
sensors

Article

Logistic Model to Support Service Modularity for the
Promotion of Reusability in a Web Objects-Enabled
IoT Environment

Muhammad Golam Kibria ID , Sajjad Ali ID , Muhammad Aslam Jarwar ID , Sunil Kumar ID and
Ilyoung Chong *

Department of CICE, Hankuk University of Foreign Studies, Seoul 02450, Korea; kibria@hufs.ac.kr (M.G.K.);
sajjad@hufs.ac.kr (S.A.); aslam.jarwar@hufs.ac.kr (M.A.J.); sunil75umar@hufs.ac.kr (S.K.)
* Correspondence: iychong@hufs.ac.kr; Tel.: +82-10-3305-5904

Received: 10 July 2017; Accepted: 18 September 2017; Published: 22 September 2017

Abstract: Due to a very large number of connected virtual objects in the surrounding environment,
intelligent service features in the Internet of Things requires the reuse of existing virtual objects and
composite virtual objects. If a new virtual object is created for each new service request, then the
number of virtual object would increase exponentially. The Web of Objects applies the principle of
service modularity in terms of virtual objects and composite virtual objects. Service modularity is a
key concept in the Web Objects-Enabled Internet of Things (IoT) environment which allows for the
reuse of existing virtual objects and composite virtual objects in heterogeneous ontologies. In the
case of similar service requests occurring at the same, or different locations, the already-instantiated
virtual objects and their composites that exist in the same, or different ontologies can be reused.
In this case, similar types of virtual objects and composite virtual objects are searched and matched.
Their reuse avoids duplication under similar circumstances, and reduces the time it takes to search
and instantiate them from their repositories, where similar functionalities are provided by similar
types of virtual objects and their composites. Controlling and maintaining a virtual object means
controlling and maintaining a real-world object in the real world. Even though the functional
costs of virtual objects are just a fraction of those for deploying and maintaining real-world objects,
this article focuses on reusing virtual objects and composite virtual objects, as well as discusses
similarity matching of virtual objects and composite virtual objects. This article proposes a logistic
model that supports service modularity for the promotion of reusability in the Web Objects-enabled
IoT environment. Necessary functional components and a flowchart of an algorithm for reusing
composite virtual objects are discussed. Also, to realize the service modularity, a use case scenario is
studied and implemented.

Keywords: Internet of Things (IoT); Web of Objects (WoO); semantic ontology; object virtualization;
reusability

1. Introduction

Recent technological advancement, a very large number of connected virtual objects, a significant
amount of available data, and diverse service features enable the Internet of Things (IoT) infrastructure
to create and offer services that facilitate society, economy, and daily living. Maintaining these very
large numbers of connected virtual objects, as well as creating and offering intelligent services in the
IoT environment is a complex task. Moreover, if new virtual objects need to be created for each new
service, then a number of virtual objects will be increased exponentially, which burdens networks and
system performance. Unavailable required virtual objects can be supported by other similar types of

Sensors 2017, 17, 2180; doi:10.3390/s17102180 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-7936-0417
https://orcid.org/0000-0001-6905-446X
https://orcid.org/0000-0002-5332-1698
https://orcid.org/0000-0001-5034-0263
http://dx.doi.org/10.3390/s17102180
http://www.mdpi.com/journal/sensors

Sensors 2017, 17, 2180 2 of 21

virtual objects. Hence, virtual objects need to be reused under similar circumstances that can provide
similar functionalities.

Let us think of a scenario where a person moves to another city in order to attend a conference.
During the conference, he stays in a hotel. He expects similar comfort (e.g., suitable temperature,
humidity, light, etc.) in his hotel room as is in his home. An application system identifies the person,
his current location at the hotel, and analyzes his personal profile and preferences. To create and
offer user-preferred services, available real-world objects at the hotel room need to be controlled and
managed as they are controlled and managed at the user’s home. Hence, service-relevant virtual
objects and the composition of virtual objects are searched and matched for similar functionalities.
Instead of creating new virtual objects and composing virtual objects to create and offer user-request
services, the application reuses them as they were instantiated to offer services at home.

Service modularity is a key concept in a service-oriented architecture that allows for the reuse
of existing virtual objects in heterogeneous ontologies. The reuse of existing virtual objects and their
composites minimizes the complexity and the number of additional virtual objects needed under
similar circumstances, avoids duplication, reduces the time it takes to search and instantiate them
from their repositories, and increases the scalability and interoperability among multiple application
domains. Considering these, the following factors have been identified:

• Service modularity in the Web of Objects (WoO) platform: WoO applies the principle of service
modularity to create and offer IoT services by virtualizing real-world objects, composing them
based on the service request, and reusing them in multiple application domains.

• Reuse of available virtual objects and composite virtual objects: To avoid complexity, ensure
scalability, reduce the time it takes to search and instantiate similar virtual objects, etc., available
virtual objects and composite virtual objects need to be reused. Cognitive functionalities can
be applied to match similar virtual objects and composite virtual objects, or approximate them,
which can provide similar functionalities under similar circumstances.

To overcome the lack of common standards of IoT at the application level, WoO [1,2] allows
real-world object virtualization with the uses of semantic ontology, which forms a virtual object (VO)
for information reusability, extendibility, and interoperability among multiple VOs. Each real-world
object is represented by a virtual object, hence, controlling and managing a VO in the WoO platform
means controlling and managing a real-world object in the real world. Real-world objects include
physical objects and information in the real world. To offer intelligent services, composite virtual
objects (CVOs) are created by combining multiple functionalities of VOs, constraints, and service
policies. WoO allows the extension of the existing web with Web Objects in the IoT environment.
In WoO, VOs are combined with web application characteristics, connected to the Internet, and applied
to the web. WoO achieves distributed service infrastructure and adaptive service composition.

Service modularity is realized in terms of CVOs and their reusability in the WoO platform. Based
on the user request, requested service-relevant CVOs and associated VOs are searched and matched.
It is not necessary to have the CVO in its own application domain; if a CVO is not available in its
own domain, it can be reused from another domain. Here, based on the user request, to create and
offer requested services, the user and his current location are identified and service-relevant CVOs are
instantiated. If the relevant CVOs are not available in their own ontology, then they are matched from
other ontologies. Even though reusing real-world objects is important, and functional costs of reusing
CVOs and VOs are just a fraction of deploying and maintaining real-world objects. Hence, reusing
CVOs and VOs in the WoO platform is an important issue for resource optimization, information
reusability, interoperability, knowledge-based service provisioning, etc. WoO is a service platform that
deals with three levels for application-level service provisioning. This article focuses on reusing CVOs
and VOs as well as their associated mechanisms.

