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ABSTRACT

The development of a cerebral organoid culture in vitro
offers an opportunity to generate human brain-like
organs to investigate mechanisms of human disease
that are specific to the neurogenesis of radial glial (RG)
and outer radial glial (oRG) cells in the ventricular zone
(VZ) and subventricular zone (SVZ) of the developing
neocortex. Modeling neuronal progenitors and the
organization that produces mature subcortical neuron
subtypes during early stages of development is essen-
tial for studying human brain developmental diseases.
Several previous efforts have shown to grow neural
organoid in culture dishes successfully, however we
demonstrate a new paradigm that recapitulates neocor-
tical development process with VZ, OSVZ formation and
the lamination organization of cortical layer structure. In
addition, using patient-specific induced pluripotent stem
cells (iPSCs) with dysfunction of the Aspm gene from a
primary microcephaly patient, we demonstrate neuro-
genesis defects result in defective neuronal activity in
patient organoids, suggesting a new strategy to study
human developmental diseases in central nerve system.

KEYWORDS neocortical development, cerebral
organoid, microcephaly, ASPM

INTRODUCTION

The most highly evolved structure in the human brain is the
neocortex, which is responsible for the higher cognitive func-
tionsunique tohumans (Rakic, 2009;Borrell andReillo, 2012).
The dramatic humanneocortical expansion and gyri formation
underline the precise orchestration of neurogenesis and
neuronal migration in the embryonic stage, especially during
the peak of neurogenesis, which occurs during the second
trimester of gestation in humans (Kriegstein et al., 2006; Lui
et al., 2011; de Graaf-Peters and Hadders-Algra, 2006).
Radial glial (RG) cells constitute a major population of neural
progenitor cells and are referred to vRG cells (ventricular
radial glial cells); these cells occupy the proliferative ventric-
ular zone (VZ) (Noctor et al., 2002; Hartfuss et al., 2001;
Anthony et al., 2004). vRG cells display interkinetic nuclear
migration (INM) behavior, proliferate extensively at the luminal
surface of the VZ and predominantly undergo asymmetric
division to self-renew while simultaneously giving rise either
directly to neurons or to an IPC that subsequently divides
symmetrically to produce neurons (Kriegstein et al., 2006;
Noctor et al., 2001; Fishell and Kriegstein, 2003; Huttner and
Kosodo, 2005). A new population of neural stem/progenitor
cells has recently been reported to occupy the greatly
expanded subventricular zone (SVZ), which is composed of
intermediate progenitor cells (IPCs) and outer radial glial
(oRG) cells and can be divided into the inner (ISVZ) and outer
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SVZ (OSVZ) by the inner fiber layer (IFL) in primates (Dehay
and Kennedy, 2007; Hansen et al., 2010; LaMonica et al.,
2012;Garcia-Morenoet al., 2012).Unlike vRGcells, oRGcells
show distinctive mitotic somal translocation (MST) behavior,
giving rise to IPCs in humans (Hansen et al., 2010; LaMonica
et al., 2012; Ostrem et al., 2014; Taverna and Huttner, 2010;
Gertz et al., 2014) instead of neurons, as in mice (Wang et al.,
2011), and serve as transit amplifying machinery for prolifer-
ative pool expansion (Lui et al., 2011; Fietz and Huttner, 2011;
Pontious et al., 2008). An enlargedOSVZ, accompanied by an
increase in both oRG cells and IPCs, may account for neu-
ronal amplification and the tangential dispersion of neurons
that contributes to cortical expansion and gyrification (Borrell
and Reillo, 2012; LaMonica et al., 2012; Reillo et al., 2011;
Nonaka-Kinoshita et al., 2013).

