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ABSTRACT Despite the many successes of genome-wide association studies (GWAS), the known susceptibility variants identified by
GWAS have modest effect sizes, leading to notable skepticism about the effectiveness of building a risk prediction model from large-scale
genetic data. However, in contrast to genetic variants, the family history of diseases has been largely accepted as an important risk factor in
clinical diagnosis and risk prediction. Nevertheless, the complicated structures of the family history of diseases have limited their application
in clinical practice. Here, we developed a new method that enables incorporation of the general family history of diseases with a liability
threshold model, and propose a new analysis strategy for risk prediction with penalized regression analysis that incorporates both large
numbers of genetic variants and clinical risk factors. Application of our model to type 2 diabetes in the Korean population (1846 cases and
1846 controls) demonstrated that single-nucleotide polymorphisms accounted for 32.5% of the variation explained by the predicted risk
scores in the test data set, and incorporation of family history led to an additional 6.3% improvement in prediction. Our results illustrate
that family medical history provides valuable information on the variation of complex diseases and improves prediction performance.
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DESPITE the existence of promising examples of genome-
wide association studies (GWAS) findings that will or

may soon be translated into clinical utility (Manolio 2013),
many studies have shown that genetic screening to predict
the risk of complex diseases currently has little value in clin-
ical practice (Lyssenko and Laakso 2013) and only shows
modest predictive power even if all relevant loci (including
rare variants) were discovered (Clayton 2009). For example,
heritability estimates of type 2 diabetes (T2D) from twin and
familial studies range from 40 to 80% (Committee on Diabetic

Twins, Japan Diabetes Society 1988; Kaprio et al. 1992),
whereas the estimated heritability proportions explained by
known susceptibility variants of T2D range from only 10 to
28%, indicating that most of the heritability remains unex-
plained (McCarthy 2010; So et al. 2011a,b). In addition to this
so-called “missing-heritability” issue, GWAS-based common
variants tend to only mildly predispose a carrier to a common
disease (Wei et al. 2009), which generates some doubt about
the overall value of the application of GWAS findings for risk
assessment in clinical care (Manolio 2010).

The most popular approaches for disease risk prediction
involve logistic regression analysiswith genotype scores.With
a training set, the regression coefficients of some significantly
associated single-nucleotide polymorphisms (SNPs) (Miyake
et al. 2009) are calculated, and the sums of the weighted geno-
type scoreswith their regression coefficients are incorporated as
a single covariate to the logistic regression for the test set
(Evans et al. 2009). However, the accuracy of these disease
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risk prediction models is generally much lower than what
heritability estimates can provide.

To better convert heritability into prediction, several ap-
proaches have been proposed to include a large number of
SNPs into the prediction model, including the use of penalized
regression methods (Wu et al. 2009; Won et al. 2015) and
random-effects models (Speed and Balding 2014). However,
these attempts still have several limitations. The computational
complexity linearly or quadratically increases with the number
of SNPs depending on the algorithms, especially for the penal-
ization approaches (Won et al. 2015). To reduce computational
cost, it might be helpful to adopt a SNP-filtering strategy (filter-
ing out less informative SNPs before buildingmodels). However,
the performance of a prediction model based on this strategy
largely depends on SNP-filtering methods.

An alternative is to incorporate familyhistory. Family history
reflects genetic susceptibility in addition to interactions be-
tween genetic, environmental, cultural, and behavioral factors
(Macinnis et al. 2011; Do et al. 2012). Therefore, it has been
repeatedly suggested that incorporation of family medical his-
tory into a risk prediction model might implicitly cover the
effects of uncovered genetic risk factors and shared gene–
environment interactions (Hariri et al. 2006; Cheng et al.
2015). Accordingly, family history is often expected to be an
important risk factor in clinical assessment (Hariri et al. 2006).
Moreover, a recent theoretical work shows that including fam-
ily history decreases the effective population size in prediction
designs, thus resulting in higher prediction accuracy (Lee et al.
2017). However, in spite of the known importance of family
history, it is generallymeasured by an indicator variable (show-
ing the existence of known affected relatives) and this simple
indicator has been incorporated into the prediction models.
There is usually a great amount of heterogeneity among sub-
jects with respect to familial relationships of relatives with
known disease status, which has thus far limited the utility of
this simplified binary variable for disease prediction.

