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Abstract

Purpose—To develop a time-efficient automated segmentation approach that could identify 

critical structures in the temporal bone for visual enhancement and use in surgical simulation 

software.

Methods—An atlas-based segmentation approach was developed to segment the cochlea, 

ossicles, semicircular canals (SCCs), and facial nerve in normal temporal bone CT images. This 

approach was tested in images of 26 cadaver bones (13 left, 13 right). The results of the automated 

segmentation were compared to manual segmentation visually and using DICE metric, average 

Hausdorff distance, and volume similarity.

Results—The DICE metrics were greater than 0.8 for the cochlea, malleus, incus, and the SCCs 

combined. It was slightly lower for the facial nerve. The average Hausdorff distance was less than 

one voxel for all structures, and the volume similarity was 0.86 or greater for all structures except 

the stapes.

Conclusions—The atlas-based approach with rigid body registration of the otic capsule was 

successful in segmenting critical structures of temporal bone anatomy for use in surgical 

simulation software.
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Introduction

The temporal bone comprises the lateral and inferior aspect of the skull and houses a number 

of critical structures including the mechanisms for hearing and balance, the facial nerve 

which supplies motor function to the muscles of facial expression, as well as the primary 

vascular structures for the brain (Table 1). Surgical management of ear disease requires both 

cognitive and technical skills that are developed initially over 5 years of training and 

continue to develop over time during clinical practice. One of the most difficult technical 

aspects of ear surgery is mastery of temporal bone dissection. Surgery on the temporal bone 

requires drilling through various densities of bone and identifying surgical landmarks. This 

is accomplished by thinning of bone to the point that it becomes transparent without 

violating the critical structure.

Our group has been developing a surgical simulation system to provide a platform for 

training in a safe and cost-efficient virtual environment. This platform uses image data from 

CT scans of human anatomy. In order for our system to have the necessary visual fidelity to 

be useful, the CT image data must be processed to identify the critical structures noted 

above. Once these individual structures are identified, each one must be uniquely enhanced 

to provide the subtle cues needed to identify them within the embedded bone. Additionally, 

identification of these structures provides the basis for automated assessment and feedback 

as the surgical technique is assessed by tracking virtual surgical instruments in relation to the 

critical structures.

The gold standard for identifying the critical structures within the image data has been to 

manually trace each one from individual sections of the three-dimensional volume. This is a 

painstakingly slow process that requires a high level of anatomical expertise. An automated 

method for identifying multiple structures within temporal bone anatomy could speed this 

step up considerably and remove bias from the process. An automated segmentation 

approach would allow easy addition of additional temporal bones to the simulation system 

providing variations for practice. It would also allow other institutions to acquire and process 

image data suitable for the training system. Additionally, it will provide the necessary 

efficiency required to load patient data into the surgical simulator for pre-surgical rehearsal 

and support a fully automated robotic system in the future.

Methods

The overall goal of this study was to develop an automated approach for segmenting the 

ossicles, cochlea, facial nerve, and semicircular canals in clinical CT images of temporal 

bone. The approach was based on images that were obtained from ex vivo specimens of 

temporal bones. An atlas-based segmentation was developed that was based on the accurate 

spatial registration of the otic capsule. Six bones were used to develop the ‘gold standard’ 

atlas and the ROIs surrounding each anatomical structure listed. These ROIs were used for 

the intensity-based segmentation of temporal bone anatomy. A total of twenty ‘test’ data sets 

were evaluated using this approach. The results from the automated segmentation were 

visually and quantitatively compared to manual tracings validated by an expert in temporal 
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bone anatomy (GW). Three quantitative metrics, DICE, average Hausdorff distance (avg 

HD), and volume similarity (VS) were used for evaluating the segmentation of the individual 

structures. Detailed methods are presented below.

Study sample

A total of 26 de-identified temporal bones (13 left, 13 right) were obtained from the Ohio 

State University Body Donation program (21) and the University of Cincinnati (5). Six of 

the bones (3 left, 3 right) were used to develop the automated registration parameters and the 

region-of-interest (ROI) masks used for the automated segmentation. The remaining bones 

were used for testing the atlas-based segmentation approach. All of these bones were adult 

specimens and did not have any otologic pathology. They were chosen at random from a 

larger repository of specimens used to develop the temporal bone surgical simulator 

developed at the Ohio SuperComputer Center. Ohio State University Institutional Review 

Board approval was not required for this study because the bones were de-identified 

cadaveric specimens.