Extensive studies have demonstrated that the neocortex
is a six-layered laminated structure generated by a specific
pattern of neuronal production and migration. Newborn
neurons migrate successively following the guidance of
radial glial fibers over the existing early-born neurons during
cortical development and occupy superficial layers in the
cortical plate (CP), creating cortical layers (CL). Cortical
lamination provides the basic framework for neocortical
function (Gao et al., 2013; Douglas and Martin, 2004).
Recent achievements suggest that the developing human
neocortex differs significantly from the rodent model; how-
ever, due to limitations on the experimental manipulation of
human tissues and on the monitoring of long-term develop-
ment in patients, much of the recent progress in under-
standing cortical development has come from rodent studies
(Wang et al., 2011; Caviness and Rakic, 1978; D’Arcangelo,
2006). Therefore, new research strategies need to be
established to study human cortical development.

Several previous efforts to grow neural tissues in culture
dishes, such as an optic cup (Eiraku et al., 2011), a pituitary
gland (Suga et al., 2011), cortex-like cell layers (Nasu et al.,
2012; Kadoshima et al., 2013; Eiraku et al., 2008), some
brain-region-specific organoids (Qian et al., 2016; Pasca
et al., 2015), entire brain-like organoids (Lancaster et al.,
2013; Camp et al., 2015), and even organoids with surface
folding (Li et al., 2017) have been reported. Also, organoids
have been proven to be a remarkable model to study dis-
eases, such as ZIKA virus (Qian et al., 2016; Cugola et al.,
2016; Garcez et al., 2016; Nowakowski et al., 2016; Tang
et al., 2016; Xu et al., 2016) and neural system disease
(Lancaster et al., 2013; Bershteyn and, 2017). Therefore,
organoid culture system is suitable for modeling neurode-
velopmental diseases and related cognition defects.

To address this issue, we have developed a new three-
dimensional culture system for a cortex-like tissue derived
from induced pluripotent stem cells (iPSCs) in vitro. Here, we
show that these cultured organoids recapitulate the lamina-
tion organization of the layered neocortex generated from
vRG, oRG, and IP cells and eventually mimic the cortical
development in vivo. Finally, in an investigation of the ASPM-
dependent pathogenesis of microcephaly, we report that the

cortical organoids generated from primary microcephaly
patient-derived iPSCs were unable to form normal cortical
lamination resulting in defective neuronal activity.

RESULTS

Self-organized organoids mimics early cerebral
development

To develop a paradigm generating functional cerebral orga-
noids, we used free floating embryonic bodies (EBs).
Approximately 3 × 106 dissociated hiPSCs or hESCs were
plated onto a low cell-adhesion plate and uniformly sized
tight embryonic body-like aggregates formed within the first
7 days (Fig. 1A). On day 7, the aggregates were transferred
to petri dishes for neural induction culture. The resulting 3D
aggregates were then re-plated onto petri dishes for neural
differentiation on day 50. The optimized culture conditions
allowed these cell aggregates to continue to differentiate and
mature beyond 120 days (Fig. 1A). To understand whether
neurogenesis in organoids follows in-vivo development pat-
tern, we dissected organoids at early stage. On day 36, the
hiPSC-derived organoid grew fast and formed a ventricle-
like cavity surrounded by neural progenitors (Fig. 1B).
Around the ventricle, a thick layer of Sox2-positive progenitor
cells and some expanded Tuj1-positive new-born neurons
were observed in organoids, indicating neural progenitors
and new-born neurons generated in these organoids
(Fig. 1B). Also, the proliferative marker Ki67 and phospho-
histone H3 (pH3), a marker for the G2-M phase, were
detected in progenitor cells close to the ventricle. Around
77.21% cells were Ki67 staining positive in ventricular area,
suggesting that early development of cortical development
primarily focuses on cell proliferation (Fig. 1C). To further
characterize the dorsal telencephalic progenitor cells, we
stained ZO-1, Pax6, and Sox2 (Fig. 1D). The progenitors in
the inner area exhibited ring structures of tight junction
reviewed by ZO-1 (Fig. 1D), resembling a lateral ventricle
with characteristic apical localization of the ventricular radial
glia (vRG) (Gotz and Huttner 2005; Pilz et al., 2013).