In this article, we propose a new disease risk prediction
model based on penalized regression with the following fea-
tures: (i) a certain number of SNPs selected according to the
absolute value of the best linear unbiased prediction (BLUP),
(ii)penalizedlogistic regressionanalyseswereperformedusing
a number of SNPs leaving important predictive clinical vari-
ables unpenalized, and (iii) a new method is applied to in-
corporate the general family history of diseases. Application of
ourmodel to T2D patients in a Korean population showed that
incorporation of family history could improve the amount of
variation explained in the model. The model and approach
proposed highlight the importance of family history of diseases
fordiseaseprediction,and isexpected tobecomeauseful tool to
explain the variation of complex diseases.

Methods

In this section, we first introduce the process by which we
evaluated a subject’s conditional mean (CM) of disease risk
using his/her family history and prescreened SNPs based on

the BLUP (Figure 1). With these variables, we then present
how sparse modeling can be applied to build a risk predic-
tion model for complex disease. Finally, we introduce two
SNP chip data sets used in this study and propose a method
of estimating the variance for each variable in the prediction
model.

Evaluating the CM of disease risk using family history

Suppose there are n subjects whose genotypes are known and
each subject i has ni ði ¼ 1; . . . ; nÞ relatives whose genotypes
are unknown, while disease status and relationship with
subject i are available. We began our model by evaluating
the CM of disease risk using the standard liability threshold
model (Falconer 1967). We assume that disease status is de-
termined by the unobserved liabilities (denoted as L), and if
they are larger than a threshold T, which is determined
by the disease prevalence, a subject will become affected.
We further assume that these liabilities are normally dis-
tributed. Here, Yi ¼ ðYi; Yi1; . . . ; YiniÞ

t; Li ¼ ðLi; Li1; . . . ; LiniÞ
t,

and Wi ¼ ðWi;Wi1; . . . ;Wini
Þt, respectively, represent pheno-

types, liabilities, and environment vectors of subject i and
his/her family. For a given subject, we only use phenotypic
information from their relatives, and we use subscript ij to
indicate relative j of subject i:We further denote by fj and cjj9
the inbreeding coefficient for relative j of subject i and the
kinship coefficient between two relatives j and j9 of subject i;
respectively. It should be noted that cjj9 is 0 if subjects j and j9
are in different families. We then define the kinship coeffi-
cient matrix asCi; where ðCiÞjj9 is 2cjj9 for j 6¼ j9; and is 1þ fj
otherwise. We denote a k3 k dimensional identity matrix by
Ik; and k dimensional column vector of which all elements are
0 by 0k: With these notations, we assume that

Li ¼ Wiaþ Pi þ Ei: (1)

Pi � MVN
�
0niþ1;s

2
gCi

�
; Ei � MVN

�
0niþ1;s

2
e Iniþ1

�
: (2)

where a indicates the coefficient vector of fixed effects, and
s2
g and s2

e indicate the variances of the random polygenic
effect and random residual effect, respectively.

Asaway to include familyhistory,we introducedavariable,
CM,which is definedas an individual’s expected liability given
case-control status of their relatives (Kim et al. 2017); CM
reflects the likelihood of an individual to develop the disease
(here, T2D) using only the knowledge of whether their rela-
tives had the disease. Then, when comparing different re-
gression methods, we included CM as we do other clinical
covariates. To evaluate CM for each individual, it is necessary
to integrate over all possible liabilities for the remaining in-
dividuals. Given an individual’s case/control status, their li-
ability takes a truncated normal distribution, so CM represent
an expectation of a multivariate truncated normal distribu-
tion, which can be evaluated in R by using the pmvnorm()
function in the mvtnorm package (see Supplemental Mate-
rial, Supplementary Note in File S1 for detailed methods).
We implemented our method of evaluating familial risk in R
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and the source code and R package are available on Github
(https://github.com/JungsooGim/familyRisk).