Image acquisition

Clinical X-ray computed tomography (CT) images of the bones were acquired at 140 kVp 

and exposure times of 1000 mA s using a Siemens 64-bit detector Somatom Sensation™ 

(Siemens Healthcare GmbH, Erlangen Germany). Axial slices were collected over a 119-

mm field of view (FOV) with an in-plane voxel size of 0.232 mm and slice thickness of 0.4 

mm. A left temporal bone image was randomly chosen to be used as the reference image for 

registration. This image was flipped horizontally for spatial registration of the right bone 

images.

Registration

The 16-bit images were linearly rescaled to 8-bit so that only bone was present in the image 

for registration. The automated registration was performed in two steps. The first step was a 

lower- resolution (subsampled by 2) rigid body registration of the whole bone. This was 

done in order to get the data sets in the same general registration space prior to a higher-

resolution registration of a region that included the otic capsule. Elastix 4.7 [1,2] was used 

for the registration with the following parameters: a multi-resolution pyramid with 4 levels 

using mutual information, standard gradient descent optimizer with a maximum number of 

iterations 2000, and a third-order B-spline interpolator (Fig. 1a). The second step was a rigid 

body registration of the full resolution image that included only the ROI of the otic capsule, 

the dense bone that invests the cochlea, vestibule, and the SCCs (yellow circle in Fig. 1a). 

The parameters used for this registration were the same as for the first registration except the 

number of resolutions in the multi-resolution pyramid was 3. Mutual information has been 

found to be useful in both multi- and unimodality registration applications. The parameters 

used for the registrations in this study were those suggested in the Elastix manual [3] in 

which the authors took into account computation speed and overall quality of the registration 

results. We have found that these settings work well for a variety of other uni- and 

multimodality registration applications performed in our laboratory. We did, however, 

evaluate the number of resolutions required for the multi-resolution pyramid and the number 
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of iterations used for the gradient descent optimizer and determined the settings we have 

presented here were the best for this application.

Segmentation

ROI masks for each structure (cochlea, malleus, incus, stapes, lateral SCC, posterior SCC, 

superior SCC, vestibule, facial nerve) were manually traced using an average image of 6 

spatially registered (3 left and 3 rights) data sets (Fig. 2). The manually traced masks were 

dilated by three voxels to allow for slight variation in size and position of structures.

The 16-bit images were linearly rescaled to 8-bit so that bone and soft tissue were present in 

the image for automated segmentation. The images were resampled to an isotropic voxel 

size of 0.232 × 0.232 × 0.232 mm for further processing and aligned with the reference 

image and the ROI atlas using the rigid body transformations determined in the automated 

registration step. An unsharp mask (sigma = 1.5, mask weight = 0.6) was used to enhance 

bony structures in the image. Otsu’s multilevel threshold [4] was then applied to each slice 

to segment the image into three components (background, soft tissue, and bone). The 

malleus and incus were segmented using the ROI mask and segmented bone from Otsu’s 

multi threshold. The cochlea, SCCs, and vestibule were segmented using the ROI mask and 

the soft tissue and background from Otsu’s multi threshold. The initial segmentation for 

each of these structures was ‘cleaned’ by performing a 3D opening operation on each 

structure and using a connected components algorithm [5] to remove all objects except the 

largest object (Fig. 3). The malleus and incus structures were further refined by dilating the 

objects by one voxel and adding in segmented soft tissue from Otsu’s multi threshold. The 

stapes was segmented by convolving a 5 × 5 square sharpening filter (central pixel = 24, 

surrounding pixels = −1) with the original image, globally segmenting the filtered image in 

the ROI mask, and size excluding objects less than 0.32 mm3.

The facial nerve was segmented using three different masks, one in the tympanic and two in 

the mastoid region. The tympanic region of the facial nerve was segmented using the 

manually outlined ROI mask. The mask for the upper part of the mastoid region was based 

on the observation that this segment of the facial nerve is fairly straight. Therefore, a 

maximum intensity projection (MIP) image over that region was used to segment the facial 

nerve using the last slice of the tympanic region as a reference. In the lower region of the 

mastoid, where the nerve starts to curve toward the stylomastoid foramen, a fixed mask ROI 

of 13 × 13 pixels centered about the segmented nerve from the previous slice was used for 

spatially tracking the nerve in this segment. The initial facial nerve segmentation was 

‘cleaned’ by eroding the segmentation by one voxel in each slice and tracking the segmented 

object with the nearest centroid along the length of the facial nerve. The entire segmented 

nerve was then dilated by one voxel.