Considering the abovementioned two factors, this paper proposes a logistic model that supports
service modularity so that CVOs can be reused in multiple domains where similar types of VOs and

Sensors 2017, 17, 2180 3 of 21

their functionalities are available. Hence, this paper focuses on real-world object virtualization and its
composition to support user requests, components in the WoO platform, and the reusability of CVOs.

In Reference [3], authors discussed the concept of VOs and proposed a log-based emergency
management system. Authors presented a decision support tool to offer IoT services based on context
information and a previous incident log. The authors claimed the use of a semantic ontology for
reusability and interoperability. However, the key concept of reusability among multiple domains
and its methodology have not been discussed in this article. Authors in Reference [4] proposed a
semantic service composition architecture and presented a procedure for dynamic service composition.
For user-centric dynamic service composition, the authors stated reusing and sharing of VO properties
and attributes that were absent in the article. Compared to existing works, the main advantages of our
proposed logistic model in the Web Objects-enabled IoT environment include the reusability of CVOs
and VOs among multiple domains and real-world knowledge-based decisions, actions, and outcomes
based on CVO reusability.

The structure of this paper is as follows: Section 2 presents the related research. Section 3 discusses
features and functional components of the WoO platform and real-world object virtualization. Section 4
discusses the importance of reuse of CVOs and VOs. To reuse CVOs and VOs, this section presents
and discusses the methodology of searching and matching them. This section also discusses the
knowledge-based service provisioning in the WoO platform. Section 5 presents and implements a
prototype for a use case scenario. This section performs experiments on the implemented functionalities
and discusses the experiments. Finally, Section 6 concludes this article.

2. Related Works

Since IoT covers a vast area, a great deal of research has been conducted in this field. IoT promises
a vision of connecting billions of objects using diverse communication technologies. At the same time,
IoT enables companies and individuals to interact with these physical objects anytime and anyplace.
IoT is a combination of different technologies, various protocols, and heterogeneous devices, altogether
assuring the development of a system to provide smart services for end users. For several years IoT
has become an active area in both academia and research. This was shown through the report “Cluster
of European research projects on IoT” that was been presented in Reference [5]. The authors in this
report discussed the vision and challenges for realizing IoT. Moreover, a cloud-centric vision for the
implementation of IoT systems was deliberated in Reference [6]. The authors discussed important
enabling technologies and applications which are expected to drive IoT research in the future. Further,
they presented an implementation using the Aneka platform with private and public cloud interaction
to support future IoT services. In Reference [7], the authors surveyed IoT and demonstrated the most
important factors, including the communication solutions and integration of several other technologies.
They discussed tracking and identification solutions in IoT, wired and wireless sensor networks and
communication protocols, along with next generation Internet. Furthermore, they elaborated the
importance of distributed intelligence in smart objects for IoT applications.

It is not always possible to connect real-world objects directly to applications. Hence, real-world
objects, including physical objects and information, are virtualized to form VOs. A great deal of
research has been done on object virtualization. VOs have become a major element in the IoT. A VO
is the digital equivalent of a real-world object in IoT. VOs in IoT platforms help in the discovery
and mashup of services and encourage the development of complex applications. In Reference [8],
the authors surveyed VOs in the IoT world; discussed the definitions, characteristics, roles, and
functionalities of Vos; and highlighted the common building blocks for the implementation of a
virtualization layer. The authors also surveyed and presented the roles of VOs and the functionalities
of architectures that have been implemented by different platforms, including oneM2M, SENSEI, IoT-A,
COMPOSE, iCore, etc. Digital representations of real-world objects were discussed in Reference [9],
where VOs carry application logic that enables them to sense the real world and interact with
it. In Reference [9], the authors reported the design patterns for digital representations of VOs

Sensors 2017, 17, 2180 4 of 21

to identify the technical requirements for the future IoT. Moreover, in Reference [10], the authors
demonstrated the IoT concept by describing how things in the real world integrate with the information
technology virtual world. The authors in Reference [11] proposed an IoT prototyping toolkit (IoTLink).
They demonstrated that their toolkit allows developers to create IoT mashup applications. Using
visual components in the toolkit, it abstracts devices and services on the Internet as virtual entities,
encapsulating the complexity of communication with them.

Object virtualization, harmonization, the composition of VOs and CVOs, and the WoO platform
have been discussed and proposed in References [3,4,12–15]. A functional framework of WoO that
includes the concept, reference model, functional capabilities, and information model were provided
in the recommendation ITU-T Y.4452 [2]. Intelligent services can be created and offered by composing
relevant VOs and CVOs, service logic, and constraints. Service composition requires synthesizing
a specification to coordinate the components of service. Composition architecture, methodology,
and algorithms for service composition were presented in References [16–20]. For reusability and
interoperability, intercommunications among VOs is maintained using semantic ontology, which was
discussed in References [21,22].

Discovering and combining relevant VOs for domain-specific service is possible for an application
through cognitive functionalities. Cognitive functionalities enable CVOs to be self-managed,
self-configured, and reused based on a service request. The concept of VOs, CVOs, and their
functionalities were discussed in References [23–25].

A service is realized in terms of a CVO. To execute a service, the VOs that are relevant to the CVO
need to be searched and matched in ontologies. In VO discovery, similarity between a source VO and
a target VO is computed to match them. In an ontology, VOs and CVOs are defined in a hierarchical
manner. Similarity between two VOs can be computed based on their hierarchical structure. Since
VOs include different properties, to compute the similarity, all the properties of the source VO need to
be compared with all the properties in the target VO. Structural matching combines different matching
techniques [26] to compute the similarity between the properties of one ontology with the properties
of another ontology. In this regard, two sets of synsets (sets of synonyms) of different properties can be
computed using a Leacock Chodorow Matcher (LCM) [27,28].

Knowledge can be acquired and updated over the course of time using the concept of a hierarchy
of classes, which is supported by the semantic ontology. Real-world information is captured, converted,
and exploited to represent, organize, and reuse knowledge. Knowledge management processes and
ontologies were discussed in References [29–31]. A knowledge creation mechanism was proposed and
discussed in Reference [32].

Due to a rapid change of context, the application should have the ability to update itself with
current context information. Context-awareness of real-world objects is necessary for any application
for intelligent service provisioning. Context-awareness of objects was discussed in the BUTLER
project and presented in Reference [33]. Context-aware services and applications were discussed in
References [34,35].

3. Semantic Ontology Representation in the Web of Objects Platform

3.1. Web of Objects Archietcture

In the ubiquitous IoT environment, virtual objects interact with each other and share information
to provide intelligent services, but they face isolation of information due to a lack of common standards.
WoO facilitates the integration of isolated information from multiple application domains. Application
deployment and operation are facilitated by the WoO platform. WoO allows the extension of the
existing web with Web Objects in the virtual world.