SNP prescreening

To select an effective list of SNPs to test the model, we
considered the BLUP of SNP effects using GCTA (Yang et al.
2011), which is a mixed linear model with the random ef-
fects of SNPs; i.e., Y ¼ Wbþ Gbþ e with b � MVNð0n;s2

g InÞ
and e � MVNð0n;s2

e InÞ; thus leading to the mixed model
Y � MVNðWbþ s2

gGG9þ s2
e InÞ:Here, G is a genotype matrix

in training sets. The variance components s2
g and s2

e are
solved using restricted maximum likelihood, which also pro-
vides an estimate of each individual genetic random effect, b:
From this, the BLUP of SNP effects can be obtained via
b̂ ¼ G9K21ðY 2Wb̂Þ=ŝ2

g ; and it can be simply obtained with
GCTA (Yang et al. 2011). We ranked SNPs based on the
absolute value of these estimated SNP effects. We also se-
lected a list of SNPs based on the P-value from the univariate
logistic regression for each SNP with age, sex, body mass
index (BMI), systolic blood pressure (SBP), and diastolic
blood pressure (DBP) adjusted.

Penalized regression method

Let Xi ¼ ðZi;WiÞ and yi be a covariate vector and a dichoto-
mous phenotype for subject i; and affected and unaffected
subjects are coded as 1 and 0, respectively. We further denote
Wil and Zim as coded genotypes of the lth SNP and the mth
clinical covariate, respectively. The p-dimensional coefficient
vector b consists of p1 genetic variants and p2 clinical vari-
ables. Under this model, b can be estimated by minimizing
the penalized negative log-likelihood:

1
n

Xn
i¼1

n
2yiX9

ibþ log
�
1þ exp

�
X9
ib
��o

þ
Xp1
l¼1

JlðjbljÞ: (3)

where Jl is a penalty function and l is a vector of a tuning
parameter that can be determined by a search on an appro-
priate grid. Note that only genetic variants are penalized in
Equation 3.

For model analysis, Lasso (Tibshirani 1996), Ridge (Hoerl
1970), Elastic-Net (EN) (Zou and Hastie 2005), smoothly
clipped absolute deviation (SCAD) (Fan and Li 2001), and
Truncated Ridge (TR) (Chatterjee and Lahiri 2011) can be
performed depending on the choice of penalty function.
Lasso, Ridge, and EN were analyzed under the default set-
tings of glmnet (Friedman et al. 2010). For SCAD, whose
penalty is defined as @JlðtÞ=@t ¼ minfl; ðal2tÞþ=a2 1g;
we used a ¼ 50 for our own optimization algorithm. For TR
estimates, we first obtained ridge estimates with tuning pa-
rameter l and then truncated them with a level a; so that the
coefficients with absolute values smaller than a are set to
zero. For the appropriate choice of a truncating level, 20 grid
points (similar to EN) equally spaced in logarithmic scale
fromminimum tomaximum ridge estimates were considered
for a: All analyses were performed using R.

Building a disease risk model using the penalized
regression method

In this section, we describe the brief steps for developing a
disease risk model with the estimated CM score.

1. Covariates: age, sex, BMI, SBP, and DBP are considered as
clinical covariates, and are included for all regressions.

2. Summarizing family history: calculate CM for all subjects
with a familial history of disease.

3. Data preparation for cross-validation: conduct 10-fold
cross-validation; that is, the data set is divided into 10 dif-
ferent subdata sets, one of which is used as a test set and
the other nine are used as training sets.

Figure 1 A schematic overview of the analysis. Individuals in the main data set include genotyped SNPs, while the external data set of those individuals
includes relative’s relationship and disease status. A 10-fold cross-validation scheme was applied to build and test the performance of the prediction
models
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4. SNP screening for the prediction model: using the training
set in each cross-validation replicate, SNPs are pre-
screened with the different criteria (P-value and BLUP)
as described in SNP prescreening in the previous section
ofMethods; for P-value criteria, SNPs with the top-k small-
est P-values are selected, and for BLUP criteria, SNPs with
the top-k largest absolute BLUP values are selected; here,
we considered k = 100, 500, 1000, 5000, 10,000, and
20,000.

5. Model building: perform Lasso (Tibshirani 1996), Ridge
(Hoerl 1970), EN (Zou and Hastie 2005), SCAD (Fan and
Li 2001), and TR (Chatterjee and Lahiri 2011) for penal-
ized regression; tuning parameters for each penalized
regression are selected with an additional 10-fold cross-
validation using the training set; the training set is divided
into 10 different subdata sets, and for different choices of
tuning parameters, the prediction model is obtained with
the other nine subdata sets; the area under the curve
(AUC) is then calculated with the remaining subdata set,
and tuning parameters that result in the largest AUC are
finally chosen.

6. Model validation: the prediction models for penalized re-
gressions are applied to the test set, and the AUCs are
calculated.