Validation

The results from the automated segmentations were visually and quantitatively evaluated. 

For the quantitative evaluation, the temporal bone structures were manually traced in the CT 

images by a technician trained in temporal bone anatomy (BH) and confirmed by an 

experienced surgeon (GW). Three quantitative metrics, DICE, average Hausdorff distance 
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(avg HD), and volume similarity (VS), were reviewed for each structure using Taha and 

Hanbury’s [6] quantitative evaluation tool. The DICE coefficient is a measure of the amount 

of overlap between two segmented structures. The average Hausdorff distance is the 

Hausdorff distance averaged over all points and volume similarity measures how close the 

two segmented volumes are. In the case of lower DICE values, the average Hausdorff 

distance and volume similarity indicate whether the segmentations are similar but possibly 

shifted in space from one another. Visual verification was performed by comparing the 

automatically segmented structures with the manually segmented structures in a 2D and 3D 

viewer.

Results

An example of the results of the rigid body registrations is shown in Fig. 1. The red bone is 

the reference image, and the green bone is the moving image. Where the two bones overlap, 

you will observe yellow. The registration in the otic capsule, where the temporal bone 

anatomy is usually similar between subjects, is visually accurate. This is further illustrated in 

the average image of the six spatially registered images used for the atlas displayed in Fig. 2.

An example of the automated segmentation based on the ROI masks is presented in Fig. 4. 

The labeled structures are color-coded for easy reference. Overall, the segmentation of the 

structures looks consistent between the manually and automatically segmented images with 

slight differences observed in the delineation of the SCCs.

A 3D volume rendering of the manually and automatically segmented structures is presented 

in Fig. 5. This further illustrates the quality of the automated segmentation. The results of 

the quantitative metrics are presented in Table 2. The DICE metrics are on the order of 0.70 

or greater for all structures except the stapes. A DICE value of greater than 0.7 is considered 

to be good agreement between the structures [7]. The average Hausdorff distance is less than 

one voxel for all structures, and the volume similarity was 0.86 or greater for all structures 

except the stapes. The DICE metrics are lowest for the stapes, individual SCCs, and the 

facial nerve. However, when we combine the vestibule and SCCs into one segmented object, 

the DICE metric increases close to 0.90. This is in part due to the difficulty of delineating 

the starting and ending points of the separate semicircular canals. The DICE metric for the 

stapes is much lower than would be acceptable for structure correspondence although visual 

inspection of the automated segmentation of the stapes confirmed that the stapes is 

segmented correctly and is very similar to that of the manual tracing but is smaller in overall 

volume (see stapes highlighted in aqua in Fig. 4). This is reflected in the volume similarity 

metric that indicates that the automated segmentation volume is approximately half that of 

the manually traced volume.

Discussion

Our overall goal was to develop an automated segmentation approach that could identify 

critical structures for visual enhancement and assessment of performance in our surgical 

simulation software. The results of visual inspection of the segmentation and the validation 

metrics for our method indicate that the atlas-based approach we have developed is good. 
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For example, the DICE metrics are greater than 0.8 for most structures, the volume 

similarity is 0.86 or greater for most structures, and the average Hausdorff distance is less 

than one voxel for all structures. The two structures that had lower DICE metrics were the 

stapes and facial nerve. Although the mean stapes DICE metric was very low, it was 

segmented correctly. The DICE metric is not a suitable metric for evaluating small thin 

structures [6,8], and the stapes is only 2 voxels thick at this spatial resolution. Its thin size 

coupled with its low gray-level intensity makes it difficult to manually trace and segment. 

The mean facial nerve DICE metric is on the order of 0.7. Although this is lower than some 

of the other structures, like the cochlea and semicircular canals, we do not visually observe 

any significant errors in the segmentation. The variation may be primarily due to differences 

in manual tracing and automated segmentation along the tympanic region of the facial nerve 

where there is not always a clear boundary observed.

Our results are comparable to an atlas-based approach developed by Noble et al. [9,10]. 

Although our atlas-based approach is similar to theirs, it differs primarily in two aspects. 

First, Nobel et al.’s atlas segmentation uses a local deformation registration after the global 

registration for obtaining the structure contours, whereas our approach uses intensity 

segmentation restricted to masked ROIs to identify the contours of the structures. Second, 

the Nobel et al. approach uses a model-based technique for segmenting the facial nerve and 

chorda [9], whereas we use intensity-based segmentation and masked ROI approach to 

segment the facial nerve and do not propose a segmentation approach for the chorda. We 

chose our approach based on ease of implementation and determined that it performed as 

well as their approach. Although our method has not been tested on cases with pathology, 

3D registration of new data sets within a standard atlas space allows for rapid visual 

inspection of anatomical variation and faster manual delineation of structures when 

necessary.

