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Abstract

Background and Purpose—Physical therapists seek to optimize movement as a means of 

reducing disability and improving health. The short-term effects of interventions designed to 

optimize movement ultimately are intended to be adapted for use across various future patterns of 

behavior, in potentially unpredictable ways, with varying frequency, and in the context of multiple 

tasks and environmental conditions. In this perspective paper, we review and discuss the 

implications of recent evidence that optimal movement variability, which previously had been 

associated with adaptable motor behavior, contains a specific complex nonlinear feature known as 

“multifractality.”

Summary of Key Points—Multifractal movement fluctuation patterns reflect robust 

physiologic interactivity occurring within the movement system across multiple time scales. Such 

patterns provide conceptual support for the idea that patterns of motor behavior occurring in the 

moment are inextricably linked in complex, physiologic ways to patterns of motor behavior 

occurring over much longer time periods. The human movement system appears to be particularly 

tuned to multifractal fluctuation patterns and exhibits the ability to reorganize its output in 

response to external stimulation embedded with multifractal features.

Recommendations for Clinical Practice—As a fundamental feature of human movement, 

multifractality opens new avenues for conceptualizing the link between physiologic interactivity 

and adaptive capacity. Preliminary evidence supporting the positive influence of multifractal 

rhythmic auditory stimulation on the gait patterns of individuals with Parkinson disease is used to 

illustrate how physical therapy interventions might be devised to specifically target the adaptive 

capacity of the human movement system.
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Optimizing movement is the fundamental therapeutic goal of the physical therapy 

profession.1 As its emerging core construct, the human movement system provides the 

profession with a scientific framework for understanding the nature of optimizing 

movement. The system, which “represents the collection of systems (cardiovascular, 

pulmonary, endocrine, integumentary, nervous, and musculoskeletal) that interact to move 

the body or its component parts”,1 is by definition a dynamic one. When functioning 

optimally, the continuous interactions within the human movement system maximize an 

individual’s ability to engage with and respond to his or her environment by virtue of 

functional capacity and performance.1 Recent efforts by the American Physical Therapy 

Association underscore the importance of integrating movement system concepts into 

physical therapist education, practice, and research.1–3

Human movement is a complex behavior within a specific context.1 If at any given moment, 

the movement-related functional capacity and performance of an individual are the product 

of interactions among physiologic systems, and if interactions among system components 

fluctuate continuously by definition, then one would expect that the behavior of the human 

movement system as a whole would fluctuate to some extent from one moment to the next; 

this is indeed the case. Across a range of physiologic and performance measures (e.g., heart 

rate, respiratory rate, postural control sway, gait strides),4–14 variability in the output of the 

human movement system has been recognized as providing important information about the 

health of underlying physiologic systems and their interactions. Optimal human movement, 

in fact, exhibits complex, nonlinear fluctuation patterns in motor performance across 

multiple repetitions of a task that are suggestive of the capacity of the organism to adapt to 

changes in environmental conditions.15,16

Our purpose in this perspective article is to introduce neurologic physical therapists to the 

concept of “multifractality,” a specific nonlinear feature of movement fluctuation patterns 

that recently has been identified as a mathematical descriptor of dynamic interactions among 

movement system components. A fractal is a repeating pattern that is self-similar across 

different scales; multifractality refers to patterns that repeat in multiple ways. We propose 

that multifractality characterizes the coordination of motor degrees of freedom and provides 

a window into understanding the adaptive capacity of the movement system as a whole. We 

begin by reviewing what is already known about movement variability in physical therapy 

clinical practice. We then review the basic idea of multifractality and evidence supporting its 

potential role in the movement system. In the final section, we translate multifractality 

concepts into neurologic physical therapy clinical practice by describing how various forms 

of mechanical stimulation currently in use might be augmented to promote greater 

interactivity, and therefore, enhanced adaptive capacity within the human movement system.