To examine RG identity during the early development of
these cerebral-like 3D tissues, we performed staining for
phospho-vimentin (P-vim) and Sox2 on day 36 (Fig. S1A).
We observed vRG for Sox2+ cells along the apical side with
apical anchor and extended basal cellular processes toward
the outer surface of these tissues in cerebral organoids.
Since vRG cells typically divided on the lumen surface, we
observed a series of mitotic cells at different dividing stages
in organoids, such as prophase, metaphase, anaphase and
telophase (Fig. S1A), resembling innate vRGs features in
early human neocortical development. In primates, the
population of oRGs is significantly larger than in rodents, and
these oRGs play critical roles in neocortical neurogenesis.
Sox2+/P-vim+ cells above VZ region exhibited long basal
processes (Fig. S1A), suggesting that oRGs also exist in
organoids. In consistent with previous proliferating marker
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staining results, we observed 19.55% and 6.39% mitotic
vRGs and oRGs in VZ/SVZ area respectively (Fig. S1A).

In mammals, vRG cells initially divide symmetrically to
enlarge the progenitor pool and then divide asymmetrically
to maintain one daughter cell as vRG and the other as a
progenitor cell, such as an oRG cell, an IP cell, or a newborn
neuron (Hansen et al., 2010; Wang et al., 2011); hence the
cell division behavior is a determinant for neural progenitor
pool and cortical neurogenesis. To confirm division behavior

of vRGs in cerebral-like tissue, we assessed the angle
between cleavage plane and ventricle surface (Fig. S1B). In
our hiPSC culture, proliferating apical progenitors preferen-
tially divided from a “vertical” cleavage plane (60–90°,
57.0%; Fig. S1C) on day 36, indicating that vRGs primarily
undergo symmetrically division to enrich vRG pool and also
contribute to progenitor or neuron production at early culture
time, which is similar to early cortical development. Addi-
tionally, we use time lapse to observe the activity of these
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Figure 1. The procedure for in vitro generation of a human cortex-like organoid. (A) Schematic diagram of the culture system

for cortex-like organ formation in vitro. Representative bright field (BF) images of each stage. (B) Immunostaining results for the

progenitor marker (Sox2, green) and new-born neuron marker (Tuj1, red) organoids on day 36. (C) Immunostaining for proliferating

cells: Ki67 (green), pH3 (red, mitotic marker). The percentage of Ki67+ and pH3+ cells was shown on the right. (D) Immunostaining

image for cortical NE-like structure after 36 days of neural induction. Sox2 (green), Pax6 (red), ZO-1 (magenta), and DAPI (grey).

(E) Staining for Tbr2 (blue) and Sox2 (red) revealing OSVZ localization of basal progenitors. (F) Quantification of Sox2+ or Tbr2+

percentages within all progenitors in the VZ, ISVZ and OSVZ, respectively. All data are presented as means ± s.e.m. Scale bars:

200 μm in (A), 50 μm in (B–E).
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vRG cells, and found typically interkinetic nucleus movement
(INM) like vRG in vivo (Fig. S1D and Movie S1). These
results indicate vRGs in organoids mimicked cellular activity
in vivo.

To determine whether features of human brain develop-
ment with oRG and IP cell existence were recapitulated in
cerebral organoids, we analyzed the organoids on day 65
(Fig. 1E). The distribution of Sox2+ progenitors were exam-
ined and we observed a population concentrated close to the
apical surface (VZ) that was thought to be vRG cells, as well
as another population displaced from the apical surface
(OSVZ), that was consistent with oRG identity in organoids
(Fig. 1E and 1F). In addition, IP cells identified by Tbr2
staining primarily localized outside of but close to the VZ on
day 65 (Fig. 1E and 1F). The presence and distribution of
RGs and IP cells demonstrated that this new 3D culture

system could mimic early development of brain with all types
of known neural progenitors in dish.