Since real-world objects are not directly connected to applications, they are virtualized. WoO
allows for the harmonization and composition of VOs to form application-level service features.
With object virtualization, real-world objects can be monitored and controlled virtually as it is in the

Sensors 2017, 17, 2180 5 of 21

physical world. WoO is a service platform, where virtual space is created for the application domain,
such as the smart home, smart city, smart health, etc., as shown in Figure 1.Sensors 2017, 17, 2180 5 of 20

Figure 1. Example application domains in the Web of Objects platform [1].

The Web Objects-enabled IoT environment provides a simple approach that application
developers and service providers develop and provide application features. The aggregation of VOs,
CVOs, and service entities in the three-layer architecture of the WoO platform provides service
features for end users and applications. The functional entities in the three-layer architecture of the
WoO platform are shown in Figure 2.

Figure 2. Functional entities and layer architecture of the Web of Objects platform [1,2].

In WoO, VOs perform an interface function to real-world objects. WoO allows VOs to represent
functionalities and properties of real-world objects so that they can be accessed and used. Through
sensing capabilities, meaningful information of real-world objects can be collected and stored at the
VO level.

Semantic ontology is used to describe a VO that can be accessed and shared semantically. In an
application domain, the requested VO is instantiated from the VO template and stored in the VO

Figure 1. Example application domains in the Web of Objects platform [1].

The Web Objects-enabled IoT environment provides a simple approach that application developers
and service providers develop and provide application features. The aggregation of VOs, CVOs, and
service entities in the three-layer architecture of the WoO platform provides service features for end
users and applications. The functional entities in the three-layer architecture of the WoO platform are
shown in Figure 2.

Sensors 2017, 17, 2180 5 of 20

Figure 1. Example application domains in the Web of Objects platform [1].

The Web Objects-enabled IoT environment provides a simple approach that application
developers and service providers develop and provide application features. The aggregation of VOs,
CVOs, and service entities in the three-layer architecture of the WoO platform provides service
features for end users and applications. The functional entities in the three-layer architecture of the
WoO platform are shown in Figure 2.

Figure 2. Functional entities and layer architecture of the Web of Objects platform [1,2].

In WoO, VOs perform an interface function to real-world objects. WoO allows VOs to represent
functionalities and properties of real-world objects so that they can be accessed and used. Through
sensing capabilities, meaningful information of real-world objects can be collected and stored at the
VO level.

Semantic ontology is used to describe a VO that can be accessed and shared semantically. In an
application domain, the requested VO is instantiated from the VO template and stored in the VO

Figure 2. Functional entities and layer architecture of the Web of Objects platform [1,2].

Sensors 2017, 17, 2180 6 of 21

In WoO, VOs perform an interface function to real-world objects. WoO allows VOs to
represent functionalities and properties of real-world objects so that they can be accessed and used.
Through sensing capabilities, meaningful information of real-world objects can be collected and stored
at the VO level.

Semantic ontology is used to describe a VO that can be accessed and shared semantically.
In an application domain, the requested VO is instantiated from the VO template and stored in
the VO repository. The VO template is created by the manufacturer and stored in the VO template
repository. The VO is described in Resource Description Framework (RDF) format in order to be
represented semantically. Metadata is represented in RDF and stored in an RDF graph database.
The communications interface between the VO and real-world objects is done in a Representational
state transfer (REST) or RESTful manner. For semantic interoperability among multiple VOs and a
common understanding, a VO information model is used to describe a VO, which is shown in Figure 3.

Sensors 2017, 17, 2180 6 of 20

repository. The VO template is created by the manufacturer and stored in the VO template repository.
The VO is described in Resource Description Framework (RDF) format in order to be represented
semantically. Metadata is represented in RDF and stored in an RDF graph database. The
communications interface between the VO and real-world objects is done in a Representational state
transfer (REST) or RESTful manner. For semantic interoperability among multiple VOs and a
common understanding, a VO information model is used to describe a VO, which is shown in
Figure 3.

Figure 3. Virtual object (VO) information model.

In WoO, user-requested service is realized in terms of a CVO that is created by combining
multiple VO functionalities, CVOs, and service rules. The CVO inherits all functions and features of
the interrelated VOs and shares them with other CVOs that belong to internal and external domains.
Available VO information and functionalities are retrieved from the VO repository for CVO creation.

The CVO is instantiated from the CVO template and stored in the CVO repository. The CVO
repository contains metadata including CVO identification, type, time of creation, validity, owner,
CVO operation, access rights of the CVO, VO identification, etc. A CVO information model is used
to describe a CVO, as shown in Figure 4.

Figure 4. Composite virtual object (CVO) information model.

A user-requested service is received at the service level, which performs as an interface between
the user and WoO platform. A service is a logical mashup of CVOs, relevant VOs, and service policies.
A service is not executed at the service level; rather, a service request is analyzed based on real-world

Figure 3. Virtual object (VO) information model.

In WoO, user-requested service is realized in terms of a CVO that is created by combining
multiple VO functionalities, CVOs, and service rules. The CVO inherits all functions and features of
the interrelated VOs and shares them with other CVOs that belong to internal and external domains.
Available VO information and functionalities are retrieved from the VO repository for CVO creation.

The CVO is instantiated from the CVO template and stored in the CVO repository. The CVO
repository contains metadata including CVO identification, type, time of creation, validity, owner,
CVO operation, access rights of the CVO, VO identification, etc. A CVO information model is used to
describe a CVO, as shown in Figure 4.

A user-requested service is received at the service level, which performs as an interface between
the user and WoO platform. A service is a logical mashup of CVOs, relevant VOs, and service policies.
A service is not executed at the service level; rather, a service request is analyzed based on real-world
knowledge, policies, and service request parameters that provide an appropriate service template to
execute the service. The service level performs as a brain in WoO, thus, the performance of lower
levels depends on the service level.

Sensors 2017, 17, 2180 7 of 21

Sensors 2017, 17, 2180 6 of 20

repository. The VO template is created by the manufacturer and stored in the VO template repository.
The VO is described in Resource Description Framework (RDF) format in order to be represented
semantically. Metadata is represented in RDF and stored in an RDF graph database. The
communications interface between the VO and real-world objects is done in a Representational state
transfer (REST) or RESTful manner. For semantic interoperability among multiple VOs and a
common understanding, a VO information model is used to describe a VO, which is shown in
Figure 3.

Figure 3. Virtual object (VO) information model.

In WoO, user-requested service is realized in terms of a CVO that is created by combining
multiple VO functionalities, CVOs, and service rules. The CVO inherits all functions and features of
the interrelated VOs and shares them with other CVOs that belong to internal and external domains.
Available VO information and functionalities are retrieved from the VO repository for CVO creation.

The CVO is instantiated from the CVO template and stored in the CVO repository. The CVO
repository contains metadata including CVO identification, type, time of creation, validity, owner,
CVO operation, access rights of the CVO, VO identification, etc. A CVO information model is used
to describe a CVO, as shown in Figure 4.

