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Abstract
S -Adenosyl-L-methionine (SAM) is a cofactor serving 
as a methyl donor in numerous enzymatic reactions. 
It has been reported that SAM has the potential to 
modify antioxidant-enzymes, glutathione-biosynthesis 
and methionine adenosyltransferases-1/2 in hepatitis C 
virus -expressing cells at millimolar concentrations. The 
efficacy of SAM at micromolar concentrations and the 
underlying mechanisms remain to be demonstrated.
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Core tip: S -Adenosyl-L-methionine (SAM) serves as a 
cofactor for enzymes that transfer its methyl group 
to nucleophilic functionalities of various biomolecules 
including DNA and RNA. Exogenous SAM has been 
shown to be a useful pharmacological agent in 
liver-associated diseases. SAM is a labile species, 
undergoes spontaneous decomposition in biological 
samples, and its oral bioavailability is only about 2%. 
Lozano-Sepulveda and colleagues observed that SAM 
modulates antioxidant enzymes, restores glutathione 
synthesis, and switches MAT1/MAT2 turnover in 
hepatitis C virus (HCV) expressing cells. The authors 
suggested that this may be a likely mechanism by 
which HCV expression is diminished by SAM. This SAM 
concentration range was chosen on the basis of cell 
viability experiments and is up to 1000 times higher 
than physiological intracellular. Other groups have used 
SAM in the concentration range 0 - 1000 nmol/L. The 
efficacy of SAM, its pharmacological effects towards 
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HCV and possibly adverse effects beyond cell viability 
need to be elaborated in further studies using SAM 
concentrations much lower than 1 mmol/L. 
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TO THE EDITOR
S-Adenosyl-L-methionine (SAM) is the common cofactor 
of methylating enzymes, the methyl transferases. 
These enzymes catalyze the transfer of the methyl 
group of SAM to various nucleophilic functionalities 
of low-molecular-mass and high-molecular-mass 
biomolecules. Catechol amines, DNA, RNA, and 
proteins are well-investigated substrates of methyl 
transferases. SAM deficiency is associated with many 
different pathogenic conditions including liver diseases, 
depression and inherited methylation disorders. SAM 
supplementation in such diseases is a therapeutic 
means[1-5]. Lozano-Sepulveda and colleagues recently 
reported in the World Journal of Gastroenterology that 
SAM decreased hepatitis C virus (HCV) -RNA levels by 
50% to 70% and induced a synergistic antiviral effect 
with standard IFN treatment[6]. The authors found that 
SAM modulated several antioxidant enzymes (e.g., 
superoxide dismutase-1 and -2, thioredoxin), restored 
glutathione (GSH) synthesis, and switched methionine 
adenosyltransferase (MAT) turnover in HCV-expressing 
cells. The study by Lozano-Sepulveda and colleagues 
adds to the pleiotropic effects of SAM. However, this 
study by Lozano-Sepulveda and colleagues suffers from 
a major limitation, namely the use of very high SAM 
concentrations (range, 1 - 5 mmol/L)[6]. The choice of 
this SAM concentration range appears arbitrary. Another 
study limitation is that no SAM concentration/dose-
response experiments have been performed. 

SAM is a physiological substance and is wi-
dely distributed in extracellular and intracellular 
compartments of the human body[7-11]. The con-
centration of SAM in plasma of healthy subjects is of 
the order of 150 nmol/L, seemingly independent of the 
concentration of total homocysteine[7]. The intracellular 
SAM concentration in human lymphocytes has been 
reported to be about 5 nmol/106 cells; in mouse liver 
the SAM content was determined to be 0.5 nmol/mg 
protein[7]. The latter values are close to those reported 
by others using different analytical methods[12]. In 
freshly isolated human erythrocytes the concentration 
of SAM is of the order of 4 µmol/L[13]. This value agrees 

with more recently reported median SAM concentrations 
in erythrocytes of diabetic (3.8 µmol/L) and non-
diabetic (3.5 µmol/L) male and female subjects[14].

