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Abstract: In order to enhance the selectivity of metal oxide gas sensors, we use a flow modulation
method to exploit transient sensor information. The method is based on modulating the flow of the
carrier gas that brings the species to be measured into the sensor chamber. We present an active
perception strategy by using a DQN which can optimize the flow modulation online. The advantage of
DQN is not only that the classification accuracy is higher than traditional methods such as PCA, but also
that it has a good adaptability under small samples and labeled data. From observed values of the sensors
array and its past experiences, the DQN learns an action policy to change the flow speed dynamically
that maximizes the total rewards (or minimizes the classification error). Meanwhile, a CNN is
trained to predict sample class and reward according to current actions and observation of sensors.
We demonstrate our proposed methods on a gases classification problem in a real time environment.
The results show that the DQN learns to modulate flow to classify different gas and the correct rates
of gases are: sesame oil 100%, lactic acid 80%, acetaldehyde 80%, acetic acid 80%, and ethyl acetate
100%, the average correct rate is 88%. Compared with the traditional method, the results of PCA are:
sesame oil 100%, acetic acid 24%, acetaldehyde 100%, lactic acid 56%, ethyl acetate 68%, the average
accuracy rate is 69.6%. DQN uses fewer steps to achieve higher recognition accuracy and improve
the recognition speed, and to reduce the training and testing costs.
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1. Introduction

Electronic nose with metal oxide (MOX) gas sensor array is widely used in various fields [1–8]
due to its simple structure, low cost and high sensitivity. Successful applications of electronic nose
have been reported not only in the traditional food industry and environment monitoring, but also
in medical applications such as cancer diagnosis. For example, Salvato et al. [9] proposed a holistic
approach to the analysis of electronic nose generated olfactive patterns. This strategy allows for the
simultaneous evaluation and combination of the informative contents provided by the two most
common artificial olfaction approaches to volatile organic compounds (VOC) mixtures classification.
Natale et al. [10] investigated the possibility of using an electronic nose to check whether volatile
compounds present in expired air may diagnose lung cancer. Breath samples were collected and
immediately analysed by an electronic nose.

However, a common challenge for MOX sensors or chemical sensors is their poor selectivity.
There are two kinds of approaches to enhance selectivity of gas chemical sensors in general. One is to
change the sensor’s working condition such as temperature modulation [11], gate bias modulation [12],
which aims to result in a unique response pattern for each gas, thereby increasing the selectivity.
Another way is to change the distribution of odorants around the sensor such as flow modulation [13],
gasmodulation [14], e-mucosa [15], which exploit different diffusion and reaction velocity of the
odorants to change their concentrations around sensors.
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Temperature modulation has been widely researched in recent years. For example, Vergara et al. [16]
show how it is possible to optimize a multi-frequency signal to be used in the modulation of the
operating temperature of an integrated gas sensor microarray. Huang et al. [17] investigated the gas
sensing behavior of a single SnO2 gas sensor based on a dynamic measurement method. They used
different heating waveform and frequency to modulate temperature. The results were compared with
those of static measurement. Gosangi et al. [18] proposed a “pseudo sensor” method for changing the
response characteristics of a sensor by dynamically modulating the heating temperature. They proposed
an active sensing strategy based on partially observable Markov decision processes (POMDP) that
allows the temperature modulation program to be optimized in real time, as the reactions of sensors to
the environment. Describe active perception strategy as ternary classification problem, which uses the
sensor model and Gaussian noise for simulation verification.