Figure 4. Composite virtual object (CVO) information model.

A user-requested service is received at the service level, which performs as an interface between
the user and WoO platform. A service is a logical mashup of CVOs, relevant VOs, and service policies.
A service is not executed at the service level; rather, a service request is analyzed based on real-world

Figure 4. Composite virtual object (CVO) information model.

3.2. CVO Creation and Instantiation

A CVO template is used to instantiate a CVO to offer a user-requested service. A domain-specific
CVO template is designed and created by a domain expert and stored in a CVO template repository.
Different types of CVO templates are created in advance. The main goal of creating a CVO template
is to reuse it if a similar type of CVO is requested under similar circumstances. Since a CVO is
a combination of multiple VOs and/or CVOs and service rules, the information and functions of
relevant VOs are retrieved to create a CVO template. An instantiated CVO is stored in a CVO repository,
so, if the context and request parameters of a requested CVO match with the context and request
parameters of a stored CVO, then the service might be created and offered directly.

Embedded cognitive functionalities in a CVO allow for the reuse of available CVOs and VOs.
The functions and features of VOs and CVOs are combined in a CVO that can orchestrate with multiple
other CVOs. A domain expert considers service requirements, service rules, context of a service,
and available VOs to create a CVO. In a CVO creation and instantiation process, a requested CVO
is searched and matched in a CVO repository based on the context and request parameters. If the
requested CVO is matched, then the CVO is instantiated directly, otherwise the CVO is created. In the
process of CVO creation, a designer first identifies what type of functions the CVO will provide.
In the next step, the candidate VOs and CVOs are selected, and necessary parameters, ranges of the
data values, and threshold values are set. Based on a service requirement, the selected VOs, CVOs,
parameters, and service logic are combined and finally stored into a CVO template repository. In the
process of a CVO instantiation, potential VOs and CVOs are selected and located. A CVO template is
used to accommodate the selected VOs and CVOs. Depending on an application, a user-requested
service might vary; hence, the service logic might be modified slightly for the instantiation process.
Figure 5 shows a CVO creation and instantiation process.

Sensors 2017, 17, 2180 8 of 21

Sensors 2017, 17, 2180 7 of 20

knowledge, policies, and service request parameters that provide an appropriate service template to
execute the service. The service level performs as a brain in WoO, thus, the performance of lower
levels depends on the service level.

3.2. CVO Creation and Instantiation

A CVO template is used to instantiate a CVO to offer a user-requested service. A domain-specific
CVO template is designed and created by a domain expert and stored in a CVO template repository.
Different types of CVO templates are created in advance. The main goal of creating a CVO template
is to reuse it if a similar type of CVO is requested under similar circumstances. Since a CVO is a
combination of multiple VOs and/or CVOs and service rules, the information and functions of
relevant VOs are retrieved to create a CVO template. An instantiated CVO is stored in a CVO
repository, so, if the context and request parameters of a requested CVO match with the context and
request parameters of a stored CVO, then the service might be created and offered directly.

Embedded cognitive functionalities in a CVO allow for the reuse of available CVOs and VOs.
The functions and features of VOs and CVOs are combined in a CVO that can orchestrate with
multiple other CVOs. A domain expert considers service requirements, service rules, context of a
service, and available VOs to create a CVO. In a CVO creation and instantiation process, a requested
CVO is searched and matched in a CVO repository based on the context and request parameters. If
the requested CVO is matched, then the CVO is instantiated directly, otherwise the CVO is created.
In the process of CVO creation, a designer first identifies what type of functions the CVO will provide.
In the next step, the candidate VOs and CVOs are selected, and necessary parameters, ranges of the
data values, and threshold values are set. Based on a service requirement, the selected VOs, CVOs,
parameters, and service logic are combined and finally stored into a CVO template repository. In the
process of a CVO instantiation, potential VOs and CVOs are selected and located. A CVO template
is used to accommodate the selected VOs and CVOs. Depending on an application, a user-requested
service might vary; hence, the service logic might be modified slightly for the instantiation process.
Figure 5 shows a CVO creation and instantiation process.

Figure 5. CVO creation and instantiation process at the CVO level.

4. Service Modularity for Reusability in the WoO Platform

4.1. CVO Reuse in the Web Objects-Enabled IoT Environment

If every time a new CVO needs to be created for each new service request, the complexity
increases. To minimize the complexity, minimize the number of additional CVOs under similar
circumstances, reduce the time it takes to instantiate them directly, and increase scalability and
interoperability among multiple domains, CVOs need to be reused. The Web Objects-enabled IoT
environment allows for the reuse of existing CVOs in multiple ontologies. Cognitive functionality at

Figure 5. CVO creation and instantiation process at the CVO level.

4. Service Modularity for Reusability in the WoO Platform

4.1. CVO Reuse in the Web Objects-Enabled IoT Environment

If every time a new CVO needs to be created for each new service request, the complexity increases.
To minimize the complexity, minimize the number of additional CVOs under similar circumstances,
reduce the time it takes to instantiate them directly, and increase scalability and interoperability among
multiple domains, CVOs need to be reused. The Web Objects-enabled IoT environment allows for
the reuse of existing CVOs in multiple ontologies. Cognitive functionality at the CVO level, such as
approximation and reuse functions, is used to search for similar CVOs to reuse them. Since completely
identical CVOs are not available all the time, this function searches for similar or approximated
CVOs that can support similar functionalities for current service requests within the current context.
To approximate the CVO, the current context and request parameters are compared with the previous
context and the request parameters of the CVO that was instantiated and stored in a CVO registry.
The CVO information model includes metadata regarding context and request parameters. Context
parameters include time, location, temperature, VOs, etc., whereas request parameters include VO
function, policy, etc.

Matching and comparing each and every CVO in the CVO registry is a complex and costly task.
There should be a mechanism that allows matching and comparing within a limited number of CVOs
or a group of correlated CVOs. A correlation matrix includes information regarding correlated CVOs
that can be used to compare the limited number of CVOs. In this process, whenever a first matching
CVO is found in the registry, a correlation matrix is consulted for correlated CVOs. A similarity value
is calculated between each parameter in the correlated CVOs and, finally, a weighted sum [36] for the
alternatively-correlated CVOs is calculated and compared against a threshold value. If the weighted
sum is higher than, or equal to, the threshold value, then the CVO is ranked based on the weighted
value. If none of the correlated CVOs’ weighted sums pass the threshold level, then the next CVO is
searched, following a similar procedure until all the CVOs are searched in the CVO registry. If no CVO
is matched or approximated, then the context and request parameters are forwarded to create a new
CVO from scratch. A flowchart of an algorithm for reusing CVOs is shown in Figure 6.

