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Constraints on global temperature
‘target overshoot

K. L. Ricke®?, R. J. Millar® & D. G. MacMartin*

In the aftermath of the Paris Agreement, the climate science and policy communities are beginning
. to assess the feasibility and potential benefits of limiting global warming to 1.5°Cor2°C above
Accepted: 11 October 2017 . preindustrial. Understanding the dependence of the magnitude and duration of possible temporary
Published online: 07 November 2017 : exceedance (i.e., “overshoot”) of temperature targets on sustainable energy decarbonization futures
. and carbon dioxide (CO,) removal rates will be an important contribution to this policy discussion.
Drawing upon results from the mitigation literature and the IPCC Working Group 3 (WG3) scenario
database, we examine the global mean temperature implications of differing, independent pathways
for the decarbonization of global energy supply and the implementation of negative emissions
technologies. We find that within the scope of scenarios broadly-consistent with the WG3 database,
the magnitude of temperature overshoot is more sensitive to the rate of decarbonization. However,
limiting the duration of overshoot to less than two centuries requires ambitious deployment of
both decarbonization and negative emissions technology. The dependencies of temperature target
overshoot'’s properties upon currently untested negative emissions technologies suggests that it will be
important to consider how climate impacts depend on both the magnitude and duration of overshoot,
not just long term residual warming.

Received: 13 June 2017

Two primary technology types are implemented in contemporary economic models of climate change mitigation
to limit climate system warming from anthropogenic gases. First, there are technologies that reduce CO, and
other greenhouse gas emissions from the energy supply by replacing carbon-emitting fuels with low or no-carbon
alternatives (referred to as decarbonization technologies hereafter). Second, there are technologies that capture
and sequester CO, already in the atmosphere (negative emissions technologies hereafter).

There exists a large portfolio of decarbonization technologies, including renewable energy generation (such
as wind and solar power), nuclear power and fossil fuel power with carbon capture and storage. While there are
engineering and cost-effectiveness challenges associated with decarbonization technologies, there is also a long
history of development and significant present-day deployment of some decarbonizing technologies. Pathways
for implementation have been extensively explored in the academic literature and policy arena’.

Negative emissions technologies are associated with a distinct set of uncertainties, including remaining largely
untested at scale?. Integrated assessments of climate policy typically only consider bioenergy with carbon cap-
ture and storage (BECCS) - which is both a decarbonization and negative emissions technology— and land
use change (e.g., reforestation) as possible negative emissions sources®*. While there are proposed alternative
approaches for capturing CO, from the air (for example, direct air capture or enhanced weathering), all are asso-
ciated with comparatively large engineering and economic uncertainties’. In the case of BECCS and other bio-
logical or biogeochemical approaches to capturing carbon, there exist uncertain, but hard, biophysical limits
on the maximum deployment of negative emissions such as land and water availability®, as well as considerable
uncertainty on future policy commitment to development and deployment”.

In December 2015, the global community affirmed a goal of ‘holding the increase in global average tem-
perature to well below 2 °C above pre-industrial levels and to pursue efforts to limit temperature increases to
1.5°C’. Limiting warming to 1.5 degrees in 2100 will require very rapid transformation of the energy system
over the rest of the century® and even many mitigation scenarios that aim to restrict temperatures to 2 °C or less
require substantial deployments of negative emissions technologies®. However, it is currently unknown whether
decarbonization and negative emissions technologies can be deployed quickly enough, and on sufficient scale,
to avoid exceeding 1.5 °C peak warming. Thus an “overshoot” of 1.5°C - that is, a period of time in which the
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Figure 1. Decarbonization and negative emissions scenarios. Black lines show the scenarios explored in this
analysis for (a) carbon intensity (MtCO2/E]), a proxy for decarbonization, and (b) negative emissions (GtCO2/
year). Green dashed lines show the median trajectories for 7 concentration-based groupings of WG3 database

scenarios®.

global temperature increase over pre-industrial exceeds a 1.5°C warming target—appears likely even under such
ambitious mitigation scenarios.

Recent research has been undertaken to characterize the challenges associated with closing the mitigation gap
between business as usual, the Paris emissions pledges and various temperature stabilization scenarios!*-'. The
Intergovernmental Panel on Climate Change (IPCC) Working Group 3 (WG3) scenario database® is often used to
provide a representative range of potential future emissions time series in these analyses>'*. While the importance
of negative emissions in overshoot scenarios is widely recognized!?, the respective contributions of decarboniza-
tion and negative emissions in these scenarios are not explicit. This is due in part to the fact that BECCS - the only
significant long-term negative emissions technology deployed in these scenarios — both generates energy that can
displace fossil fuels (i.e., decarbonization) and sequesters atmospheric CO, (i.e., negative emissions). Given the
distinct uncertainties associated with deployment of negative emissions technologies than decarbonization, this
lack of technological attribution obscures straightforward assessment of the constraints upon meeting specific
temperature targets under specific timelines and conditions (including overshoot).