7. Performing cross-validation: repeat steps 4–6 for the dif-
ferent combinations of training and test sets.

Please note that �285k genotyped SNPs were used in this
work by assuming less chance of linkage disequilibrium (LD)
among prescreened SNPs in step 4. The assumption is likely to
be falsified with a larger number of SNPs. In this case, an
additional step of filtering SNPs within LD might be necessary.

Estimating variation in penalized logistic regression

To estimate the variation of each variable in the penalized
regression model, we used the deviance calculated by com-
paring the predicted and true phenotypes in the test set.
Specifically, we built the prediction model with a training
set and themodelwasapplied topredict thephenotypesof test
samples. Then, the deviance was obtained by comparing the
predicted phenotypes and the true phenotypes for those
samples. If we denote the predicted and the true phenotypes
by bmi and yi; respectively, the deviance is defined as

D ¼
X
i

�
yi log

yibmi
þ ð12 yiÞlog 12 yi

12 bmi

�
: (4)

We used 10-fold cross-validation and the deviances for all
subjects were evaluated by summing all deviances in the test
set. Based on Equation 4,we defined the variation explained by
the currentmodel (DF) usingMcFadden’s R2 (McFadden1974)

1 2
DF

D0
3 100;

where D0 is the deviance of the null model. Then, the var-
iation unexplained by the full model can be obtained by

12McFadden’s. If we denote the reduced model whose ith
element is excluded by Di; and further defined the relative
deviance explained by the ith variables as

1 2
DF

D0
3 100 2

�
1 2

Di

D0
3 100

	
¼ Di 2DF

D0
3 100:

(5)

Equation 5 represents the relative deviance explained by the
ith variables among total variation.

Data description

To demonstrate the validity of our proposed model and to
illustrate its application to disease risk prediction, we inves-
tigated T2D from two real data sets: KARE (Korea Association
REsource) and SNUH (Seoul National University Hospital).
Among the disease traits in KARE, T2D has the most well-
investigated familial information, and additional T2D cases
and theirwell-organized familial historieswereavailable from
SNUH. We merged the two data sets by adjusting for a
platformdifference (matchingSNPs existing inbothplatforms
and imputing missing genotypes using Shapeit). Overall, we
analyzed the data of 3692 subjects (1846 cases and 1846 con-
trols) with a total of 267,063 SNPs.

As a part of the Korean National Institute of Health (NIH)’s
project, the KARE cohort was recruited to construct an indica-
tor of diseases with a genetic component in an attempt to
predict disease outbreaks. Genotype information for 8842 par-
ticipants was received from the Korea Center for Disease Con-
trol and Prevention. For these participants, 440,794 SNPs
were genotyped with the Affymetrix Genome-Wide Human
SNP array 5.0 and 267,064 SNPs remained in our analyses
after the following quality controls: (1) P-values for Hardy–
Weinberg equilibrium of , 1025, (2) genotype call rates
, 95%, and (3) minor allele frequencies , 0.05. We also
eliminated subjects with gender inconsistencies, whose iden-
tity in state was . 0.8, or whose call rates were , 95%. Par-
ticipants were asked whether they have affected relatives and,
if so, their ages and familial relatedness. The family histories of
diseases, including T2D, are also available for the KARE data.
Finally, we randomly selected controls to achieve the same
number of cases and controls, and thus used 1846 T2D cases
(1167 from KARE and 679 from SNUH) and 1846 randomly
selected controls.

For SNUHdata, T2Dpatientswere diagnosed as T2Dusing
the World Health Organization criteria for Seoul National
University Hospital, and 681 subjects with a positive family
history of diabetes in first-degree relativeswere preferentially
included. The familyhistory of their relativeswasbasedon the
recall of the proband. However, familymemberswere encour-
aged toperforma75goral glucose tolerance test, and subjects
that were positive for a glutamic acid decarboxylase autoan-
tibodies test were excluded. In total, the disease statuses of
7825 relatives of 681 subjects were available, and 2875 of
these relatives of the subjects hadT2D.T2Dpatients originally
diagnosed from Seoul National University Hospital were
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genotyped with the Affymetrix Genome-Side Human SNP
array 5.0, and 480,589 SNPs were obtained. The same con-
ditions for quality control with KARE were applied, and two
subjects and 213,526 SNPs were excluded. In total, 679 T2D
patients with 267,063 SNPs were used for the analysis.

