Skip to main content
. 2017 Oct 23;17(10):2421. doi: 10.3390/s17102421

Table 2.

Detailed configuration of the three datasets (Pines, University of Pavia (PaviaU) and Salinas) used in this paper. For each class, 200 samples are randomly selected as the training set and the rest as the testing set. For Pines, we use only the top 9 classes with the largest number of samples.

No. Pines PaviaU Salinas
Class Name Train Test Class Name Train Test Class Name Train Test
1 Corn-notill 200 1228 Asphalt 200 6431 Brocoli_1 200 1809
2 Corn-mintill 200 630 Meadows 200 18,449 Brocoli_2 200 3526
3 Grass-pasture 200 283 Gravel 200 1899 Fallow 200 1776
4 Grass-trees 200 530 Trees 200 2864 Fallow_plow 200 1194
5 Hay-win. 200 278 Sheets 200 1145 Fallow_smooth 200 2478
6 Soy.-notill 200 772 Bare Soil 200 4829 Stubble 200 3759
7 Soy.-mintill 200 2255 Bitumen 200 1130 Celery 200 3379
8 Soy.-clean 200 393 Bricks 200 3482 Grapes 200 11,071
9 Woods 200 1065 Shadows 200 747 Soil_vinyard 200 6003
10 Corn_weeds 200 3078
11 Lettuce_4wk 200 868
12 Lettuce_5wk 200 1727
13 Lettuce_6wk 200 716
14 Lettuce_7wk 200 870
15 Vinyard_un. 200 7068
16 Vinyard_ve. 200 1607
Sum 1800 7434 1800 40,976 3200 50,929