In e-mucosa system [15], a sample first passes over a pre-concentrator employing a carbon black
layer as the absorbent coating. These have been integrated with control electronics, a pre-concentrator,
temperature control and a sample delivery system to produce a fully functional electronic nose
(e-nose) instrument. Data from this device, when used with a pattern recognition method that
utilizes temporal information and the large data set, the e-mucosa system improves the discrimination
power of this instrument compared to conventional e-noses. One of the promising techniques is
a microwave transduction technique [19,20], which is based on the change of electromagnetic properties
of gas sensitive layer in the microwave range. Abdolrazzaghi et al. [21] developed a robust and
fault-tolerant approach to microwave based sensitive measurements using Fuzzy Neural Network.
A practical application of such method could be for high-cost industries such as biomedical/chemical
wherein the accuracy of detection plays an important role. Rydosz et al. [22] used comb copolymer
phthalocyanine (Pc) thin films as sensitive layers for microwave gas sensors at room temperature under
exposure to various volatile organic compounds. The obtained results confirmed the possibility of
using the microwave Pc-based sensors for exhaled acetone measurements. Mirsky [23] shows that the
measurements in non-equilibrium conditions can reduce or even eliminate a relative contribution of
interferences to a sensor signal.

While human beings and other animals use flow modulation routinely (sniff) for olfactory
perception [24], there are very few reports about flow modulation in machine olfactory. Just as eye
saccade in visual perception, animals make adjustments to sniff strength and duration in response
to different olfactory tasks. The pioneering work of Mozell and colleagues [25,26] found that
high-sorption rate odorant will induce a large response across olfactory mucosa when delivered
at a high airflow and a smaller response when delivered at a lower airflow while low-sorption
rate odorant show the opposite behavior. Contrary to temperature modulation, flow modulation
has its bio-plausible. Barbri et al. [27] use flow modulation to obtain transient information and
improve the selectivity of metal oxide gas sensors. The good results obtained which clearly outperform
those obtained when the steady-state response used, prove the concept behind flow modulation.
Ziyatdinov et al. [28] design an olfaction machine that could increase the lifetime and sensitivity of
artificial chemo-sensory systems. They use an array of 16 metal-oxide gas sensors and combined
with a chemical mechanical ventilator to simulate the biological respiration cycle. As a result, at early
stages of measurement, such information is available which could make the technique suitable in
early detection scenarios. However, neither of the aforementioned methods treats flow modulation as
an active process nor proposes a systematic approach to optimizing flow speed online.

In this paper, we not only use flow modulation method to enhance selectivity of metal oxide
sensors but also present an “active perception “strategy based on Deep Q Network (DQN) [29,30]
that allows the gas flow to be optimized in real time, as the sensor reacts to a dynamic environment.
We propose a combined DQN and Convolutional Neural Network (CNN) to fulfill this goal. DQN is
an improved algorithm based on Q-Learning [31], using the deep learning network to solve the curse
of dimensionality of large scale problem in practice. Without prior knowledge, DQN can be trained
online for classification through observations and received rewards. The DQN learns an action policy
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to change the flow speed dynamically that maximizes the total rewards (or minimizes the classification
error). Meanwhile, a CNN is trained to predict sample class and reward according to current actions
and observation of sensors. We demonstrate our proposed methods on a gases classification problem
in a real-time environment. The results show that the DQN learns to modulate flow to classify different
gas. The results also show that the algorithm has high recognition accuracy for the five kinds of gases.
The algorithm can improve the recognition speed of electronic nose and reduce the cost of training
and testing.

2. DQN-CNN

2.1. DQN

In a known environment, the dynamic sequence decision process is usually formalized into
a Markov decision process (MDP); its characteristics are described by four tuple (S, A, P, R). In every
step, agent based on current state st and strategy π, select an action at from action set A to execute.
It will receive an instant reward rt, then transit to a new state st+1. The goal of reinforcement learning
is to find a strategy to maximize the expected discount reward.

Rt = rt + γrt+1 + γ2rt+2 + · · · (1)

where γ ∈ [0, 1] is the discount factor, weight the importance of immediate and future rewards. In MDP,
the optimal policy strategy can be calculated by value iterations [32].

Q-Learning is a model free reinforcement learning technique and states and rewards are generated
by the environment. The purpose of Q-Learning is to find an optimal strategy to maximize total received
reward. State is gotten from an observation function and in our electronic nose system state is the
response value of the sensor array; a is the action that can change state, the action in the electronic nose
system a is the flow rate. We use state-action value and Q value to estimate the value of an action in
a given state under the optimal strategy, which is defined as follows:

Qπ(s, a) = E[Rt|st = s, at = a,π] (2)

Vπ(s) = Ea∼π(s)[Q
π(s, a)] (3)

The preceding state-action value function (Q function for short) can be computed recursively with
dynamic programming.