In this paper, we explicitly decompose and decouple the CO, emissions contributions of technologies that
solely decarbonize the energy system from those that generate negative emissions, and characterize their relative
contributions to the magnitude and duration of temperature target overshoot. While the scenarios presented in
the WG3 database are obviously not an exhaustive representation of all potential future emissions trajectories,
they do encompass a wide range of economically-constrained technological and policy pathways. We therefore
use multi-model mean scenarios from the database as guideposts to parameterize the evolution of decarboniza-
tion and negative emissions, extending them beyond 2100. We then examine the ranges of scenarios that result in
overshoot of 1.5°C and 2 °C temperature targets. Scenarios (Fig. 1) are indexed by two free parameters: deploy-
ment rates for each technology type and medium- to long-term technology deployment targets (see Methods).
While agnostic about the particular technologies deployed within either group, the decoupling of these two tech-
nology types reveals implicit technology-associated constraints on limiting temperature target overshoot and how
those constraints may translate into climate risk assessment.

Results

Figure 2 shows the global temperature time series projected under a range of decarbonization pathways only
(blue), and combined decarbonization and negative emissions pathways (red) relative to two temperature targets
—1.5°C and 2°C. Temperatures are projected through 2300 using a simple carbon-cycle-climate model with cli-
mate sensitivity to CO, emissions indicative of that simulated in contemporary model intercomparison projects
(see Methods). Panels show nine potential scenarios employing aggressive, moderate and weak decarbonization
(left to right) and negative emissions (bottom to top) deployments. Characterizations of “weak” and “aggressive”
deployments are qualitative, so these designations may be best understood relative to bookend policy bench-
marks. First, using a model with median climate response, the combination of the most aggressive decarboni-
zation and most aggressive negative emissions scenarios yields a sole temperature trajectory without overshoot
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Figure 2. Mean global temperature above preindustrial under a range of decarbonization and negative
emissions pathways. Lines show global temperature increases above preindustrial (1861-1880) with
decarbonization only (blue), decarbonization and negative emissions (red). Horizontal lines mark 1.5 °C (black)
and 2°C (grey) above preindustrial. Panels show scenarios associated with aggressive (a,d,g), moderate (b,e,h),
and weak (c,f,i) decarbonization and weak (a—c), moderate (d-f), and aggressive (g-i) negative emissions
deployment. Aggressive and weak scenarios correspond to the end cases in Fig. 1, while the moderate scenario
represents the median. Stars indicate the “INDC (conditional)” temperature estimates in 2100 presented in
Rogelj et al. (2016).

of 1.5°C. The least aggressive decarbonization scenario with no negative emissions yields a temperature tra-
jectory consistent with Intended Nationally Determined Contributions (INDC) commitments under the Paris
Agreement in 2100'2 (designated by the stars in Fig. 2). In our median case of moderate decarbonization and
negative emissions Fig. 2e), global temperature increase is limited to 1.5°C only after a two century period of
overshoot, with the global temperature anomaly peaking at 2°C degrees early next century. In the least aggressive
combination of scenarios, global temperature still hasn’t peaked in 2300. (See Supplementary Figures S1 and S2
for the same figure but with carbon-climate system responses at the high and low end of the IPCC “very likely”
range.)

Figure 3 shows the dependence of the magnitude and duration of temperature overshoot on the aggressive-
ness of decarbonization and negative emissions for a range of climate sensitivities. Whilst decarbonization plays
a larger role than negative emissions in limiting the magnitude of overshoot, negative emissions are an essential
determinant of its duration. The dynamics underlying this are fairly straightforward; because there is only a lag
of about a decade after an emission of carbon dioxide before it has its maximum warming effect'®, the amount
of carbon dioxide released is the primary determinant of maximum warming. At the present day, negative emis-
sions are essentially zero, while positive ones are high, resulting in the net CO, release being mostly driven by
the carbon intensity of the energy system in the time period leading up to peak warming. However, because the
carbon cycle is slow to remove excess atmospheric CO, naturally, capacity to deliberately remove it becomes a
constraining factor in bringing temperature down after a target is surpassed. While in our baseline scenarios the
rate and maximum deployment of negative emissions deployment covary, it is total capacity for negative emission
that is important for determining overshoot duration, rather than rate of deployment that drives this result (see
Supplementary Figure S3). Without sustained negative emissions, even a very small-magnitude overshoot will
persist for many centuries.