Previous 3D visualization studies of the middle and inner ear used manual segmentation 

methods [11] that took many hours to perform or a semiautomated approach [12] that 

requires an experienced investigator. Segmentation times on the order of 1 h–1 day were 

observed by Chan et al. [13] using the commercially available software package Amira (FEI, 

Oregon USA) to prepare data for their surgical simulator. A further review of publically 

available software packages by Hassan et al. [14] resulted in the observation that one 

segmentation approach was inadequate for all anatomical structures of interest and would 

require an experienced user from one to 2 h to prepare the data for patient specific surgical 

simulation. Our approach currently takes less than 5 min to perform and could be further 

optimized for real-time applications.

A temporal bone surgical simulation using Voxelman [15] used a semiautomated global 

segmentation for 3D reconstruction. The authors found that there was a significant upload 

time due to the segmentation process. Additionally, they observed that rehearsals of surgical 

applications that involved facial nerve were not possible due to lack of delineation of soft 

tissue structures. Our segmentation method delineates the facial nerve canal and incorporates 

the location of the facial nerve in the simulator as indicated by the yellow arrow in Fig. 6.
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Higher-resolution images available from microCT imaging systems provide better 

delineation of fine structures such as the stapes and corda tympana. However, this is at the 

expense of increased image size. Lee et al. [16] developed a volume visualization and haptic 

interface system for measurement of 3D structures. They used microCT images of cadaver 

specimens with a voxel size of 19.5 μm and 2048 by 2048 pixels per slice. In some cases, the 

microCT images had to be downsized in order to achieve real-time manipulations. As 

workstations with increased GPU capabilities become more widespread, this becomes less 

of an issue. However, there is still a practical issue that must be taken into consideration with 

manipulating and storing these larger images.

Cone-beam computed tomography (CBCT)-guided surgery systems are currently being 

evaluated for temporal bone surgery [17-20]. The spatial resolution of these systems are 

generally lower than the multi-detector computed tomography scanners, but they are faster 

with lower X-ray dose than MDCT and produce isotropic voxels. Many of the previous 

studies evaluating CBCT-guided surgery systems relied on preset transfer functions and 

visual identification of critical structures. The TREK system developed at John Hopkins 

University [20] makes use of existing open-source software for image registration and post- 

processing. Critical structures were segmented and color-coded for rapid identification and 

visualization of critical structures for interoperative surgery. Use of fast, atlas-based 

automatic segmentation could deliver personalized anatomical identification during surgery.

We plan to enhance our automated segmentation algorithm to improve the delineation of the 

separate SCCs, to develop an automated method for tracking the chorda tympani and 

segmentation of surface bony landmark structures such as the tegmen and sigmoid sulcus.
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Fig. 1. 
a Result of first rigid body registration using whole bone. The yellow circle indicates the 

otic capsule and the ROI used for the second rigid body registration, b Result of second rigid 

body registration using ROI indicated in a. Red indicates reference image and green 
indicates the moving image
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Fig. 2. 
Average image of the six spatially aligned bones used to build the atlas for segmentation. 

This image illustrates how the structures are spatially conserved in and around the otic 

capsule which makes an atlas-based approach suitable for segmentation

Powell et al. Page 10

Int J Comput Assist Radiol Surg. Author manuscript; available in PMC 2018 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
Segmentation flowchart (cochlea, malleus, incus, lateral SCC, posterior SCC, superior SCC, 

vestibule)
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Fig. 4. 
2D example of a manual and b automated segmentation (red-cochlea, green-malleus, blue-

incus, aqua-stapes, orange-vestibule, yellow-facial nerve)
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Fig. 5. 
3D rendering of structures obtained from a manual and b automated segmentation
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Fig. 6. 
Example of use of segmented facial nerve (red) in simulation of mastoidectomy. The yellow 
arrow points to the segmented facial nerve canal as seen through bone after it has been 

drilled out using the simulator
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Table 1

Critical structures within the temporal bone

Temporal bone structure Function

Cochlea Houses the neural mechanisms for hearing

Ossicles Conduction of sound from the tympanic membrane to the cochlea

Facial nerve Primary motor function for muscle of facial expression

Semicircular canals and vestibule Houses organs for sense of balance
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