Since these twodata setsmight be genetically distinct, the
prediction is unduly driven by inclusion of the SNUH cases
who (unlike the KARE individuals) do not have matched
controls. Thus, we checked whether this was the case by
drawing the multidimensional scaling plot and the minor
allele frequency scatterplot and foundnodifferencebetween
these two data sets (Figure S1 and Figure S2 in File S1). We
downloaded the data sets from www.nih.go.kr/NIH fol-
lowed by an approval process from the Korean NIH (contact
to biobank@korea.kr for further information).

Data availability

The authors state that all data necessary for confirming the
conclusions presented in the article are represented fully
within the article. All analysis scripts and the dataset used
in the article are available upon request. R script and Shell
script for the analyses performed in the article are also avail-
able at http://healthstat.snu.ac.kr/software/revealing_MH).

Genotype datasets for KARE project can be downloaded from
www.nih.go.kr/NIH followed by an approval process from
Korean NIH. For more information about the approval pro-
cess, please contact biobank@korea.kr.

Results

Characteristics of the variables

The methodology described earlier for estimating the CM for
all subjects using their relatives in a pedigree was applied to
the real data sets. Figure 2 shows the characteristics of six
covariates included in the prediction model. As shown in
Figure 2A, the mean values of CM are not much different
between T2D cases and controls. However, more subjects
with T2D had a significantly higher CM value compared to
control subjects (mean values for cases and controls are 0.12
and 0.03, respectively, with P , E210 from a two-sample
t-test). Note that the individual with no family history has
CM = 0. Similarly, all other clinical covariates are also signif-
icantly different between cases and controls (P , 0.05). The
boxplots of other clinical covariates between cases and controls
are shown inFigure2,B–F.Wealso investigated the characteristics

Figure 2 Clinical variables between cases and con-
trols. Conditional mean (CM) (A), age (B), sex (C),
body mass index (BMI) (D), systolic blood pressure
(SBP) (E), and diastolic blood pressure (DBP) (F) are
shown in boxplots. Two-sample t-test was performed
to obtain P-values (*, 0.05; ***, 0.001). For sex, a
x2 test was conducted.
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of both sets of SNPs selected according to the P-value and
BLUP criteria, and found a similar pattern (Figure S3 in File S1).

Comparison of the performance of the tested models

Thepurposeof thisworkwas to investigate theperformanceof
prediction models using family medical history and to con-
struct the best T2D risk predictionmodel. For this purpose,we
compared the performance of five different penalized regres-
sion methods by varying the number of SNPs with different
measuresof familyhistory.Tocompare theperformanceofCM
with other methods, we considered an alternative method,
counting aweightedmean (WM)number of affected relatives
in each pedigree, e.g., if individual one had six relatives of
which three had T2D, a score of 3/6 is assigned. The key
finding was that family history played a critical role in risk
prediction for all methods (Figure 3 and Table S1 in File S1).
Note that the performance tendency across different methods
of considering family history, the number of SNPs, and the
penalty can be more readily seen by bar plots (Figure 3),
while the specific value can be found in the Table S1 in File
S1.

In the majority of cases, TR and Ridge revealed higher
prediction performance compared to the other methods. In-
terestingly, similar behaviorwas observed betweenRidge and
TR, and between Lasso and EN. We also investigated the

models with the SNPs filtered by P-value criterion and ob-
served a similar result (Table S2 and Table S3 in File S1). For
a small number of SNPs, use of the P-value criterion showed
better performance. However, the difference became negligi-
ble (or even reversed in some cases) as the number of SNPs
increased. Among all comparisons, the best performance
(AUC = 0.736) was observed when using Ridge and TR with
CM and 5000 SNPs selected by the BLUP criterion (Table S1
in File S1). The general performance of the model with the
WM variable wasmuch lower than that of themodel with CM
and the performance is slightly higher than that of the model
without family history in terms of AUC (Figure 3). Note that
the SD of the AUC was also evaluated and the range was
0.012–0.037. The best AUC value we obtained here is similar
to that obtained previously (Aekplakorn et al. 2006; Lyssenko
et al. 2008).

