Table 3.
Model performance in training and testing data for the best selected classification models for each dataset. PPV = Positive predictive value. NPV = Negative predictive value. CI = confidence interval (95%).
Model | Method | Train accuracy | Train Kappa | Test Accuracy | Test Kappa | Test Sensitivity | Test Specificity | Test PPV | Test NPV | Tuning parameter | Rank |
---|---|---|---|---|---|---|---|---|---|---|---|
E-Clinical (N = 284) First Model | Random Forest | 0.608[95% CI = 0.598–0.618] | 0.052 [95% CI = 0.028–0.075] | 0.586 | −0.022 | 0.61 | 0.33 | 0.91 | 0.07 | Mtry = 2 | 1 |
E-Clinical (N = 284) Second Model | Generalised Linear model | 0.574 [95% CI = 0.561–0.587] | 0.056[95% CI = 0.028–0.083] | 0.600 | 0.132 | 0.66 | 0.48 | 0.72 | 0.41 | Alpha = 0.1, lambda = 0.019 | (1) |
A-Clinical, genetic, Expression (N = 108) | K-Nearest Neighbours (KNN) | 0.591 [95% CI = 0.556–0.625] | 0.096 [95% CI = 0.022–0.170] | 0.577 | 0.077 | 0.60 | 0.50 | 0.80 | 0.27 | K = 9 | = 2 |
B-Clinical, genetic (N = 108) | KNN | 0.591 [95% CI = 0.556–0.625] | 0.096 [95% CI = 0.022–0.170] | 0.577 | 0.077 | 0.60 | 0.50 | 0.80 | 0.27 | K = 9 | = 2 |
D-Clinical, Expression (N = 108) | KNN | 0.591 [95% CI = 0.556–0.625] | 0.096 [95% CI = 0.022–0.170] | 0.577 | 0.077 | 0.60 | 0.50 | 0.80 | 0.27 | K = 9 | = 2 |
C-Clinical N = 108 | KNN | 0.591 [95% CI = 0.556–0.625] | 0.096 [95% CI = 0.022–0.170] | 0.577 | 0.077 | 0.60 | 0.50 | 0.80 | 0.27 | K = 9 | = 2 |