Spatial neuron lamination of organoids

To assess neuron production abilities, neural progenitor cells
were analyzed in the organoids on day 65 (Fig. 2A). The
abundance and distribution of Sox2+ vRGs and oRGs, as
well as Tbr2+ IPCs, were remarkably similar to human neo-
cortex cytoarchitecture at GW16 (Fig. S2A), suggesting that
this method could reproduce the fine structure of cerebral
cortex, such as OSVZ (Fig. 2A).

Themammalian cortical plate consists of six distinct layers.
To determine whether organoids could recapitulate the corti-
cal spatial lamination, we stained for cortical layer markers on
day 65. In hiPSC-derived neocortex-like tissues, Tbr2 positive
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Figure 2. Cortical spatial lamination in 3D organoid culture. (A) Cryosections of organoids were immunostained for progenitor

markers on day 65. (B–E) Immunostaining results of progenitor and pyramidal markers in organoids on day 65 (B–D) and day 90 (E).

Scale bars: 50 μm in (A–E).
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subventricular zone (SVZ) was adjacent to the ventricular
zone (VZ), which indicated by Sox2+ region, this result was
consist with structures in vivo (Figs. 2A and S2A). Also, cor-
tical plate (CP) indicated by Satb2+ neuron located outside of
Pax6+ and Tbr2+ regions (Fig. 2B and 2C). Furthermore, we
observed Reelin+ neurons along the basal surface (Fig. 2D),
suggesting the presence of Cajal-Retzius like cells, which
regulates the generation of cortical plate laminar architecture.
Finally, in organoid of day 90, we could observe that later-born
Satb2+ neurons localized more superficially to the early-born
Ctip2+ neurons (Fig. 2E). This lamination was similar to
human developing neocortex (Fig. S2B). Thus, this distribu-
tion pattern of dorsal cortical subtype-specific neurons
resembles in vivo regional sub-specification, indicating these
organoids derived from our culture system could efficiently
model neocortex organization in vivo.

Electrophysiological properties of neurons in organoids

With the well-developed lamination in cultured hiPSC-
derived organoids, we next investigated the functional
characteristics of the neurons using electrophysiology. To
examine whether the cells had functional membrane prop-
erties, we performed patch-clamp recordings on the outer
most layer in cultured organoids (Fig. 3A). In voltage-clamp
mode, fast-inactivating inward currents with increasing
amplitudes were observed on days 51, 62, and 121
(Fig. 3B). In current-clamp mode, depolarizing the mem-
brane could evoke more action potentials from the cells on
day 121 than on day 51 (Fig. 3C). On day 121, the action
potential exhibited higher amplitude, lower threshold, and
faster kinetic of repolarization than its counterpart on day 51
(Fig. 3C). Spontaneous action potentials could be observed
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Figure 3. Physiological properties of cells in organoids at different stages. (A) An example of cells in organoids recorded under

DGC (top) and fluorescence (bottom). (B) Representative traces of membrane currents (black) evoked by depolarizing pulses of −10
mV or −20 mV. The Na+ currents were blocked by 1 μmol/L tetrodotoxin (TTX, red) and recovered (blue) after rinsing.

(C) Representative traces of membrane potentials in response to a 500-ms current injection from a 51- (top) or 121-day-old (bottom)

organoid. (D) Spontaneous action potentials were recorded from a 121-day-old organoid. (E) Spontaneous EPSCs in mature

organoids. The average frequency and amplitude are shown on the right. n = 7 cells. All data are presented as means ± s.e.m. Scale

bar: 20 μm in (A).
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in the cells on day 121 (Fig. 3D). Furthermore, we obtained
spontaneous excitatory postsynaptic currents (sEPSCs)
from organoids on day 121 (Fig. 3E). These data indicated
that the neurons of the organoids underwent a process of
maturation; also, chemical excitatory synapses were able to
form among cells in the organoids due to the existence of
mature like pyramidal neurons at late development stage.

