Skip to main content
. 2017 Oct 24;17(10):2428. doi: 10.3390/s17102428

Table 2.

Hessleskew and Hagg fields results in cross-validation, laboratory and on-line predictions using local, and spiked European dataset based on gradient boosted machines (GBM), artificial neural networks (ANNs) and random forests (RF) models.

Hessleskew Hagg
Local European Local European
RMSE R2 RPD RMSE R2 RPD RMSE R2 RPD RMSE R2 RPD
GBM n.trees n.trees
Cross- 100 TN 0.01 0.63 1.64 0.01 0.96 4.81 100 TN 0.02 0.63 1.66 0.01 0.96 5.01
100 TC 0.16 0.67 1.75 0.06 0.98 6.48 100 TC 0.19 0.65 1.70 0.12 0.98 6.49
Lab Prediction 100 TN 0.01 0.60 1.60 0.02 0.87 2.79 100 TN 0.02 0.62 1.65 0.02 0.79 2.21
100 TC 0.23 0.60 1.59 0.20 0.82 2.40 100 TC 0.21 0.61 1.61 0.19 0.83 3.03
On-line Prediction 100 TN 0.02 0.53 1.48 0.02 0.66 1.80 100 TN 0.02 0.59 1.58 0.02 0.77 2.11
100 TC 0.26 0.54 1.49 0.24 0.66 1.78 100 TC 0.22 0.52 1.46 0.20 0.79 2.95
ANN size size
Cross- validation 2 TN 0.01 0.62 1.62 0.01 0.77 2.08 2 TN 0.03 0.35 1.25 0.03 0.73 1.92
2 TC 0.21 0.44 1.34 0.15 0.86 2.69 2 TC 0.18 0.70 1.82 0.18 0.86 2.79
Lab Prediction 2 TN 0.01 0.69 1.81 0.01 0.71 2.02 2 TN 0.02 0.66 1.74 0.02 0.68 1.87
2 TC 0.25 0.51 1.45 0.20 0.83 2.44 2 TC 0.25 0.47 1.40 0.21 0.84 2.59
On-line Prediction 2 TN 0.02 0.26 1.18 0.01 0.68 1.78 2 TN 0.04 0.11 1.07 0.03 0.59 1.59
2 TC 0.34 0.19 1.13 0.25 0.78 2.14 2 TC 0.27 0.75 1. 95 0.20 0.85 2.63
RF ntree ntree
Cross- validation 100 TN 0.01 0.83 2.45 0.01 0.96 4.83 100 TN 0.01 0.84 2.50 0.01 0.97 5.58
100 TC 0.12 0.82 2.38 0.06 0.98 6.48 100 TC 0.13 0.84 2.52 0.10 0.98 7.54
Lab Prediction 100 TN 0.01 0.82 2.40 0.02 0.81 2.33 100 TN 0.02 0.78 2.18 0.02 0.84 2.51
100 TC 0.25 0.75 2.02 0.23 0.78 2.16 100 TC 0.18 0.81 2.35 0.14 0.88 3.49
On-line Prediction 100 TN 0.01 0.72 1.93 0.04 0.55 1.52 100 TN 0.02 0.79 2. 20 0.02 0.83 2.40
100 TC 0.21 0.69 1.82 0.20 0.75 2.13 100 TC 0.15 0.77 2.13 0.14 0.86 3.24

n.trees = total number of trees to fit., size = number of units in the hidden layer, ntree = number of trees.