Sensors 2017, 17, 2180 9 of 21

Sensors 2017, 17, 2180 8 of 20

the CVO level, such as approximation and reuse functions, is used to search for similar CVOs to reuse
them. Since completely identical CVOs are not available all the time, this function searches for similar
or approximated CVOs that can support similar functionalities for current service requests within the
current context. To approximate the CVO, the current context and request parameters are compared
with the previous context and the request parameters of the CVO that was instantiated and stored in
a CVO registry. The CVO information model includes metadata regarding context and request
parameters. Context parameters include time, location, temperature, VOs, etc., whereas request
parameters include VO function, policy, etc.

Matching and comparing each and every CVO in the CVO registry is a complex and costly task.
There should be a mechanism that allows matching and comparing within a limited number of CVOs
or a group of correlated CVOs. A correlation matrix includes information regarding correlated CVOs
that can be used to compare the limited number of CVOs. In this process, whenever a first matching
CVO is found in the registry, a correlation matrix is consulted for correlated CVOs. A similarity value
is calculated between each parameter in the correlated CVOs and, finally, a weighted sum [36] for
the alternatively-correlated CVOs is calculated and compared against a threshold value. If the
weighted sum is higher than, or equal to, the threshold value, then the CVO is ranked based on the
weighted value. If none of the correlated CVOs’ weighted sums pass the threshold level, then the
next CVO is searched, following a similar procedure until all the CVOs are searched in the CVO
registry. If no CVO is matched or approximated, then the context and request parameters are
forwarded to create a new CVO from scratch. A flowchart of an algorithm for reusing CVOs is shown
in Figure 6.

Figure 6. Flowchart of an algorithm for reusing CVOs.

Correlation among CVOs in the CVO registry is calculated, and the calculated values are stored
in the correlation matrix. The calculation is done between requested functions and previous functions
used in a previously-instantiated CVO. In the correlation matrix, 0 means there is no correlation
between two functions and 1 means the requested function can be satisfied by the previously-used
function; this implies that 0 means there is no correlation between CVOs and 1 implies that CVOs are
highly correlated. Due to several reasons, such as changes in parameter types, the correlation among
CVOs might be changed or invalid. Thus, a correlation matrix is validated continuously so that
prediction accuracy is improved. If two CVOs have a high correlation among them, then it is normal

Figure 6. Flowchart of an algorithm for reusing CVOs.

Correlation among CVOs in the CVO registry is calculated, and the calculated values are stored
in the correlation matrix. The calculation is done between requested functions and previous functions
used in a previously-instantiated CVO. In the correlation matrix, 0 means there is no correlation
between two functions and 1 means the requested function can be satisfied by the previously-used
function; this implies that 0 means there is no correlation between CVOs and 1 implies that CVOs
are highly correlated. Due to several reasons, such as changes in parameter types, the correlation
among CVOs might be changed or invalid. Thus, a correlation matrix is validated continuously so
that prediction accuracy is improved. If two CVOs have a high correlation among them, then it is
normal that they perform similarly. Correlation between two CVOs can be defined in a range (0, 1).
Correlation of CVOs can be expressed as:

correlation
(

cvoi, cvoj
)
=

{
1, if

∣∣vo f unci, vo f uncj
∣∣ ≥ threscorrelation

0, otherwise
, (1)

In Equation (1), correlation is calculated among cvoi and cvoj CVOs, where vo f unci and vo f uncj

are functions by ith and jth VOs, respectively, and threscorrelation is the threshold value for correlation.
If the range of the correlation among vo f unci and vo f uncj is higher than, or equal to, the threshold
value, then the condition is satisfied, and in that case (i, j) are highly-correlated CVOs.

A CVO can be highly correlated with multiple CVOs, where the CVO can perform as an active
member of multiple correlated CVO pairs. In this case, cvoi is a member of a subset of correlated CVO
pairs, corrcvoi, that can be expressed as:

cvoi ∈ corrcvoi = correlation
(

cvoi, cvoj
)
= 1, (2)

If vo f unci is a set of functions in the requested CVO, and vo f uncj is a set of functions in the stored
CVOs, then a satisfaction rate is calculated to identify how close those functions are so that vo f unci is

Sensors 2017, 17, 2180 10 of 21

satisfied by vo f uncj with respect to the correlated CVOs. The satisfaction rate srij between requested
vo f unci and stored vo f uncj function can be expressed as:

srij
(

vo f unci, vo f uncj
)
= 1−

dist
(
vo f unci, vo f uncj)∣∣vo f unci

∣∣ (3)

In Equation (3), dist
(
vo f unci, vo f uncj) is the distance between functions in the requested and

stored CVOs that can be expressed in a range (0, 1). The distance between other features in the
requested and stored CVOs can be calculated in a similar fashion.

Stated earlier, context parameters include time, location, available VOs, etc., and request
parameters include functions and policies. These parameters are considered as criteria and defined in
the CVO in the CVO registry. The satisfaction rate between the criteria stated in the requested and the
stored CVO is calculated in terms of all of these features. Thus, overall similarity between requested
and stored criteria can be calculated as the weighted sum of criteria, which can be expressed as:

cvoi
ws =

n

∑
j=0

(
wvo f uncjsrij + wc f j srij

)
. (4)

In Equation (4), cvoi
ws is an alternatively-correlated CVO specified in corrcvoi and n represents

their relevant features. wvo f uncj and wc f j are relative weights of VO function and context features,
respectively, and srij is the satisfaction rate of these features in terms of cvoi

ws. If the weighted value of
cvoi

ws is higher than, or equal to, the threshold value, then the CVO is ranked; otherwise, the context
and request parameters are forwarded to create a new CVO from scratch.

4.2. Discovery of a VO in an Ontology

A CVO is the combination of domain-specific multiple VOs. Based on the context and request
parameters, a CVO is searched, matched, and ranked to be reused to offer a service. However,
to execute the service, the CVO-relevant VOs need to be discovered and executed. Hence, the relevant
VO names are extracted from a ranked CVO, and a VO discovery function is used to search and
match them in the VO repository. Due to the very large number of available VOs, a reduction of the
operational cost and an increase in the efficiency techniques need to be applied to limit the search
space, such as using geographical location, time, etc. To discover CVO-relevant VOs, the properties of
each source VO are matched with the properties of a targeted VO. Here, the source VO is the requested
VO that needs to be searched and the targeted VO is the stored VO in the VO repository.

An ontology defines the VO and CVO in a hierarchal manner. For VO discovery, the similarity
between a source and a target VO can be computed based on their hierarchical structure. In an ontology,
a VO includes different properties including super-class, sub-class, object properties, data properties,
domain, and range. To find the similarity, all the properties of a source VO need to be compared with
all the properties of the target VO. Moreover, a higher number of properties matched between two
VOs means the two VOs are more related to each other. The similarity result is the degree of matching;
if the matching value exceeds the predefined threshold value, then the VOs are similar.