Qπ(s, a) = Es′
[
r + γEa′∼π(s′)[Q

π
(
s′, a′

)
]|s, a,π] (4)

Define the optimal Q∗(s, a) as:

Q∗(s, a) = maxπQπ(s, a) (5)

For given strategy, the optimal V∗(s) is:

V∗(s) = maxaQ∗(s, a) (6)

Thus, it also shows that the optimal Q function satisfies the Bellman equation:

Q∗(s, a) = Es′
[
r + γmax

a′ Q∗
(
s′, a′

)∣∣s, a
]

(7)

We define state-dependent action function:

Aπ(s, a) = Qπ(s, a)−Vπ(s) (8)
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Note that Ea∼π(s)[A
π(s, a)] = 0. Intuitively, the value function V measures its quality in a particular

state. The Q function measures the value of the particular action in this state. The dominant function
subtracts the value of the state from the Q function and obtains a relative measure of the importance of
each action.

When the state space is very large, a common skill is to use a function to approximate it. For example,
DQN uses neural network parameter θ instead of Q (s, a; θ). A neural network with at least one nonlinear
hidden layer and enough nodes can approximate any functions. To train the network, DQN optimizes
the following loss function sequence in iterations:

Li(θi) = E(s,a,r,s′)∼U(D)[((y
DQN
i −Q(s, a; θi))

2
] (9)

Where yDQN
i = r + γmax

a′ Q(s′, a′
∣∣∣θ−i ) represent the target value of an action in a given state.

θ−i represent the parameter of the target network. You can try using standard Q-Learning to learn
Q(s, a; θ) parameters online, but this method is not performing well in actual use. A key innovation is
the use of gradient descent to update the parameters of the target network via iterations, which greatly
improves the stability of the algorithm. Gradient update is:

∇θi Li(θi) = Es,a,r,s′ [(y
DQN
i −Q(s, a; θi))∇θi Q(s, a; θi)] (10)

We call such an algorithm off-policy because the states and rewards are obtained through behavior
strategies. Another key factor is experience replay [33]. During learning, agent accumulates experience
from every iteration and stores it in a data set. When training the Q network, we only use the data from
the stored data set, which are randomly sampled D times. The sequence of loss functions is as follows:

Li(θi) = E(s,a,r,s′)∼U(D)[((y
DQN
i −Q(s, a; θi) )

2
] (11)

To overcome the small sample size and correlation between training samples, DQN uses experience
replay to improve data efficiency by reusing empirical samples in multiple updates. What is important
is that it reduces variance and uniform sampling in the replay buffer to reduce the correlation between
the samples used in the update. References [29–34] have proved that this is an effective method. In [29],
samples are obtained from successive video frames in the game. Compared to the simple reinforcement
learning problem (such as maze), the sample is much more relevant. If there is no experience replay,
the algorithm will basically do the gradient descent in the same direction for a continuous period of
time, so it is impossible to directly calculate the gradient convergence at the same step size. Therefore,
experience replay avoids the problem by randomly selecting some experience from a memory pool.

2.2. DQN-CNN

DQN will receive an immediate reward after selecting an action based on the optimal strategy.
There are two kinds of rewards. If the action is correct, the reward is positive. Otherwise, it is
negative. According to the conventional DQN [34], rewards are given by the game itself. In other
words, DQN cannot determine the kind of rewards. The problem is that there is no such role in
the electronic nose system that can determine the kind of rewards. So, in this paper, we proposed
an optimized DQN, called DQN-CNN, the structure of the block diagram is shown in Figure 1. We use
CNN as a role to approximate the rewards. CNN is best known for its ability to learn features invariant
to translation, rotation and shifting without prior knowledge and human effort. In this research,
we assume that when odorants pass through the surface of sensor array at different speeds, the sensors
will exhibit some spatial invariant pattern which can be exploited. It is worthy to analyze the learned
features in max pooling layers to see whether such invariances exist.