Human Movement Variability in Clinical Practice: What We Already Know

In some clinical contexts, the neurologic therapist’s immediate goal is to reduce variability 

in the number of ways a patient might move. In an acute care setting, for example, a 

therapist’s goal may be to constrain the movement of patients with balance impairment by 

training them to use an assistive device for added stability when walking. In an inpatient 

rehabilitation setting, a therapist’s goal may be to train a patient with respiratory impairment 
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using a distributed practice schedule, so as to avoid oxygen desaturation. In an outpatient 

setting, a therapist’s goal might be to train a patient to avoid various activities that provoke 

noxious symptoms associated with mild traumatic brain injury. In these types of situations, 

therapists are likely to consider the patient’s consistent, error-free adherence to a specific 

mobility restriction as serving to prevent injury, pain, and/or delayed recovery. In doing so, 

the therapist makes an informed tradeoff: the recommended behavioral constraints help 

ensure patient safety but leave the patient with fewer options for adapting movements to 

changes in environmental conditions.

In other clinical contexts, patients’ relatively low risk of immediate harm during movement 

diminishes the need for highly restrictive, behavioral constraints to insure safety. The 

therapist’s main focus is to maximize patients’ ability to engage with and respond to their 

customary environment by increasing functional capacity, improving task performance, and 

preventing injury. As reported previously using clinical examples,15,16 the process of 

optimizing movement under these conditions typically involves one of two common 

approaches for addressing movement variability. The first approach is a traditional, linear 

approach in which the therapist assumes that decreasing movement variability is required to 

improve functional ability. The therapist has a safe, “correct” movement pattern in mind and 

provides feedback designed to reduce performance errors. Behavioral flexibility is 

discouraged during the learning process. A successful outcome is defined as the patient’s 

ability to perform the correct pattern of movement with minimal errors under a narrow set of 

environmental conditions determined by the therapist.

The second approach is based on principles of nonlinearity, in which the therapist assumes 

that variations in a target movement pattern from one repetition to the next contain valuable 

information necessary for the movement system to develop of adaptable motor skills. The 

therapist intentionally allows behavioral flexibility by encouraging the patient to explore a 

variety of ways to safely solve a given motor problem. The therapist strategically adds 

complexity to the intervention by varying environmental conditions across repetitions and 

encourages the patient to develop a repertoire of safe solutions for adapting the target 

behavior. A successful outcome is defined as the patient’s ability to perform the target motor 

skill, not only under the environmental conditions under which it was acquired, but more 

importantly, under conditions in which it had not previously been attempted.

In both the approach wherein variability is limited and that wherein variability is 

encouraged, the patient’s successful outcome is defined as improved performance of a safe 

pattern of movement. The approaches differ fundamentally, however, in how they address 

movement variability. In the first approach, optimized movement is error free. The 

therapist’s likely assumption is that the patient, now knowing the “correct” movement 

pattern, will learn to adapt it on his or her own. In the second approach, optimized 

movement encompasses a repertoire of variations in performance of the motor skill. A 

calculated clinical decision is made to provide the patient with opportunities to learn how to 

adapt the target movement in the face of changing conditions. The therapist’s likely 

assumption is that the patient, having learned general rules for adapting the target movement 

pattern, will apply the rules when encountering novel conditions in the future, outside of the 

clinic spotlight.
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New Directions in Human Movement Variability

Perhaps not surprisingly, each therapist in the aforementioned examples can make only 

tenuous assumptions about their patient’s adaptive capacity. Two key reasons lie at the root 

of this limitation. First, the concept of “adaptive capacity,” while intuitively appealing, lacks 

a clear conceptual and empirical linkage to interactive mechanisms within the human 

movement system. Second, contemporary therapists lack the necessary tools with which 

foster and measure the development of adaptive capacity, and accordingly, are unable to 

make more definitive prognostic statements regarding the potential long-term success of 

their clinical interventions.

Interactivity Begets Adaptive Capacity

Physiologic interactions within the human movement system are not directly observable. 

What clinicians observe instead are the external interactions of the person (i.e., movement 

system as a whole) interacting with a given task in the context of a given environment. One 

key to understanding adaptive capacity is to recognize that the output of the movement 

system, when measured under certain conditions as a long series of repeated observations 

(e.g., n = 1000), provides clues to the invisible interactivity occurring within the system 

itself.6–8 The clues are contained within structured, “fractal,” patterns of variability in the 

sequence of emerging observations. In terms of their mathematical description, fractal 

objects reflect the systems-perspective idea that patterns of events captured at one 

measurement scale have a statistical and geometric resemblance to patterns of events 

captured at another scale. A fractal pattern of movement variability, therefore, means that 

movement fluctuations (i.e., changes in the value of a specific movement parameter) 

measured at a fine scale (e.g., milliseconds) resemble changes in the value of the parameter 

viewed at coarser scales (e.g., seconds, minutes, hours, etc.). Self-similar, fractal patterns are 

present in biological systems like the human movement system, in which physiologic 

interactions occur across a range of progressively longer time scales.15–23

Recent advances in movement science (see Supplemental Digital Content 2, for selected 

examples) have revealed that a collection of multiple fractal fluctuation patterns, or 