To further investigate theeffect of the familyhistoryvariable
without SNPs, we built the logistic regression models without
anySNPs. Basedon thenested10-fold cross-validation scheme,
which was applied in the building steps of our model, we
measured the performance of the logistic regression model
without andwith CM, orWM.Without CM, the AUC valuewas
0.672,but increased to0.676withWMincluded.WhenCMwas
included, AUC was 0.730. This value is similar to the highest
AUC (0.736) obtained with 5000 additional SNPs. Taken

Figure 3 Model comparison with different family history measures. Prediction performance (AUC) is depicted without family history (red), with
weighted mean (blue), and with conditional mean (green). AUC, area under the curve; EN, Elastic-Net; SCAD, smoothly clipped absolute deviation;
T.Ridge, Truncated Ridge.
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together, the model including CM increased the prediction
performance the best in terms of AUC.

We next measured the time taken for the analysis for each
method, and the results are shown in Table 1. We used
10 cores [central processing units (CPU)] of our computing
system (Intel Xeon CPU E5-2620 v2 @ 2.10 GHz). As can be
seen, Ridge was the fastest method and truncated ridge fol-
lowed. EN and SCAD were too slow to process the large ge-
netic data sets even in our computing system. Note that
unstable server usage might affect the time for each analysis
but the tendency described here was steady.

Variation explained by each variable

To estimate the variation explained by each variable, we
investigated the model with 5000 SNPs selected by the BLUP
(please see the File S2 for BLUP of the SNPs). As described in
theMethods section, we fitted the reduced model to evaluate
the residual deviance of each variable, calculated by compar-
ing the predicted and true phenotypes in the data set, and the
overall results are shown in Figure 4. Among the variation of
the model including only an intercept, 42.0% of the total
variation was explained by the full model, which includes
all covariates (age, sex, BMI, SBP, DBP, CM, and 5k SNPs)
(Figure S4 in File S1). The largest portion (58.0%) of the
variation remained unexplained, indicating that the variables
in themodel are not sufficient to explain the data. The second
largest portion (32.5%) was derived from the SNPs. Even
though the prediction performance was not significantly in-
creased with these SNPs, they nevertheless explained about
one-third of the total variation. Genetic heterogeneity of the
disease can be one possible reason for this seemingly incon-
sistent result. If a substantial proportion of variance is
explained by a certain variable, it is usually expected to have
a high predictive power. However, the better model fit does
not always lead to the higher prediction performance in the
existence of genetic heterogeneity of the disease.

In contrast, CM, which showed a dramatic increase in the
prediction ability based on the AUC value, explained only
6.3% of the total variation. We also analyzed the model
without incorporating family history to compare the effect
of CM to the proportion of variation. We excluded the CM
variable in the final model, and repeated the analyses to
generate a pie chart. We found a �9% decrease (larger than
the 6.3% CM proportion) from the total amount of variation
explained with CM to that without (Figure S5 in File S1).

Discussion

Previous studies have documented the effectiveness of com-
bining many SNPs using regularization methods or incorpo-
rating family history in improving the prediction performance
of disease risk (Macinnis et al. 2011; Do et al. 2012;Won et al.
2015). However, these studies have either been one-sided
designs or were not simultaneously focused on both sides;
i.e., combining more SNPs and also incorporating family his-
tory. In this study, we tested the extent to which combining
SNPs and incorporating family history could improve risk
prediction, and applied this approach to a data set including
a group of T2D patients and controls. We first developed a
method to estimate the CM of being affected by a disease for
subjects in a pedigree. We then compared the prediction per-
formance of six different regularization methods using SNPs
selected by the P-value obtained from logistic regression and
the BLUP value obtained from a mixed-effects model. We
adopted a nested cross-validation scheme, which is time-
consuming but known to be more reliable (Varma and Simon
2006), to select the model showing the best prediction per-
formance. Finally, we suggest a new method for estimating a
variation explained by each variable in penalized regression
models with a binary outcome (e.g., a case-control study).

In virtually all cases, the inclusion of family history (eval-
uated as CM) in the model greatly improved the prediction
performance, while inclusion of SNPs showed only slight
improvement.Thisfinding indicates thatproper incorporation
of family history tends to produce a more effective genetic or
environmental influence on the prediction results. Therefore,
these benefits gained from incorporating CM might address
the need for more rigorous investigations of gene–gene or
gene–environmental interaction effects across a wide range
of complex diseases. More importantly, a recent theoretical
work has shown that using family information in training
data would reduce the effective population size, which would
lead to a better prediction model (Lee et al. 2017).