The inputs of DQN are the state values in the environment (e.g., the response value of the
electronic nose sensor array) and rewards given by CNN. The output of DQN is the best action
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(different flow) according to the Q values at each episode. The best action can change the state of the
environment, and different flow rates can change the sensor array responses. The inputs of CNN are
the best action of DQN output and the state values in the environment. Besides, CNN is a three-layer
convolutional neural network. The outputs are the perception classification base on train set labels
and rewards. If the perception classification is correct, the reward is positive. Otherwise, it is negative.Sensors 2017, 17, 2356 5 of 12 
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Figure 1. Optimized DQN (DQN-CNN) structure block diagram.

2.3. DQN-CNN Algorithm

This approach has several advantages over standard online Q-learning. First, each step of experience
is potentially used in many weight updates. Second, learning directly from consecutive samples is
inefficient, due to the strong correlations between the samples; randomizing the samples breaks these
correlations and therefore reduces the variance of the updates. Third, when learning on-policy the
current parameters determine the next data sample that the parameters are trained on. We add CNN
as a decision role. If the predicted result is consistent with the label, the reward is positive. Otherwise,
it is negative. The full algorithm, which we call deep Q-learning, is presented in Algorithm 1.

Algorithm 1 DQN-CNN with Experience Replay

Initialize the memory stored in the experience of replay D, the number of iterations M
Randomly initialize the Q-value function
for iteration number = 1, M do
randomly initialize the first action a1

initialize the first state s1

for t = 1, T do
if the probability is ε, select a random action at

otherwise select at =
max
a′ Q∗(st, a; θ)

input at, st into CNN, get classification ct = CNN(at, st)

if ct == label then
reward rt = 1
if t < T then
reward rt = 2
else rt = 0
execute at, get rt and next state st+1

stored (st, at, rt, st+1) in D
using a gradient descending of random small batches to get sample (sj, aj, rj, sj+1)

yj =

{
rjsj+1 6= terminal

rj + γmax
a′ Q

(
sj+1, a′; θ

)
sj+1 = terminal

Calculate the gradient of
(

yj −Q
(

sj, ai; θ
))2

to update θ

end if
end for
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3. Experiment

3.1. Electronic Nose System

The system is mainly composed of gas sensor array, sampling control module, data processing
module and computer. The block diagram is shown in Figure 2. An image of the experimental setup is
shown in Figure 3.
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This paper uses 5 kinds of gases (namely, acetic acid, acetaldehyde, sesame oil, lactic acid and ethyl
acetate) to validate the algorithm. The actions are 50 mL/min, 100 mL/min, 150 mL/min, 200 mL/min,
250 mL/min, 300 mL/min, No. 1–6. The raw data used in this paper are the actual response values
measured at the above flow rates. In this experiment, the sensors we selected were produced by
Wei Sheng Technology Co., Ltd., Zhengzhou, Henan province, China; the electronic nose system uses
gas sensors, as shown in Table 1.

Table 1. Gas sensitive sensors list.

Number Model Nominal Test Target Gas

S1 MQ-8 hydrogen, coal, gas, etc.
S2 MQ-9B carbon monoxide, etc.
S3 MQ-2 flammable gas, smoke, etc
S4 MQ-5 liquefied petroleum gas, methane, coal gas, etc
S5 MQ-135 ammonia, sulfides, etc.
S6 MQ-3B alcohol, etc
S7 MQ-7B carbon monoxide, etc.
S8 MQ-4 natural gas, methane, etc.
S9 MQ-2 flammable gas, smoke, etc.