If Transient Climate Response (TCR), a transient measure of climate sensitivity, turns out to be on the lower
end of an assessed 5-95% range'’ (Fig. 3a and d), a wider range of technology deployments—including those that
don’t rely heavily on negative emissions—avoid overshoot altogether. On the other hand, if TCR is on the higher
end of the range (Fig. 3¢ and f), the scenarios that result in overshoot are essentially the same, but its magnitude
is much higher.

These quantitative results are sensitive to scenario-driven assumptions. For example, when implemented in
combination with aggressive mitigation of non-CO, forcers (as represented by the emissions pathway associ-
ated with scenario RCP2.6), a broader range of aggressive decarbonization and carbon removal scenarios avoid
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Figure 3. Magnitude and duration of 1.5 °C temperature target overshoot for 5-95% range of climate response.
Contours show the interpolated maximum magnitude (in °C) (a-c) and duration (in years) (d-f) of the period
of overshoot beyond 1.5°C as a function of decarbonization (indexed by growth rate and a mid-century
benchmark, see Methods) and negative emissions implementation (indexed by growth rate and maximum
deployment, see Methods) with the highest rates of decarbonization and negative emissions towards the origin.
White areas show scenario spaces with no overshoot, and stippled areas scenario spaces where the quantity

is still undefined in 2300. Low, median and high climate responses correspond to transient climate responses
(TCRs) of 1.0°C, 1.6°C and 3.3°C.

overshoot altogether (see Supplementary Fig S4). Likewise, lower or higher energy demand scenarios broaden
or restrict pathways to 1.5°C or 2 °C temperature targets (Supplementary Figs S5-S6). However, the qualitative
results are robust to alternative formulations. The magnitude of the overshoot temperature is largely determined
by the aggressiveness of decarbonization policy, while the duration is driven by the scale of both decarbonization
and long-term negative emissions deployment levels.

Discussion

In the range of futures explored in the WG3 scenario database, under a mid-range climate response overshoot is
a virtual certainty in nearly all pathways to achieving a 1.5°C temperature target by the end of the 22" century.
For a 2°C target (Supplementary Figure S7), there are also a limited range of moderate decarbonization condi-
tions that yield a limited period of overshoot. Generally, in this WG3-constrained range of decarbonization and
negative emissions scenarios the 2 °C target is either met or exceeded for many centuries. When overshoot does
occur, its magnitude is generally less than 1 °C. This suggests that understanding the mechanistic drivers of global
temperature-linked climate change impacts (i.e., threshold-based versus cumulative damage) may be particularly
important in the context of the post-Paris emphasis on a 1.5 °C target.

The carbon-cycle-climate model (Finite Amplitude Impulse-Response Model, or FAIR)'® used to simulate
the temperature implications of combined decarbonization and negative emissions futures accounts for the
state-dependence of the temperature and concentration response to additional CO, emissions. FAIR success-
fully emulates the behavior of widely-used MAGICC simple climate model'® under the RCP2.6 scenario, which
involves net negative emissions at the end of the century (see Millar et al. 2017). However, an important caveat
to our results is that whilst such simple models may represent the climate system well over the historical period
(when emissions have been increasing), caution should be taken in interpreting the projections of a simple model
when emissions and radiative forcing are declining®. As substantial negative emissions are deployed here, the
symmetry between the response for positive and negative CO2 emissions is important. In Figure S8 we show
the response of the simple carbon-cycle-climate model to the negative emissions scenarios of Jones et al.*!. Our
model performs similarly to the simple model used there and the efficacy of negative emissions displays similar
dependencies on the background emissions scenario as seen there. Our model also displays a declining efficacy
of negative emissions with additional negative emissions as seen for the UVic Earth System Climate Model*.
A comprehensive assessment of the dependencies of the climate response on the magnitude of negative emis-
sions and background climate state across Earth System Models would be useful to help calibrate simple climate
carbon-cycle models to the range of behavior seen in more physically based models.