Table 1 Analysis time

# of SNPs Ridge Lasso EN SCAD T.Ridge

100 15.6 sec 13.2 sec 4.7 min 37 min 1.9 min
500 1.2 min 1.2 min 25.1 min 5.2 hr 6.0 min
1,000 2.6 min 2.2 min 43.5 min 12.2 hr 11.1 min
5,000 12.3 min 53.7 min 1.2 D �3 daysa 34.4 min
10,000 24.3 min 1.7 hr 2.3 D �6 daysa 1.7 hr
20,000 47.7 min 3.4 hr 3.61 D �12 daysa 3.3 hr
# , number; EN, Elastic-Net; SCAD, smoothly clipped absolute deviation; T.Ridge,
Truncated Ridge.

a Not measured but estimated.

Figure 4 Proportion of variation explained by each variable in the final
model. For six clinical variables [age, sex, body mass index (BMI), systolic blood
pressure (SBP), diastolic blood pressure (DBP), and conditional mean (CM)],
the individual proportions of variation are shown, whereas variation explained
by the 5000 SNPs is shown according to their summed proportion.
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It has been thought that penalized regressionmodels using
all SNPs may simultaneously provide optimal performance
even though it is infeasible in many cases because of the
computational difficulty. Our results revealed that the addi-
tional power improvement is almost negligible if the number
of SNPs is sufficiently large, compared to the scenario where
all SNPs are used. Therefore, we can conclude that a well-
developed feature selection method with a sufficiently large
numberofSNPspreserves theoptimalpredictionaccuracyand
is beneficial because computational burden can be drastically
reduced (Fang et al. 2008). In this work, we identified the
best-performed 5000 SNPs prescreened by the BLUP. The top
5000 SNPs that were prescreened by our BLUP-based selec-
tion method showed the highest AUC value. Note that we
also analyzed the prediction model including all (�300k)
SNPs using MultiBLUP (Speed and Balding 2014) and the
AUC was �0.6 regardless of CM inclusion. MultiBLUP as-
sumes binary phenotypes as continuous values. This requires
ridge penalty to be applied to the linear regression, not logis-
tic regression, resulting in a likelihood that is quite different.
Logistic regression is usually similar to the linear regression if
the predicted probability is �0.5; yet, in our penalized re-
gression model, there are many covariates that can push
the probability away from 0.5, Thus, this may result from
the less predictive performance of MultiBLUP. Interestingly, the
variation explained by these BLUP-based 5000 SNPs (32.5%)
was similar to the variance estimated by all SNPs (35%) reported
to date (Speed et al. 2012).

However, there are some limitations of the study that are
worth noting. First, we did not consider other types of struc-
tural variants such as copy number variations, which might
also affect the risk of T2D, and their specific contribution is
starting to be reported (Dajani et al. 2015). Second, it would
be preferable to include rarer risk alleles with large effects
and gene–gene or gene–environment interactions into the
prediction model. More of the genetic risk can likely be
explained as more causal risk variants are identified. How-
ever, rare variant analyses or interaction analyses require
more complicated statistical methods to effectively analyze
the effects. Also, gene–gene and gene–environmental inter-
actions are important, but have not been clearly considered in
this work. Note that the model might capture some familial
phenotypic correlation due to environmental factors, which is
likely proportional to kinship. Thus, genetic correlation can
be distorted by environmental interaction. Therefore, the ul-
timate goal of future work is to integrate advanced statistical
methods with accumulating genetic data, environmental ef-
fects, and biological knowledge to improve the efficiency of
detecting complex interactions. In addition, no effect of LD
among SNPs was considered here. However, if a prediction
model includes many SNPs in high LD, the locus effect gets
divided between many SNPs in LD and might affect the pre-
diction performance, especially with the BLUP-filtering crite-
rion. We assumed no such LD effect because a small set of
SNPs were selected from only 285 k genotyped SNPs and
they were all distant to each other (Figure S3 in File S1).

However, an inclusion of the LD-pruning step is desirable
with a larger number of genotyped SNPs or imputed SNPs.
Also, there are number of measures of predictive perfor-
mance, but we only considered AUC in this work. The main
goal of this report was to compare the performance of the
prediction model with and without family history (CM) using
the AUC, and was not carefully stressed. However, it should
be noted that for practical purposes, it is generally recom-
mended that a prediction model provides both positive and
negative results with the optimal threshold.
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