S10 MQ-6 liquefied petroleum gas, isobutane, propane, etc.
S11 MQ-5 liquefied petroleum gas, methane, coal gas ,etc
S12 MQ-7 carbon monoxide, etc.
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3.2. Experimental Analysis of 5 Kinds of Gases

Figure 4 shows the raw data for sesame oil at 50 mL/min. The operation of sesame oil is the same
as the other four samples. Sesame oil were taken 50 mL, placed in 250 mL cone bottle, sealed, static 1 h,
so that the bottle reached saturation, the sensors preheat 1 h. Let 60 s of clean air in until the outputs of
sensors are stable. Then test at different flow rates. At the end of the test, exhaust for 2.5 min until the
corresponding sensors recovery baseline, and then do the next testing. Each sample was measured
25 times. We only do qualitative classification tests, not quantitative tests. According to the physical
characteristics of the sensors, the minimum detectable gases concentrations are 300 ppm.

The sampling frequency in the raw data is 10 Hz, in other word, sampling 10 times per second.
Considering that the response values of the sensor array cannot change so much in a short time,
and that the switching of the flow is delayed, it cannot respond immediately. This paper selects every
100 points on the raw data to extract feature, equivalent to sampling once per second, it can not only
avoid the difference caused by the delay but also solve the problem of large amount of data. The data
after feature extraction is shown in Figure 5.
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As can be seen from Figure 5, the processed data size is 30 × 12. The continuous process is too
complicated to simulate. In order to simplify the simulating process, this paper uses the response
value of the same kind of gas at different actions, and makes a judgment every six steps. For example,
a series of continuous actions are 5, 6, 5, 6, 3, 4, then extract the corresponding data from 250 mL/min,
300 mL/min, 250 mL/min, 300 mL/min, 150 mL/min, and 200 mL/min, respectively. Collect the
corresponding sensor response values as the DQN datasets.

The datasets are divided into training sets and test sets. The training sets consist of five kinds
of gases measured in six kinds of actions. The size is 6 × 150 × 12. The test sets have the same size,
using the same measured method under the same conditions. The structure of DQN is two convolutional
layers followed by three fully-connected layers. The first convolutional layer has 3 6 × 6 filters, the second
has 6 3 × 3 filters. The first fully-connected layer has 540 units. The second fully-connected layer has
900 units. The third fully-connected layer has 150 units. The structure of CNN is three convolutional
layers followed by two fully-connected layers. The first convolutional layer has 8 6 × 6 filters,
the second 16 3 × 3 filters. The first fully-connected layer has 4608 units. The second fully-connected
layer has 9216 units. The third fully-connected layer has 576 units.

We used one-hot encoding, so the numbers of output neurons are the same as the kinds of
classification. What CNN outputs is not real class, but confidence level, a probability obtained by
training. In the training phase, the rewards are determined by labels, and the rewards are used for
training DQN. No reward was generated during the operative phase. According to the trained model,
CNN uses the experience replay and off-policy to select a set of the most appropriate actions, and then
outputs the predicted classification according to the response of sensors. A flowchart of DQN-CNN is
given in Figure 6.

Sensors 2017, 17, 2356 8 of 12 

a series of continuous actions are 5, 6, 5, 6, 3, 4, then extract the corresponding data from 250 mL/min, 
300 mL/min, 250 mL/min, 300 mL/min, 150 mL/min, and 200 mL/min, respectively. Collect the 
corresponding sensor response values as the DQN datasets. 

The datasets are divided into training sets and test sets. The training sets consist of five kinds of 
gases measured in six kinds of actions. The size is 6 × 150 × 12. The test sets have the same size, using 
the same measured method under the same conditions. The structure of DQN is two convolutional 
layers followed by three fully-connected layers. The first convolutional layer has 3 6 × 6 filters, the 
second has 6 3 × 3 filters. The first fully-connected layer has 540 units. The second fully-connected 
layer has 900 units. The third fully-connected layer has 150 units. The structure of CNN is three 
convolutional layers followed by two fully-connected layers. The first convolutional layer has 8 6 × 6 
filters, the second 16 3 × 3 filters. The first fully-connected layer has 4608 units. The second fully-
connected layer has 9216 units. The third fully-connected layer has 576 units.  