Organoids recapitulate microcephaly with Aspm
mutation

Human autosomal recessive primary microcephaly (MCPH)
is a heterogeneous disorder with mutations in twelve genetic
loci (MCPH1–12) (Faheem et al., 2015; Woods et al., 2005).
Mutations in the Aspm gene (abnormal spindle-like micro-
cephaly-associated) at the MCPH5 locus are expected to be
the most common cause of human primary microcephaly.
The severely reduced brain size observed in patients with
Aspm mutations has been proven to have difficulty in reca-
pitulating in animal models (Pulvers et al., 2010). To deter-
mine whether neocortex-like organization by in-vitro 3D
culture could be used to mimic neurodevelopmental disor-
ders, iPSCs were generated from reprogrammed skin
fibroblasts of a patient with severe microcephaly by retroviral
delivery of four well-described reprogramming factors: Oct4,
Sox2, c-Myc, and Klf4 (Okita et al., 2007; Takahashi and
Yamanaka, 2006). We generated many independent clones
and characterized three of these in terms of morphology and
pluripotency. All three hiPSC-ASPM cell clones, including
hiPSC-ASPM-1, hiPSC-ASPM-2 and hiPSC-ASPM-3, pre-
sented normal human karyotypes (Fig. S3A). By sequencing
the exons of the three hiPSC-ASPM cell clones, we identi-
fied a heterozygous mutation at 9,910 C→T ln exon 25 that
introduced a premature stop codon and a homozygous
mutation at 7,684 A→G in exon 18 that produced a S2562G
missense mutation, which is consistent with previously
reported Aspm mutations in primary microcephaly patients
(Bond et al., 2003) (Fig. S3B). All three hiPSC-ASPM cell
lines exhibited similar expression levels of the Aspm gene,
which was down-regulated compared to the hiPSC-control
cell clone (Fig. S3C). In addition, we found some pluripotent
stem cell marker genes were slightly down regulated in
hiPSC-ASPM cell clones (Fig. S3D) and iPSC grew normally
(Fig. S3E), suggesting that Aspm mutations may not directly
change the differentiation potentials in iPSCs. Under our 3D
culture system, we observed that all hiPSC-ASPM cell lines
displayed smaller embryonic bodies compared to the control
(Figs. 4A, 4B, and S4A). 3D aggregates from hiPSC-ASPM
cell lines were smaller, less condensed and less neocortex-
like morphology than hiPSC-control (Figs. 4A and S4A). On
day 36, the hiPSC-control derived neural progenitors repro-
ducibly formed larger and more continuous polarized neu-
roepithelial structures with a ventricle-like cavity inside, but
hiPSC-ASPM cell lines develop aggregates only occasion-
ally as small rosette-like neuroepithelial regions without the
structural cell alignments as in the control culture (Fig. 4C).

Moreover, the ASPM mutant 3D aggregates exhibited very
few cells positive for Pax6, Sox2 and ZO-1 (Figs. 4C and
S4B) and displayed fewer Ki67+ and pH3+ cells (Figs. 4C,
4D, S5A, and S5B). Moreover, the distribution of these cells
was discrete and disorganized in all hiPSC-ASPM organoids
compared to the control (Figs. 4C and S4B). These overall
smaller neural tissues were suggestive of the reduced brain
size observed in patients (Bond et al., 2002).

To test the proliferation defect, we independently per-
formed RNAi knockdown of Aspm by electroporating GFP
expressing shRNA in organoids. The endogenous Aspm
RNAi efficiency was first verified by RT-qPCR (Fig. S5C).
Knockdown of Aspm in hiPSC-control organoids led to a
decrease of Ki67+ and pH3+ cells close to ventricle
(Fig. S5D–F), consistent with the defective phenotype
observed in ASPM patient organoids. These findings support
the conclusion that ASPM mutant could induce deficiency in
proliferation of progenitors. These patient-derived cerebral
organoids provided a unique opportunity to examine the
hypoplasia observed in microcephaly.