“multifractality,” rather than a single fractal pattern, is a better indicator of an interaction-

driven architecture in the human movement system.24 The concept of multifractality arises 

from evidence that fractal patterns emerging from physiologic interactions across time scales 

will vary slightly from one another, depending on the nature and direction of the interactions 

under consideration. The variation is thought to occur as a result of differences in how 

finely-scale physiologic events influence various coarsely-scaled events (and vice versa).25 

For the interested reader, tutorials and basic information about fractal objects and 

multifractality are available elsewhere.25–28

The following is a conceptual example of temporal interactivity in the human movement 

system. Movement kinematics measured in milliseconds may influence physical activity 

patterns occurring over the course of an entire day. Daily physical activity patterns, in turn, 

may influence movement kinematics but not necessarily to the same extent. Furthermore, the 

extent to which movement kinematics and hourly physical activity patterns might influence 

one another, or the extent to which daily and seasonal physical activity patterns might 
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influence one another, presumably also are not identical. When one considers that such 

differing, inter-dependent, bidirectional interactions can occur across many different time 

scales at once, it becomes apparent that a repertoire of interactivity may provide a better 

characterization of temporal events occurring within the human movement system than a 

single metric.

The idea that stable, adaptable human movement systems maintain a rich repertoire of 

movement strategies containing optimal movement variability is not new.15,16 Similarly, the 

concept that fractal scaling promotes adaptability also is not new.4,6–8 What is new here is 

that the adaptive capacity of the individual can now be conceptually and empirically linked 

to the multifractal characteristics of physiologic interactivity occurring within the system. 

Clinical understanding of a patient’s capacity to adapt his or her motor behavior to changes 

in task demands and environmental conditions requires the recognition that (1) such 

behavioral changes are comprised of changes in physiologic interactivity, (2) that such 

changes in interactivity can occur over many time scales, and (3) that such changes in 

interactivity can have differential, bi-directional influences on one another. Thus, we propose 

that a clinician seeking to foster the development of a patient’s adaptive capacity should not 

limit their interventions to behavioral motor learning paradigms (e.g., variable or random 

task practice).29 Instead, the clinician should consider implementing additional interventions 

that directly enrich and diversify the patient’s multifractal patterns of physiologic 

interactivity for a given task.

Measuring Multifractality

One widely used fractal analysis method is detrended fluctuation analysis (DFA);30 which 

can provide unique insights into the pattern of structural organization of a movement. DFA 

begins with taking a measurement series x(t), that is, measuring some variable x and doing 

so repeatedly (e.g., n ≥ 1000) over regular intervals of time or space—or even simply 

measuring attributes of isolated events as each consecutive event occurs. Examples of 

common time series on which DFA has been applied previously include center of pressure 

location collected during quiet standing;31,32 the time interval between consecutive heel 

strikes during over ground walking in a laboratory or clinical environment;4 and the number 

of steps per minute measured with an activity monitor during un-constrained, “free-living” 

walking in one’s customary environment outside of a laboratory.14

The DFA algorithm is applied to a given time series using computer programming languages 

like Matlab (Mathworks, Natick, MA) or R (R Foundation for Statistical Computing, 

Vienna, Austria). The algorithm proceeds by constructing, from the measurement series x(t), 
a random-walk series y(t) and assessing standard deviation as the root-mean-square (RMS) 

fluctuations above and beyond local trends. See Supplemental Digital Content 3, for an 

appendix containing a brief introduction to these concepts. DFA assesses these detrended 

RMS fluctuations over bins of many different sizes in order to estimate how much the 

standard deviation grows over different scales of the measurement (Figures 1 & 2). The 

resulting “fluctuation function” (see bottom panel of Figure 2) depicts what is called a 

power-law relationship between RMS (i.e., standard deviation) and measurement scale. The 

exponent on the power-law relationship provides the analytical key to diagnosing fractality. 