We used one-hot encoding, so the numbers of output neurons are the same as the kinds of 
classification. What CNN outputs is not real class, but confidence level, a probability obtained by 
training. In the training phase, the rewards are determined by labels, and the rewards are used for 
training DQN. No reward was generated during the operative phase. According to the trained model, 
CNN uses the experience replay and off-policy to select a set of the most appropriate actions, and 
then outputs the predicted classification according to the response of sensors. A flowchart of DQN-
CNN is given in Figure 6. 

 
Figure 6. Flowchart of DQN-CNN. 

Input the training sets into the network for training and use the gradient descent method to 
update the weight of the DQN. The training error is shown in Figure 7. 

As the number of training samples increases, training errors showed a downward trend. Due to 
the restrictions of electronic nose physical characteristics, less iteration would cause the final training 
errors larger. DQN selects the best action that can minimize difference based on the training data. 
The select action will change the response values of the sensor array. Meanwhile, DQN randomly 
selects whether to explore or experience. Explore means learning without experience replay. At the 
same time, the best action combined with the response values of current sensor array will be input 
into the CNN. According to the kinds of label, CNN will output the prediction classification and 
corresponding rewards in every episode. 

Figure 6. Flowchart of DQN-CNN.

Input the training sets into the network for training and use the gradient descent method to
update the weight of the DQN. The training error is shown in Figure 7.



Sensors 2017, 17, 2356 9 of 13

Sensors 2017, 17, 2356 9 of 12 

In order to shorten the test time and improve efficiency, we decided to make a judgment at each 
of the six episodes. Repeat the above step six times. If the predicted steps are six, the reward is one. 
Besides, if the predicted steps are less than six, the reward is two, otherwise it is 0. The rewards of 
training sets are shown in Figure 8. 

 
Figure 7. Training errors. 

 
Figure 8. The reward of training sets. 

Test the trained DQN-CNN. At each six steps, DQN makes a judgment, and then outputs the 
final predicted classification. The less the number of steps electronic nose required to predict, the 
faster the recognition speed is. Compared with the traditional electronic nose identify speed, the 
method used in this paper can greatly improve the identify speed. The steps used are shown in Figure 
9. 

We can see that a large part of the identify steps are less than six times, and often one time or 
two times. They can correctly identify the gas. Of course, the identify steps with six times contain the 
number that have not been identified. Table 2 is the numbers of identify steps. 

The correct rates of the five gases are: 100% sesame oil, 80% lactic acid, 80% acetaldehyde, 80% 
acetic acid and 100% ethyl acetate, the average correct rate is 88%. DQN-CNN can achieve high 
correct rate through limited steps under the condition of less samples. Besides, DQN-CNN can not 
only improve the identify speed of electronic nose and reduce the training cost but also reduce the 
hardware and software cost. 

Figure 7. Training errors.

As the number of training samples increases, training errors showed a downward trend. Due to
the restrictions of electronic nose physical characteristics, less iteration would cause the final training
errors larger. DQN selects the best action that can minimize difference based on the training data.
The select action will change the response values of the sensor array. Meanwhile, DQN randomly
selects whether to explore or experience. Explore means learning without experience replay. At the
same time, the best action combined with the response values of current sensor array will be input
into the CNN. According to the kinds of label, CNN will output the prediction classification and
corresponding rewards in every episode.

In order to shorten the test time and improve efficiency, we decided to make a judgment at each
of the six episodes. Repeat the above step six times. If the predicted steps are six, the reward is one.
Besides, if the predicted steps are less than six, the reward is two, otherwise it is 0. The rewards of
training sets are shown in Figure 8.

Sensors 2017, 17, 2356 9 of 12 

In order to shorten the test time and improve efficiency, we decided to make a judgment at each 
of the six episodes. Repeat the above step six times. If the predicted steps are six, the reward is one. 
Besides, if the predicted steps are less than six, the reward is two, otherwise it is 0. The rewards of 
training sets are shown in Figure 8. 

 
Figure 7. Training errors. 

 
Figure 8. The reward of training sets. 