Since organoids generated from hiPSC-ASPM-2 exhib-
ited the more condensed cell mass and intact morphology
than organoids derived from hiPSC-ASPM-1 or hiPSC-
ASPM-3 (Figs. 4A and S4A), and all of organoids showed
similar developing phenotypes, we utilized hiPSC-ASPM-2
as a representative for more detailed studies. Consistent
with observations at early culture time, organized lumen
structures were hardly maintained in mutants on day 65
(Fig. 4E). We could observe dividing Sox2+/P-vim+ vRG cells
along the apical side in hiPSC-control tissues but not hiPSC-
ASPM organoids (Fig. 4E). The amount of vRG and oRG
cells in hiPSC-ASPM organoids was significantly reduced
compared to control (Fig. 4E). On day 65, Tbr2+ IPCs pri-
marily localized outside of but close to the VZ, showing a
pattern similar to that of the human developing cortex
(Fig. 1E). Unsurprisingly, Tbr2+ cells were discrete and dis-
organized in mutant organoids (Fig. 4E). In summary, the
loss of lumen structure and neural progenitor cells in hiPSC-
ASPM organoids might mimic the pathogenesis of primary
microcephaly in human fetal brain development. Although
hiPSC-ASPM organoids developed towards telencephalon
revealed by FoxG1 staining, the elaborative lamination was
not observed in Aspm mutant 3D aggregations, suggesting
that the culture system was able to model cortical develop-
ment diseases.

Calcium imaging data of control and mutant organoids

In hiPSC-ASPM aggregates, although abnormal lamination
of neurons was not observed, many Satb2+ or Ctip2+ neu-
rons were scattered throughout the cell masses (Figs. 4H, 4I,
and S4C); therefore, we asked whether these neurons share
the same properties as neurons in hiPSC-control organoids.
Previous electrophysiological analyses suggested that the
neurons began to mature after day 62 (Fig. 3B); hence, we
examined calcium activity in organoids on day 85. TTX-
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sensitive calcium events could be detected in control and
mutant organoids (Fig. 5A and 5B), suggesting the presence
of active neurons in both hiPSC-control and hiPSC-ASPM-2
aggregates. However, the proportion of cells with calcium
activity was reduced in mutants compared to control on day
85 (Fig. 5C), indicating that there were fewer mature neurons
in hiPSC-ASPM-2 aggregates than in controls, which may
induced by defects in proliferation of progenitors (Figs. 4C,
4D, S5A, and S5B) but not by neuron apoptosis (Fig. S5G
and S5H). We analyzed the neurons with active calcium
signals and observed that the spontaneous calcium transient
frequencies were similar to those of controls (Fig. 5D), but
the active cells were not synchronized as well as controls
(Fig. 5E), suggesting the neural circuit in hiPSC-ASPM-2
organoids may be dysfunctional. These results indicate that
although a less organized structure and fewer mature neu-
rons were observed in hiPSC-ASPM culture, these neurons
were able to be activated; however, these neurons were less

synchronized and neuronal circuit was not as mature as
control group.

DISCUSSION

In this report, we have established an approach to generate
cerebral organoids from hESCs or hiPSCs following disso-
ciation, self-aggregation, and differentiation with minimal
extrinsic signals added to the culture system (Fig. 1A). This
three-dimensional culture method recapitulates in vivo cor-
tical development with formation of a well-polarized ventricle
neuroepithelial structure; vRG, oRG and IP cells; and pro-
duction of mature neurons within layers (Figs. 1–3).