Let us consider a source VO VOA and a target VO VOB from two ontologies, OA and OB, that
include the following features:

VOA =
{

ClassVOA , PropertiesVOA

}
, and VOB =

{
ClassVOB , PropertiesVOB

}
where:

• ClassVOA is the super-class, sub-class, and associated classes of VOA;
• ClassVOB is the super-class, sub-class, and associated classes of VOB;
• PropertiesVOA are the properties of VOA;

Sensors 2017, 17, 2180 11 of 21

• PropertiesVOB are the properties of VOB.

Similarity matching between VOA and VOB starts with computing the similarity between classes
(e.g., super-class and sub-class) of VOA and VOB. Later, the properties of the similar classes are
retrieved and their similarities are computed. All the similarity values are summed to compute the
similarity of VOA and VOB. In general, the similarity between two VOs can be expressed as:

Similarity(VOA, VOB) =
n
∑

q=1

m
∑

p=1

Sim(ClasspVOA
, ClassqVOB)+Sim(PropertiespVOA

, PropertiesqVOB)

((NCl+NPr) VOA
+(NCl+NPr)VOB)/2

where:

• (NCl + NPr) VOA
is the number of classes in VOA and properties in VOA;

• (NCl + NPr) VOB
is the total number of classes in VOB and properties in VOB.

For the similarity of classes, the sum of all similarity values between super-classes, sub-classes,
and associated classes is calculated, and the result is divided by half the number of classes of VOA and
VOB. The expression is as follows:

Sim
(
ClasspVOA , ClassqVOB

)
=

n
∑

q=1

m
∑

p=1

(Sim(SuppVOA
, SupqVOB)+Sim(SubpVOA

, SubqVOB)+ Sim(AssopVOA
, AssoqVOB)

(NClVOA
+NClVOB

)/2

where:

• SuppVOA and SuppVOB are the super-classes of VOA and VOB;
• SubpVOA and SubpVOB are the sub-classes of VOA and VOB;
• AssopVOA and AssoqVOB are the associated classes of VOA and VOB;
• NClVOA

and NClVOB
are the total number of related classes of ClasspVOA and ClassqVOB .

At the next stage, all the properties that are related to similar classes are extracted and the
similarity between the properties of VOA and VOB is computed, which can be expressed as follows:

Sim(PropertiespVOA , PropertiesqVOB) =

n
∑

q=1

m
∑

p=1

(Sim
(

DppVOA , DpqVOB

)
+ Sim

(
OppVOA , OpqVOB

)
+

Sim
(

DompVOA , DompVOB

)
+ Sim

(
RanpVOA , RanpVOB

)
(NProCl+NDomPro+NRanPro)/2

where:

• DppVOA and DpqVOB are the data properties of similar classes ClasspVOA and ClassqVOB ;
• OppVOA and OpqVOB are the object properties of similar classes ClasspVOA and ClassqVOB ;
• DompVOA and DomqVOB are the domains of the properties;
• RanpVOA and RanqVOB are the ranges of the properties;
• NProCl is the number of properties of similar classes ClasspVOA and ClassqVOB ;
• NDomPro is the number of domains;
• NRanPro is the number of ranges.

If the properties of two VOs are similar, then the VOs are similar. Similarity between two sets
of synsets (sets of synonyms) of different properties are computed using LCM. If the similarity value
of two VOs exceeds the predefined threshold, then LCM returns equivalence; otherwise, it returns
Idk or “I don’t know”. LCM takes two synsets as input and computes the similarity between them by
computing the shortest path between the two synsets. If the path between the two synsets is shorter,
they are more related. The pseudocode of the algorithm for the similarity matching between two VOs
is shown in Algorithm 1.

Sensors 2017, 17, 2180 12 of 21

Algorithm 1. Similarity Matching

Input: Ontologies OA and OB, threshold;
Output: Similarity of VOs;
1: for each VO in OA and OB
2: (VOp, VOq) = (VOp ∈ OA), and

(
VOq ∈ OB

)
3: Nc = Total number of classes of VOp and VOq

4: Np = Number of properties of VOp and VOq

5: Nd = Number of domains of VOp and VOq

6: Nr = Number of ranges of VOp and VOq

7: (SupiVOp , SupjVOq) = (SupiVOp ∈ VOp), and (SupjVOq ∈ VOq)

8: (SubiVOp , SubjVOq) = (SubiVOp ∈ VOp), and (SubjVOq ∈ VOq)

9: (AssoiVOp , AssojVOq) = (AssoiVOp ∈ VOp), and (AssojVOq ∈ VOq)

10: for each SupiVOp , SubiVOp , AssoiVOp in VOp

11: for each SupjVOq , SubjVOq , AssojVOq in VOq

12: // compute similarity using technique: LCM

13: S1 = Sim
(

SupiVOp , SupjVOq

)
= LCM

(
SupiVOp , SupjVOq

)
14: S2 = Sim

(
SubiVOp , SubjVOq

)
= LCM

(
SubiVOp , SubjVOq

)
15: S3 = Sim

(
AssoiVOp , AssojVOq

)
= LCM

(
AssoiVOp , AssojVOq

)
16: end for
17: end for

18: Sim
(

ClassVOp , ClassVOq

)
= ∑n

q=1 ∑m
p=1

S1+ S2+ S3
Nc/2 .

19: for each DpiVOp , OpiVOp , DomiVOp , RaniVOp in ClassVOp

20: for each DpjVOq , OpjVOq , DomjVOq , RanjVOq in ClassVOq

21: // compute similarity using LCM

22: S4 = Sim
(

DpiVOp , DpjVOq

)
= LCM

(
DpiVOp , DpjVOq

)
23: S5 = Sim

(
OpiVOp , OpjVOq

)
= LCM

(
OpiVOp , OpjVOq

)
24: S6 = Sim

(
DomiVOp , DomjVOq

)
= LCM

(
DomiVOp , DomjVOq

)
25: S7 = Sim

(
RaniVOp , RanjVOq

)
= LCM

(
RaniVOp , RanjVOq

)
26: end for
27: end for

28: Sim
(

PropVOp , PropVOq

)
= ∑n

q=1 ∑m
p=1

S4+ S5+ S6+ S7

(Np+Nd+Nr) / 2
.

29: return

30: Sim
(
VOp, VOq

)
= ∑n

q=1 ∑m
p=1

Sim(ClassVOp , ClassVOq)+ Sim(PropVOp , PropVOq)
(Nc+Np+Nd+Nr)/2

.