Cavanaugh et al. Page 5

J Neurol Phys Ther. Author manuscript; available in PMC 2018 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Typically, these power-law exponents estimated by DFA are denoted by a Greek letter α or 

by an upper-case H. A power-law exponent of .5 indicates temporally uncorrelated 

fluctuations, whereas temporal correlations will yield power-law exponents beyond .5.

Multifractality is quantified as the variability in these power-law exponents within the same 

system (or person). If we measure multiple series from the same person, we can find 

evidence of multifractality in the variability of α from one measurement series to the next. 

In addition, we can estimate the variability of power-law exponents as a “multifractal 

spectrum” that serves as a sort of histogram indicating the relative frequency of α within a 

single series.33

Translating Multifractality into Neurologic Physical Therapy Clinical 

Practice

An empirical example of movement synchronization serves as a useful vehicle for 

envisioning how physical therapists might begin to incorporate an awareness of 

multifractality into clinical interventions designed to enhance adaptive capacity. When 

movement scientists employ a traditional paradigm to study repetitive finger tapping, they 

ask participants to entrain their tapping movements to periodic (i.e., perfectly regular) 

metronome signals. The traditional interpretation of this ability has been that it reveals the 

production and use of a motor program that participants can use to synchronize their future 

movements with the metronome based on their previous experiences with the metronome. 

The motor program allows the participants to predict when the next metronome beat will be. 

However, sometimes experimenters will present their participants with metronome signals 

that fluctuate in their timing from one beat to the next. The pattern of fluctuating inter-beat 

intervals contains a complex organizational structure that features multifractal fluctuation 

patterns. To the participants, the metronome signals simply seem to fluctuate in random and 

unpredictable ways. As a result, the standard expectation, that the beat-by-beat performance 

of the participant reflects a gradually fine-tuned predictive model of when it is most 

appropriate to tap the response button next, goes directly out the theoretical window. 

Participants will omit to tap, or sometimes, in a mix of clumsy anticipation and reaction, tap 

multiple times for individual beats. Surprisingly, however, when viewed over the wider time 

scale of the entire experiment, participants seem able to generate a series of taps (i.e., some 

accurate, some missing, some extra) with inter-tap intervals that fluctuated according to a 

rule similar to the one which generated the complex, interbeat series of the metronome.34 

That is, despite failing to coordinate their taps with a variable metronome on a beat-by-beat 

basis, participants’ tapping behavior displays a similar multifractal pattern to that of the 

metronome signal.35 The closeness of the match, especially given that it occurred across a 

collection of complex fluctuation patterns, could not have been produced by the participant 

simply attempting to roughly approximate the series of interbeat intervals.

The metronome experiment offers a potentially intriguing example of how smoothly and 

easily multifractal fluctuations might spread from the task environment into the movement 

system. It offers a springboard into a novel way of thinking about the control of movement; 

that is, if multifractal fluctuations can spread from a metronome to a tapping hand, perhaps 
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they also can influence motor coordination in neurologic patient populations for whom 

movement retraining is a common focus of rehabilitation. For example, it is well established 

that healthy human gait is characterized by naturally-occurring fractal dynamics that are 

thought to allow humans to ambulate in a stable yet flexible manner, ready to adapt to 

unpredictable changes in the environment.4 Moreover, abnormal gait patterns associated 

with a variety of neuromuscular disorders are characterized by alterations in fractal 

dynamics.4 For individuals with Parkinson disease (PD), rhythmic auditory stimulation 

(RAS) delivered via a fixed tempo metronome can be used to temporarily improve gait 

velocity, stride length, cadence and symmetry.4,36 Conceptually, however, fixed tempo RAS 

has the potential to over train one tempo during rehabilitation, thereby reducing 

adaptability.37 Moreover, fixed tempo RAS does not appear to restore the diminished fractal 

scaling of PD gait dynamics, and in fact, appears to induce diminished fractal scaling in 

healthy adults.4 If the diminished fractal scaling properties of PD gait dynamics are 

indicative of defective movement system interactivity attributable to basal ganglia 

pathology,6–8 and if an important goal of PD rehabilitation is to optimize movement by 

restoring adaptive capacity via movement system interactivity, then it follows that the 

therapeutic value of fixed tempo RAS may be inherently limited. Perhaps this limitation 

helps to explain why the therapeutic effect of fixed tempo RAS on gait biomechanics 

appears to be relatively short-lived.38

Can the benefits of RAS be amplified in individuals with PD if the cueing stimulus contains 

multifractal dynamics? Preliminary evidence suggests that this might be the case. In 2013, 