The pharmacokinetics of SAM has been frequently 
investigated in animals as well as in healthy and 
diseased humans[15-17]. The oral bioavailability of SAM 
is of the order of 1% - 4%. Ingestion of 1000 mg 
SAM as tosylate disulfate salt resulted in maximum 
plasma SAM concentrations of about 2.5 µmol/L in 
men and women[3]. Intravenous injection of 1000 mg 
SAM resulted in maximum plasma SAM concentrations 
of about 211 µmol/L[15]. Another study found that 
oral administration of 10 mg SAM/kg body weight 
did not result in significant increases in systemic 
SAM concentration[16]. Thus, the SAM concentration 
range used in the Lozano-Sepulveda’s study[6] is 
almost 1000-fold higher than physiological and 
pharmacologically used SAM concentrations (0-1000 
nmol/L), and even 5 - 25 times higher than plasma 
SAM concentrations from intravenously injected SAM. 

Use of very high SAM concentrations in in vitro expe-
riments, even if not toxic[6], may lead to entirely different 
or contradictory results than the use of physiological 
and pharmacological SAM concentrations[18]. Oral 
administration of radiolabeled SAM (i.e., [methyl-
14C]SAM) in mice resulted in radioactivity accumulation 
in the liver due to authentic [methyl-14C]SAM and 
[methyl-14C]phosphatidylcholine. The latter was 
found to be about 8 (after 60 min) and 25 (after 
240 min) times higher concentrated than [methyl-
14C]SAM[16]. In aqueous solution, SAM is unstable 
and decomposes spontaneously to its components 
including S-methylthioadenosine, adenosine, adenine, 
and homoserine lactone[19]. Above pH 6, SAM is 
chemically very labile. Its inherent reactivity towards 
nucleophilic functionalities of biomolecules such as DNA 
and proteins is about 1000 times higher than that of 
methylated folates[19]. These observations suggest that 
SAM does not only function as an universal cofactor 
in methyltransferases-catalyzed reactions, but also 
undergoes both spontaneous methylation reactions with 
various biomolecules and decomposition to species such 
as S-methylthioadenosine and homoserine lactone[19]. 
Possibly, SAM decomposes to additional substances with 
not yet known biological activities, albeit not necessarily 
acutely cell toxic. The decrease in total glutathione 
concentration in the HCV-expressing cells upon 
incubation with SAM at 1 mmol/L for 1 and 2 h seen 
by Lozano-Sepulveda et al[6]  may be an indication of a 
(spontaneous) reaction of SAM with reduced glutathione 
(GSH) to form S-methyl-glutathione which cannot be 
detected by the Ellman’s method. At least in rat kidney 
proximal tubules, S-methyl-glutathione is rapidly 
degraded by gamma-glutamyl-transpeptidase[20]. 
Measurement of oxidized glutathione, i.e., glutathione 
disulfide (GSSG), is a much more suitable and direct 
approach to assess oxidative stress. Yet, no GSSG data 
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were reported in the paper[6]. It is worth mentioning 
that SAM (at 4 mmol/L) can also inhibit thioredoxin-
mediated protein disulfide reductase activity[20]. This 
and further reports[22] are supportive of the chemical 
lability of SAM that makes it a spontaneous unselective 
methylating agent. Spontaneous decomposition of SAM 
considerably contributes to S-adenosyl-homocysteine 
which is a potent inhibitor of methyltransferases 
including protein arginine methyltransferases[23].

Lozano-Sepulveda and colleagues reported in 
their article interesting results and proposed possible 
mechanisms for the explanation of the effects exerted 
by SAM in HCV-expressing cells seen in their study[6]. 
Yet, the SAM concentrations used in the study are 
difficult to be reached within cells even by intravenous 
injection of SAM salts. The high chemical reactivity 
of the S-methyl group of SAM towards biomolecules 
and its spontaneous decomposition is likely to bear 
potential adverse effects. The efficacy and the safety 
of SAM, especially its pharmacological effects towards 
HCV, need to be elaborated in further studies taken 
into consideration the pharmacokinetics of SAM. Use of 
SAM at mmol/L-concentrations may raise unrealizable 
expectations.
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