31: end for

4.3. Logistic Model to Support Service Modularity

To support the reusability of a CVO and VO in multiple application domains in the WoO platform
for knowledge-based service provisioning, a logistic model has been proposed and instantiated.
The sequence of operations starting from a user service request has been numbered. Initially, the user
request service is taken to the service request analysis component to analyze the requested service.
Context parameters from the knowledge database and service policies are also analyzed. Service
request analysis provides the current context and request parameters to the service request execution
component. Service request execution looks up service templates based on the parameters and forwards
them along with the reference of service-relevant CVOs to the CVO management unit. Cognitive
functionalities at the CVO level allow for the reuse of available CVOs. Functional components at the
CVO sub-level search for similar types of CVOs in the CVO registry; if similar CVOs are matched,

Sensors 2017, 17, 2180 13 of 21

then they are instantiated directly to be executed; otherwise, the context and request parameters are
forwarded to CVO creation to create a new CVO from scratch. The created CVO is registered in the
CVO registry for future reuse. To execute a service, CVO-relevant VOs are also searched, matched,
and reused.

The recommendation ITU-T Y.4452 in Reference [2] provided a brief description of WoO
functionalities. Based on the functionalities provided in the recommendation ITU-T Y.4452 and
the functionalities that were proposed and implemented in References [3,4,17,18,23,32], the logistic
model was proposed in the WoO platform, which includes several functionalities, in particular a CVO
similarity matching and a VO discovery function to support service modularity. The logistic model is
shown in Figure 7.

Sensors 2017, 17, 2180 12 of 20

28.

29.

30.

31.

 ܵ݅݉ ቀܲݎை, ைቁݎܲ = 	∑ ∑ ௌరା ௌఱା ௌలା ௌళ(ேାேାேೝ)	/	ଶ .ୀଵୀଵ

 return

 ܵ݅݉൫ܸ ܱ, ܸ ܱ൯ = 	∑ ∑ 	ௌቀ௦௦ೇೀ,௦௦ೇೀቁା	ௌቀೇೀ,ೇೀቁ(ேାேାேାேೝ)	/	ଶ .ୀଵୀଵ

end for

4.3. Logistic Model to Support Service Modularity

To support the reusability of a CVO and VO in multiple application domains in the WoO
platform for knowledge-based service provisioning, a logistic model has been proposed and
instantiated. The sequence of operations starting from a user service request has been numbered.
Initially, the user request service is taken to the service request analysis component to analyze the
requested service. Context parameters from the knowledge database and service policies are also
analyzed. Service request analysis provides the current context and request parameters to the service
request execution component. Service request execution looks up service templates based on the
parameters and forwards them along with the reference of service-relevant CVOs to the CVO
management unit. Cognitive functionalities at the CVO level allow for the reuse of available CVOs.
Functional components at the CVO sub-level search for similar types of CVOs in the CVO registry; if
similar CVOs are matched, then they are instantiated directly to be executed; otherwise, the context
and request parameters are forwarded to CVO creation to create a new CVO from scratch. The created
CVO is registered in the CVO registry for future reuse. To execute a service, CVO-relevant VOs are
also searched, matched, and reused.

The recommendation ITU-T Y.4452 in Reference [2] provided a brief description of WoO
functionalities. Based on the functionalities provided in the recommendation ITU-T Y.4452 and the
functionalities that were proposed and implemented in References [3,4,17,18,23,32], the logistic
model was proposed in the WoO platform, which includes several functionalities, in particular a CVO
similarity matching and a VO discovery function to support service modularity. The logistic model
is shown in Figure 7.

Figure 7. Logistic model to support service modularity in the Web of Objects (WoO) platform. Figure 7. Logistic model to support service modularity in the Web of Objects (WoO) platform.

The CVO similarity matching functional component includes approximation and reuse functions
that search instantiated CVOs in the CVO registry that can provide similar functions for the requested
CVO. This function enables the reuse of matching CVOs, which minimizes service computation time
and saves resources. This function evaluates available CVOs in the CVO registry. If a similar CVO is not
matched in the CVO registry, then the CVO similarity matching component forwards the context and
request parameters to the CVO creation component to create a CVO from a CVO template. To create
a CVO from scratch, this function evaluates and selects the appropriate VOs to create an optimal
CVO. The VO Discovery component discovers and looks up VOs in the VO registry and provides
information of the requested VOs to the CVO Create component.

In general, initially, domain experts design a service template and define its parameters, but later
the system dynamically modifies parameters based on knowledge. Knowledge is analyzed at the
service level, but the process to create knowledge takes place at all levels in the WoO.

For reusability, prior knowledge regarding VOs and CVOs in the WoO platform is necessary.
The main outcome of WoO is knowledge-based IoT service provisioning in heterogeneous
ontologies. For knowledge-based intelligent service provisioning in the ubiquitous IoT environment,
context-awareness of real-world objects has an important role.

In knowledge creation [32], context-awareness deals with linking changes in the ubiquitous
IoT environment. Context-awareness enables the autonomous behavior of a system with minimal

Sensors 2017, 17, 2180 14 of 21

human involvement. Due to continuous changes of real-world objects in the IoT environment,
real-world information should be processed for context-awareness. Context refers to a concept that
characterizes and identifies associated entities, including users, location, time, objects, and information
in a system. For context-aware services, applications are adapted to an environment by exchanging
context information. Context-awareness enables an application to deduce context information in order
to gain knowledge of users, location, time, services, etc.

Context-awareness is a core component of a knowledge-based system. Due to user mobility,
service execution, etc., the context of real-world objects might be changed. Thus, knowledge needs
to be updated. In WoO, for knowledge-based service provisioning, semantic ontology is used to
accumulate, represent, and store knowledge. Hence, semantic ontology represents information in a
structured manner, such as hierarchies of classes and sub-classes, where RDF is used to describe VO
and CVO and is stored in Web Ontology Language (OWL) format. Raw data collected through a VO is
stored in a database that is converted into meaningful information. Connecting and exchanging this
information semantically forms knowledge.

In WoO, knowledge is analyzed at the service level to select an appropriate service template that
refers service-relevant CVOs and VOs. The service manager sends the request and situation parameters
to the CVO manager to instantiate or create the CVO. The CVO manager searches the requested CVO
in the CVO registry to reuse the CVO. If the requested CVO is available, then the CVO is directly
instantiated, otherwise the CVO is created. To reuse a CVO, an approximation and reuse function is
used to search for similar CVOs, which has been discussed earlier. Service-relevant VOs, constraints,
threshold values, and policies are inferred to classify a CVO. If successfully classified, then predefined
actions are triggered (e.g., sending a message to a smartphone). The sequence of instructions is shown
in Figure 8.Sensors 2017, 17, 2180 14 of 20

Figure 8. Sequence of instructions in the knowledge base for reusing a CVO in the WoO platform.