Hove et al37 asked a small sample of individuals with PD and healthy individuals to walk 

over ground under three conditions: no auditory stimulus, fixed-tempo RAS, and interactive 

RAS embedded with nonlinear temporal structure. Their results revealed that the diminished 

fractal scaling properties of gait dynamics of individuals with PD were restored to healthy 

levels only with exposure to an interactive, nonlinear auditory stimulus. Furthermore, the 

gait patterns retained the restored fractal scaling five minutes after removing the interactive 

RAS, suggesting that the interaction stabilized the internal rhythm generating system and 

reintegrated timing networks of the participants with PD. A meaningful additional outcome 

of the study was that the participants with PD reported greater perceived stability when 

walking with the nonlinear RAS compared to a fixed tempo RAS.

Several more recent studies provide preliminary evidence that RAS embedded with 

nonlinear features can indeed alter the naturally occurring fractal characteristics of human 

gait.34,39,40 Importantly, however, study methods across studies varied in key ways (e.g., 

whether participants were explicitly instructed to synchronize their gait with the metronome 

and whether walking was assessed on a treadmill or over ground). Furthermore, the extent to 

which the RAS used in each study may have been multifractal was either limited or unclear. 

Nonetheless, the studies collectively support the general proposition that movement 

retraining interventions promoting interactivity among system components may be a potent 

stimulus for building adaptive capacity of the system as a whole.
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Future Directions

In contemporary neurologic clinical practice, physical therapists have opportunities to 

augment their patients’ movement training routines by using devices to deliver subtle, 

repetitive, auditory, visual, or tactile stimulation. Examples (other than a metronome) 

include movements influenced by virtual reality,41 robotic cues,42 whole body 

vibration,43–46 vibratory insoles to the feet,47,48 and neuromuscular electrical stimulation).49 

Very recently, non-invasive brain stimulation also has been added to the array of stimulation-

based tools that might augment neurorehabilitation practices.50 Generally speaking, these 

devices are designed to deliver predictable, linear patterns of stimulation for the purpose of 

facilitating movement (e.g., muscle activation, kinematics, etc). In the future, such devices 

potentially could be designed to deliver stimulation containing multifractal features, with the 

specific intent of enhancing and diversifying the adaptive capacity of a patient’s movement 

system.

To facilitate the discussion of multifractal concepts and their implications for future 

neurorehabilitation practice, it will be important to consider work occurring in a variety of 

areas. For example, Cavanaugh et al14 demonstrated that the temporal sequence of steps 

taken during customary ambulatory activity in a sample of community dwelling-older adults 

contained fractal properties. Rand et al51 recently demonstrated that patterns of support 

surface translations with temporal characteristics of varying complexity differentially altered 

the COP signals of healthy adults. In the field of robotics, Wang and Ren52 recently reported 

on the development of comfortably wearable, assistive technologies based on multifractal 

concepts that may dramatically diminish the motor learning curve for movement retraining 

using prosthetics and orthotics. In our view, such developments have strong potential to 

expand the array of interventions considered by neurologic physical therapists for building 

adaptive capacity in their patients.

Summary

Neurologic physical therapists routinely apply concepts of movement variability when 

considering patients’ behavioral goals. Whether constraining variability to promote safety or 

fostering variability to promote motor skill development, therapists routinely manipulate 

intervention parameters around variability to optimize patient motor behavior for a given 

purpose. The short-term effects of such interventions generally are intended to be adapted 

for use in nonlinear fashion across various future patterns of behavior beyond the clinic 

spotlight, in potentially unpredictable ways, with varying frequency, and in the context of 

multiple tasks and environmental conditions. Accordingly, the assessment of adaptability 

typically centers on the performance of patients attempting to adjust their visible behavior to 

meet the changing demands of a given task or environment.

The recently identified multifractal fluctuation patterns of human movement show promise 

for advancing the conceptual basis of neurologic physical therapy in two distinct ways. First, 

the application of multifractal concepts can expand how therapists envision the intended 

target of their interventions designed to improve adaptability. Rather than targeting visible 

motor behavior only, multifractal forms of external stimulation also would explicitly target 
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the unseen complex physiologic interactivity occurring within the human movement system 

itself, and therefore, its adaptive capacity. In this sense, multifractality expands the concept 

of “optimizing movement” to more broadly encompass not only external (i.e., performance-

based) but also internal (i.e., capacity-based) forms of interactivity and adaptability.