Cerebral organoid culture has been developed and
applied widely in cortical developmental diseases. Primary
microcephaly with CDK5RAP2 mutation and Zika virus
infection were studied by cerebral organoid culture suggests
that 3D culture could recapitulate real in vivo organ
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development to some extent (Lancaster et al., 2013; Tang
et al., 2016). Since this system displays fundamental char-
acteristics of human telencephalon cortical development, it is
a promising approach to study the pathogenesis of neu-
rodevelopmental disorders. Here, we have modeled micro-
cephaly by generating organoids from the iPSCs of ASPM-
mutation patients. Mutations in the Aspm gene at the
MCPH5 locus are the most common cause of human pri-
mary microcephaly leading to a reduction of cerebral cortex
size, congenital failure and mental retardation (Bond et al.,
2002, 2003). We have observed defects of early develop-
ment in aggregates from hiPSC-ASPM cells characterized
by a less organized neuroepithelium and fewer vRG, oRG,
and defective layer lamination (Figs. 4 and S4). Studies in
Drosophila suggest that ASPM may interact with myosin II in
regulating spindle orientation and interkinetic nuclear
migration (INM) in neural progenitor cells (Rujano et al.,
2013), suggesting that vRG cells with Aspm mutation pos-
sibly experienced defective INM, resulting in reduction of
oRG cells in the late developmental stages in our culture
system (Fig. 4E). This observation could explain why no
sufficient ASPM-deletion mouse models that recapitulate
microcephaly phenotypes have been developed. Because

oRG cells are considered to play a major role in cortical
expansion in primates; however, this cell type is limited in
rodents (Wang et al., 2011). Cerebral cortical development is
an elaborative temporal-spatial progress. Using calcium
imaging, we found that fewer neurons had matured and less
synchronized neuronal activities had been detected at the
late stage of development in the Aspm mutants (Fig. 5),
which could be the reason that ASPM-related microcephaly
patients present congenital failure and mental retardation
(Bond et al., 2002, 2003; Shen et al., 2005).

The availability of our novel culture system offers a
resource for pathological studies of neurodevelopmental
diseases, furthermore, this hESC/hiPSC-derived organoid
culture may also be used for various future biomedical
applications, including cell therapies, drug discovery and
toxicology studies.

MATERIALS AND METHODS

Human induced pluripotent stem cell culture

Cell maintenance and 3D culture procedure are described in SI

Materials and Methods.
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Figure 5. Calcium imaging results of control and mutant organoids. (A) Representative images of synchronized calcium activity

of cells in control and ASPM-2 organoids. (B) Representative traces before and after TTX-treated in control and mutant organoids.

(C) Percentage of active cells in control and ASPM-2 organoids, n = 8, 9 trials for control and ASPM-2 groups. (D) Average

spontaneous calcium transients of single cells in control and ASPM-2 organoids, n = 78, 47 cells for control and ASPM-2 groups.

(E) Averaged ratio of synchronized cells in control and ASPM-2 organoids, n = 5, 5 trials for control and ASPM-2 groups. All data are

presented as means ± s.e.m. *P < 0.05; **P < 0.01. Scale bar: 50 μm in (A).
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Karyotyping and RT-PCR

Karyotypes were determined with standard G-banding chromosome

analysis in the Oakland Children Hospital. RT-PCR procedure and

primer sequences are in SI Materials and Methods.

Immunostaining

Cell aggregates were fixed in cold 4% PFA for 30 min at 4°C fol-

lowed by incubated in 15% (w/v) sucrose solution overnight at 4°C

and then embedded in O.C.T. compound, frozen at −20°C and

cryosectioned at 10 μm. Immunostaining and antibody information is

available in SI Materials and Methods.

Flow cytometry

Cell aggregates were fixed in cold 70% alcohol for 30 min at 4°C

overnight followed by two washes with PBS. Aggregates were

incubated in PBS including Propidium Iodide (PI, 50 μg/mL) and

RNase A (50 μg/mL) for 30 min at 4°C. Signals were detected with a

FACS Calibur flow cytometer (BD Biosciences). ModFit was used to

analysis cell cycle.

Electrophysiology and calcium imaging

Detail materials and methods are available in SI Materials and

Methods.

Statistical analysis

All data are presented as mean values and standard error of mean

(s.e.m.), and two-tailed Student’s t-tests were used to determine

statistical significance. Cell numbers were counted with Imaris (Bit-

plane) software and ImageJ. Detail quantification methods are

available in SI Materials and Methods.
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