Test the trained DQN-CNN. At each six steps, DQN makes a judgment, and then outputs the 
final predicted classification. The less the number of steps electronic nose required to predict, the 
faster the recognition speed is. Compared with the traditional electronic nose identify speed, the 
method used in this paper can greatly improve the identify speed. The steps used are shown in Figure 
9. 

We can see that a large part of the identify steps are less than six times, and often one time or 
two times. They can correctly identify the gas. Of course, the identify steps with six times contain the 
number that have not been identified. Table 2 is the numbers of identify steps. 

The correct rates of the five gases are: 100% sesame oil, 80% lactic acid, 80% acetaldehyde, 80% 
acetic acid and 100% ethyl acetate, the average correct rate is 88%. DQN-CNN can achieve high 
correct rate through limited steps under the condition of less samples. Besides, DQN-CNN can not 
only improve the identify speed of electronic nose and reduce the training cost but also reduce the 
hardware and software cost. 

Figure 8. The reward of training sets.

Test the trained DQN-CNN. At each six steps, DQN makes a judgment, and then outputs the final
predicted classification. The less the number of steps electronic nose required to predict, the faster the
recognition speed is. Compared with the traditional electronic nose identify speed, the method used in
this paper can greatly improve the identify speed. The steps used are shown in Figure 9.
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We can see that a large part of the identify steps are less than six times, and often one time or
two times. They can correctly identify the gas. Of course, the identify steps with six times contain the
number that have not been identified. Table 2 is the numbers of identify steps.

Table 2. Number of identify steps.

Steps 1 2 3 4 5 6

Sesame oil 0 2 1 0 0 2
Lactic acid 0 2 1 1 0 1

Acetaldehyde 1 2 0 0 0 2
Acetic acid 0 1 0 0 2 2

Ethyl acetate 0 1 2 1 0 1

The correct rates of the five gases are: 100% sesame oil, 80% lactic acid, 80% acetaldehyde, 80% acetic
acid and 100% ethyl acetate, the average correct rate is 88%. DQN-CNN can achieve high correct rate
through limited steps under the condition of less samples. Besides, DQN-CNN can not only improve
the identify speed of electronic nose and reduce the training cost but also reduce the hardware and
software cost.

3.3. Principal Component Analysis (PCA)

To compare with the DQN, we used PCA to analyze the same experimental data. We use Euclidean
distance for classification. In simple terms, we find the centers of the various kinds of training
sets. Then, we calculate the distance between each point and the five central points in the test set.
The nearest is the prediction classification. The feature used is the maximum value at steady state.
The total sample number is 125. The number of training set is 100, and the number of test set is 25.
We used 10-fold cross-validation to verify the correctness of the PCA algorithm. The first component
of PCA is 85.7%. The second component of PCA is 6.4%. The results of PCA are: sesame oil 100%,
acetic acid 24%, acetaldehyde 100%, lactic acid 56%, ethyl acetate 68%, the average accuracy rate
is 69.6%. The advantage of DQN is not that it has a higher classification accuracy than traditional
methods such as PCA, but that it has a good adaptability under small samples and labeled data.
The result of principal component analysis is shown in Figure 10.
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4. Conclusions

We propose an algorithm for active sensing of electronic nose pattern recognition based on DQN
and CNN. The algorithm is based on the response values of sensor array, using the DQN to find a group
action that maximizes the reward, using different flow to affect the response values of the sensor
array. According to the response values of the sensor array, the experience replay of DQN outputs
an action that maximizes the reward. The CNN output samples classification and rewards according
to current actions and response values. The results show that the correct rate of five kinds of gases are:
sesame oil 100%, lactic acid 80%, acetaldehyde 80%, acetic acid 80%, ethyl acetate 100%, the average
accuracy rate is 88%. The results of PCA are: sesame oil 100%, acetic acid 24%, acetaldehyde 100%,
lactic acid 56%, ethyl acetate 68%, and the average accuracy rate is 69.6%. The advantage of DQN
is not that the classification accuracy is higher than traditional methods such as PCA, but that it has
a good adaptability under small samples and labeled data. The algorithm can improve the identify
speed of electronic nose and reduce the cost of training and testing.
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