Second, multifractality adds new insights to the fundamental clinical idea that kinematic 

patterns of movement occurring over a few seconds potentially can influence motor behavior 

patterns occurring over weeks, months, and years; and similarly, that motor behavior 

patterns occurring over relatively longer periods of time can influence patterns of movement 

occurring over much shorter periods. The existence of multifractal movement fluctuations 

indicates that such bidirectional influences themselves are likely to vary, depending on the 

time scales under consideration. For neurologic physical therapists, the implication of this 

complex, nonlinear idea is that physiologic adaptive capacity is enhanced when such 

bidirectional, multiscale influences are robust and diverse. Thus, interventions designed to 

promote, restore, or preserve multi-scale internal interactivity (i.e., adaptive capacity) may 

be more likely than traditional interventions to resonate within the human movement system 

over the long-term.

The multifractality concepts presented in this perspective represent the frontier of a 

relatively nascent scientific field of study. There remains no strong clinical evidence 

supporting the hypothesis that restoring healthy levels of multifractality in the movement 

signatures of patients with neurological health conditions prepares them to cope more 

effectively with irregularities in the natural environment. Indeed, we have only just begun to 

understand how multifractal movement features characterize the healthy human movement 

system and that they can be manipulated experimentally. Furthermore, clinically expedient 

methods for collecting and analyzing long series of repeated movement observations are not 

routinely available in contemporary practice settings. Nonetheless, we believe that the 

science and clinical implications of multifractality, interactivity, and adaptive capacity have 

evolved sufficiently to warrant consideration for expanding the conceptual basis of 

neurologic physical therapy. At a broader level, we hope that the ideas presented in this 

perspective contribute to the ongoing dialog regarding the human movement system as the 

core construct for the physical therapy profession.1–3

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Schematic of initial steps in detrended fluctuation analysis (DFA). The first panel (top left) 

schematizes the measured series. The second panel (top right) schematizes the cumulative 

sum over time. The third panel (bottom left) schematizes the fitting of linear trends to 

nonoverlapping bins of the cumulative sum from the second panel, depicting the cumulative 

sum series in grey curves, the trend lines in solid black lines, and the bin boundaries in 

dashed black vertical lines. The fourth panel (bottom right) schematizes the mean squared 

error (MSE) of residuals left over from each bin’s linear fit in the bottom-left panel. In both 

bottom panels, the MSEs on the right correspond to the linear fits on the left, for small, 

medium, and large bins.

Cavanaugh et al. Page 13

J Neurol Phys Ther. Author manuscript; available in PMC 2018 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Schematics of concluding steps in DFA algorithm. As the top panels show, the MSE values 

depicted in Figure 1 contribute to an average whose square root is a root mean-square 

(RMS) error statistic, and each bin size has a corresponding RMS statistic. The bottom 

panels schematize, on the left, the plot of RMS statistics for each bin size with newer grey 

circles representing other RMS values for intermediate bin sizes not schematized in these 

figures and, on the right, a logarithmic scaling of the RMS error and a logarithmic scaling of 

the time scale represented by the bin sizes. The lower right panel schematizes the possibility 

that this RMS function, once logarithmically transformed, can yield a linear relationship 

whose slope is an estimate of the power-law exponent.
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Figure 3. 
Schematic of multifractal elaboration of the detrended fluctuation analysis (DFA) algorithm. 

In this schematic, we consider the entire series of squared residuals left over from the binned 

detrending (top left panel). What multifractal DFA does is to introduce a parameter q that, 

for standard DFA, only equals 2. Different values of q amplify residuals of different size. As 

the top-right panel shows, residuals raised to the exponent q is equivalent to squared 

residuals for standard DFA, residuals raised to exponents q greater than 2 leave large errors 

relatively large while diminishing smaller errors, and residuals raised to exponents q less 

than 2 amplify small errors and diminish larger errors. The bottom panels show how, 

whereas DFA uses a single series of squared residuals, multifractal DFA uses as many series 

of error-raised-to-exponent-q as there are values of q. Each series of error-raised-to-

exponent-q contributes to a specific relationship between qth-RMq and bin size, yielding 

potentially many linear relationships on logarithmic axes and so potentially many slopes.
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