The COP-21 climate meeting in Paris acknowledged the potential value in a more aggressive goal of limiting
global mean temperature rise to no more than 1.5°C without tying specific impacts reductions to this goal. An
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increasing body of climate change impacts research suggests that 2 °C of global warming will still result in signif-
icant damage to infrastructure, human livelihoods, and managed and natural ecosystems, perhaps substantially
greater than those associated with 1.5 °C warming?***. Some impacts are driven by threshold behavior, while oth-
ers are the result of long-term cumulative damage. Our analysis shows a wide range of plausible pathways toward
1.5°C, and the impacts implications of a long, moderate overshoot versus a short, high magnitude one may well
be quite different.

Deployments of decarbonizing and negative emissions technologies have different implications for how global
temperature change can be limited, and thus, the timing and magnitude of any temperature target overshoot.
Avoiding more than 1.5°C of warming this century appears to be unlikely through decarbonization alone'!. Yet
large uncertainties are associated with the requisite supplemental contributions from negative emissions tech-
nologies to meeting that target. While BECCS and other negative emissions technologies are not completely
untested, they have not progressed beyond the pilot project stage?’, whereas decarbonizing technologies are
already deployed to produce a substantial fraction of electricity supply - making them more of a known quantity
in terms of economics, policy and regulation. Limiting duration of overshoot is going to depend heavily upon the
amount of total negative emission capacity that can be deployed in a technically, ecologically and economically
sustainable way. If scalable technologies for negative emissions fail to emerge, then there would likely be sub-
stantial and long-lasting overshoot of 1.5 °C. (We do not consider here the use of solar geoengineering® to avoid
overshoot?’, as these technologies remain highly uncertain, contested, and require their own impact assessment.)

Limiting warming to 1.5 °C will be a significant challenge. To date, attributable anthropogenic warming has
been calculated to be already in excess of 0.9 °C*. Committed warming, including future emissions implicitly
committed by existing infrastructure, is estimated to be between 1 and 1.5 °C%. The analysis above supports the
finding that there are substantial, if not insurmountable, hurdles to meeting a 1.5 °C temperature target without
overshoot. A broad range of pathways are associated with a long-term 1.5 °C temperature target — many of which
include centuries of exceedance absent aggressive deployment of negative emissions technology. While adjust-
ments to decarbonization targets could effectively manage the magnitude of overshoot, once a target is surpassed,
negative emissions technology - in particular, its long-term maximum deployment—is equally essential to lim-
iting duration.

At the request of the UNFCCC, IPCC is preparing a report on the science of a 1.5 °C temperature target®.
As the climate science community proceeds with a new round of research and assessment with this threshold in
mind, it will be important to understand the drivers behind various global temperature linked impacts and how
these are influenced by both the duration and magnitude of a temporary overshoot of the target. Certain impacts
of climate change will depend not just on long-term temperature targets, but also on the temporal pathway to
meeting that target. Understanding how assumptions about technology deployments translate into constraints
on the magnitude and duration of overshoot will allow policy makers to better link climate policy goals to specific
technological needs.

Methods

Carbon dioxide emissions scenarios were generated using simple parameterized logistic functions benchmarked
using the range of policy scenarios represented in the IPCC WG3 scenario database in which atmospheric CO,
concentrations reach between 430 and 1000ppm in 2100°.

The WG3 database includes some scenarios using negative emissions, specifically BECCS, and, to a certain
extent, land-use change approaches such as reforestation. These are the only two sources of negative emissions in
the WG3 database. Because negative emissions-associated land use changes and development-associated land use
changes are not reported separately in the database, as an accounting matter, land use emissions are only included
as negative emissions when those emissions are net negative. (As explained below, net positive land use emissions
are indexed in conjunction with decarbonization scenarios.) Negative emissions pathways as represented in the
WG3 database are approximated as:

Negative CO, emissions = Primary Energy(BECCS)* 0.075GtCO2/E]
+ Min[{Land use CO2 emissions, 0}]

Negative CO, emissions from BECCS is not a reported variable in the database, so a scaling factor from the
literature was used to approximate it from the primary energy generated through BECCS*3!.

We assume positive CO, emissions in the scenarios are a function of three variables: carbon intensity of energy
generation, primary energy demand, and net positive emissions from land use change:

Positive CO,Emissions = Carbon intensity of energy x Primary Energy
+ Max[{Land useCO2 emissions, 0}]
Carbon intensity was the proxy used in our analysis for decarbonization and was calculated from WG3 data-
base values for each scenario using the following formula:
Carbon Intensity = (CO,Emissions + Primary Energy(BECCS)..0.075GtCO2/E]
—CO2 Emissions from land use)/(Primary Energy)
Negative emissions are added back into the global CO, emissions to avoid double-counting. The mean carbon

intensity pathways associated with the 7 scenario groupings of CO, concentration in 2100 used to characterize
the WG3 database are shown in green in Fig. 1a. For simplicity, scenarios presented in the main text are generated
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using global energy demand represented by a single fit to the median primary energy scenario (Supplementary
Fig S5). (Supplementary Figure S6 shows results with high and low energy demand pathways.)

