Table 4.
Classification accuracy of k-NN (k = 1, 3, 10, 20) and SVM (C = 10, 10, 10, 10) using ALL feature vector based on IMIM.
k-NN | SVM | |||||||
---|---|---|---|---|---|---|---|---|
k = 1 | k = 3 | k = 5 | k = 10 | C = 10 | C = 10 | C = 10 | C = 10 | |
Accuracy (%) | 87.9 | 88.1 | 87.5 | 87.2 | 88.4 | 89.2 | 90.6 | 88.8 |
Standard Deviation (%) | 8.5 | 7.9 | 8.7 | 8.3 | 9.4 | 9.6 | 8.1 | 7.8 |