to modified rates of tran-
scription, either through small changes to specific TF binding
sites or broad changes in chromatin state and chromatin mark
distributions.

Furthermore, our data fit the Site Exposure Model of
Variegated Silencing (Ahmad and Henikoff 2001), where a
variegated state is the result of bistable features between TF
binding and chromatin features. Remarkably, these findings
have precedent in the PEV system and fit extremely well with
prior findings indicating a key driver behind mosaic features
of variegation is a bistable equilibrium between TF binding
and heterochromatin content (Ahmad and Henikoff 2001).
Here, it was found that by simply varying levels of a GAL4
transcriptional activator to a heterochromatin-embedded
promoter, heterochromatin state could be disrupted. In the
model proposed, termed The Site Exposure Model of Varie-
gated Silencing (Widom 1999; Ahmad and Henikoff 2001),
kinetics of DNA-histone contact dictate ability of a TF to bind
a promoter or enhancer feature, and thus influence gene
expression. Features that increase contact between TF
binding and activator, include changes to TF abundance or
changes to TF binding efficiency such as through mutated
underlying binding sequence, changes to nucleosome occu-
pancy (observed through histone and chromatin marks), or
changes to abundance of TF guide molecules. Applied to our
study, this suggests that each individual shows differences in
PEV due to a large number of sites that impact expression
rates of factors that then impact binding efficiency of TFs at
the wm4 locus. This model also predicts that changes to chro-
matin content, i.e., an increase or decrease in heterochroma-
tin, can, in turn, impact sensitive loci throughout the genome
and influence gene expression. Indeed, this fits with observa-
tions that differing natural Y chromosomes, a giant source of
heterochromatin, impact gene expression in autosomes
(Lemos et al. 2008, 2010).

However, as the effect sizes for all associated variants are
small, the combined set of variants likely do not fully explain
differences inPEVacrossour sample set; indicating there is yet
unobserved genetic variation that accounts for differences
among lines. It is important to note that this query of natural
variation was not exhaustive and only considered autoso-
mal dominant variants with a particular focus on common
variants. We reasoned that a heterozygous screen would be
informative, because most Su(var) and E(var) allelic effects
are dominant, butwenote there is every reason to believe that
recessive genetic modifiers of PEV exist also and were missed
in our screen. Importantly, we did not query G 3 G interac-
tions or Y-linked variants, known contributors to PEV and
gene expression differences in natural populations (Lemos
et al. 2008, 2010). Finally, it is important to consider that
the autosomal loci identified here only show correlation with
differences in PEV; it is not known at this time if these loci
represent causal drivers of differences in PEV.
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