A general model of the adoption of new technology types shows usage approximating a sigmoidal, or S-shaped
curve®?. The growth rate and saturation are limited by factors such as technological features, costs, or policy and
infrastructure constraints. To approximate this sigmoidal adoption model, pathways were approximated using
three or four parameter logistic functions in order to extend a corresponding range of emissions and negative
emissions scenarios beyond 2100 where the WG3 database scenarios end.

The generalized form of this function (with different free and fixed parameters for carbon intensity, negative
emissions and primary energy) is:

K-A

BO = A+

The parameters are upper and lower asymptotes, K and A; a maximum growth rate, B; reference time, t,. and
asymmetry parameter, v.

Our high and low parameterized scenarios were fit to correspond to high and low scenarios from the WG3
database. As such, the free parameters covary in the scenarios tested in the main text, but we use sensitivity
analyses to test the independent impact of each parameter on the impact of negative emissions deployment (see
Supplementary Information). For both carbon intensity and negative emissions, the intervening scenarios were
spaced evenly in the assumed growth rates (blue axes in Figs 2 and 3). For carbon intensity, scenarios were also
spaced evenly in their projected value in 2050 (black axis). For negative emissions, scenarios were spaced evenly
in the upper asymptote that represents a maximum annual rate of atmospheric CO, removal (red axis). For neg-
ative emissions, scenarios span the WG3 database range and exceed it on the upper end of the range in order to
partially account for negative emissions technologies not yet incorporated into integrated assessment models at
the time of the database’s publication. However, contemporary estimates of 12—-15 GtCO,/year*® upper limits for
negative emissions are consistent with the aggressive scenarios. Negative emissions are fixed at zero before 2020
and phased in linearly through 2040 to remove empirically inconsistent low tails before the present-day.

For simplicity, energy demand is assumed to be identical under all scenarios. A fit to the median primary
energy pathway was used as the fixed future primary energy trajectory (see Supplementary Figure S5). A lin-
ear representation of positive land use emissions is indexed in conjunction with decarbonization scenario. (See
Supplementary Figure S9.) In total we generate 11 decarbonization scenarios and 11 negative emissions (includ-
ing zero), for a total of 121 scenarios, illustrated in Fig. 1.

For all non-CO, forcings, we add the estimated radiative forcing associated with emissions scenario RCP4.5.
We test the sensitivity of our results to this assumption by duplicating the analysis with RCP2.6 values for
non-CO, forcings in the Supplementary materials.

To associate the emissions pathways associated with temperature outcomes through 2300 we use a
one-dimensional global-mean climate response model designed to emulate the behavior of more complex earth
system models'®. A range of climate sensitivities is evaluated by varying the transient climate response (TCR) of
the model between 1.0-3.3 °C with an assumed median response of 1.6 °C from an observationally-constrained
5-95% uncertainty range »’ (but similar to the 1.0-2.5°C likely range as assessed by IPCC?®). Contemporary
uncertainty about climate sensitivity is driven, among other reasons, by large uncertainty about the magni-
tude of negative non-CO, climate forcings (primarily from tropospheric aerosols) that counterbalance posi-
tive CO, forcings. To present projections with a range of TCRs, whilst maintaining approximate consistency
with the present-day climate state, the effective radiative forcing of anthropogenic aerosols (both past and pres-
ent) is multiplicatively scaled following the identical protocol of Millar et al.** to reflect the anti-correlation
between net anthropogenic forcing and climate response required to accurately simulate a 2015 attributable
warming of 0.95 °C above pre-industrial®®. CO, emission scenarios - which were generated relative to the now
partially-obsolete WG3 database— are harmonized to model-derived RCP8.5 values in 2015 using scaling factors
that decay to zero in 2050% in order to anchor all generated scenarios to a common 2015 initialization point.

Plots in Fig. 3, Supplementary Figures S3-S4, and Supplementary Figures S6-S7 are generated using
first-order linear interpolation to generate contours.

Data Availability.  All the emissions and warming scenarios associated with the main text and supplemen-
tary sensitivity analyses are available as Supplementary Data online.
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