5. Prototype Implementation for a Use Case in Smart Space

Smart space in the Web Objects-enabled IoT environment enables the creation of efficient space
for various applications to create and offer intelligent services for users based on user identity,
location, and activity. Personalized smart space in a web environment is required for seamless IoT
service provisioning. Smart space in the Web Objects-enabled IoT environment includes different
application domains and allows interrelation and interoperability among them, where a user-requested
service might be provided by a domain that does not own, but reuses, required VOs and CVOs from
other domains. Based on the service request, a query identifies the smart space service features in the
home, office, crowded spaces, hospitals, hotels, etc.

5.1. Use Case Scenario

A person has been visiting another city to attend a conference. During his stay in his hotel room,
he expects similar comfort as is in his own home, such as suitable temperature, humidity, lighting, etc.
As a user, he does not care about how the service will be created and offered, but expects that the
service will be ready for him. He is satisfied in the sense that the hotel has maintained necessary
safety measures to automatically identify emergency situations, such as fires, and to act on them.

5.2. Proof of Concept

From the use case scenario, two application domains, including the smart home and smart hotel,
have been identified. The smart home provides a user-preferred room condition service that depends
on the user’s health status and surrounding environment status. The smart hotel domain provides
emergency services, such as identifying emergency situations and acting to prevent such situations.
The smart hotel also provides guest health monitoring and environment monitoring services.

In a smart home domain, userHealthMonitoring and environmentMonitoring CVOs have been
instantiated to monitor the home user health status and home environment condition, respectively.
Since the user-preferred room condition depends on the user’s health status and the surrounding
environment, the userComfortMonitoring CVO has been instantiated, which combines
userHealthMonitoring and environmentMonitoring CVOs.

Figure 8. Sequence of instructions in the knowledge base for reusing a CVO in the WoO platform.

5. Prototype Implementation for a Use Case in Smart Space

Smart space in the Web Objects-enabled IoT environment enables the creation of efficient space
for various applications to create and offer intelligent services for users based on user identity, location,
and activity. Personalized smart space in a web environment is required for seamless IoT service
provisioning. Smart space in the Web Objects-enabled IoT environment includes different application

Sensors 2017, 17, 2180 15 of 21

domains and allows interrelation and interoperability among them, where a user-requested service
might be provided by a domain that does not own, but reuses, required VOs and CVOs from other
domains. Based on the service request, a query identifies the smart space service features in the home,
office, crowded spaces, hospitals, hotels, etc.

5.1. Use Case Scenario

A person has been visiting another city to attend a conference. During his stay in his hotel room,
he expects similar comfort as is in his own home, such as suitable temperature, humidity, lighting,
etc. As a user, he does not care about how the service will be created and offered, but expects that the
service will be ready for him. He is satisfied in the sense that the hotel has maintained necessary safety
measures to automatically identify emergency situations, such as fires, and to act on them.

5.2. Proof of Concept

From the use case scenario, two application domains, including the smart home and smart hotel,
have been identified. The smart home provides a user-preferred room condition service that depends
on the user’s health status and surrounding environment status. The smart hotel domain provides
emergency services, such as identifying emergency situations and acting to prevent such situations.
The smart hotel also provides guest health monitoring and environment monitoring services.

In a smart home domain, userHealthMonitoring and environmentMonitoring CVOs have
been instantiated to monitor the home user health status and home environment condition,
respectively. Since the user-preferred room condition depends on the user’s health status and the
surrounding environment, the userComfortMonitoring CVO has been instantiated, which combines
userHealthMonitoring and environmentMonitoring CVOs.

In the smart hotel domain, the emergencySituation CVO has been instantiated to identify
an emergency situation. guestHealthMonitoring and environmentMonitoring CVOs have been
instantiated to monitor the guest’s health status and environment condition, respectively.

As stated earlier in the use case scenario, the guest expects similar comfort as is in his own home.
For comfortable hotel room condition service, the required userComfortMonitoring CVO in the smart
hotel domain is not available or defined. Since two other similar types of CVOs (guestHealthMonitoring
and envStatusMonitoring CVO) are available in the smart hotel domain, userComfortMonitoring CVO
from the smart home domain can be reused to create and offer service.

Required VOs to represent relevant sensors and actuators in the smart home and smart hotel
domains have been instantiated. Sensors include indoor and outdoor temperature sensors, a humidity
sensor, a pulse sensor, a wearable sensor, a CO2 sensor, a light sensor, an accelerometer sensor,
a position sensor, a body temperature sensor, a luminance sensor, a smartphone, etc. Actuators include
light-emitting diode (LED), heating, ventilation, and air conditioning (HVAC), digital signage, alarms,
fans, etc. Figure 9 shows two ontology models on two use case scenarios. Ontology models in the
figure include VOs and CVOs, where the few of them that are similar have been marked using a red
arrow. The figure shows that since four VOs and two CVOs in the smart hotel are found similar to
those in the smart home domain, the guest request for similar service in the hotel room as provided
in the smart home be created and offered by reusing the userComfortMonitoring CVO in the smart
home domain.

Sensors 2017, 17, 2180 16 of 21

Sensors 2017, 17, 2180 15 of 20

In the smart hotel domain, the emergencySituation CVO has been instantiated to identify an
emergency situation. guestHealthMonitoring and environmentMonitoring CVOs have been
instantiated to monitor the guest’s health status and environment condition, respectively.

As stated earlier in the use case scenario, the guest expects similar comfort as is in his own home.
For comfortable hotel room condition service, the required userComfortMonitoring CVO in the smart
hotel domain is not available or defined. Since two other similar types of CVOs
(guestHealthMonitoring and envStatusMonitoring CVO) are available in the smart hotel domain,
userComfortMonitoring CVO from the smart home domain can be reused to create and offer service.

Required VOs to represent relevant sensors and actuators in the smart home and smart hotel
domains have been instantiated. Sensors include indoor and outdoor temperature sensors, a
humidity sensor, a pulse sensor, a wearable sensor, a CO2 sensor, a light sensor, an accelerometer
sensor, a position sensor, a body temperature sensor, a luminance sensor, a smartphone, etc.
Actuators include light-emitting diode (LED), heating, ventilation, and air conditioning (HVAC),
digital signage, alarms, fans, etc. Figure 9 shows two ontology models on two use case scenarios.
Ontology models in the figure include VOs and CVOs, where the few of them that are similar have
been marked using a red arrow. The figure shows that since four VOs and two CVOs in the smart
hotel are found similar to those in the smart home domain, the guest request for similar service in the
hotel room as provided in the smart home be created and offered by reusing the
userComfortMonitoring CVO in the smart home domain.

Figure 9. Similar types of VOs and CVOs in ontology models of use case scenarios.

5.3. Prototype Implementation

Based on the use case scenario, a prototype has been implemented. Implementation architecture
includes an application server (AS), gateway, VO and CVO database, and a database to store data.
Sensors, such as temperature, humidity, light, accelerometers, CO2, etc., and actuators, such as
HVAC, LEDs, etc. have been connected through a gateway. All communications have been
conducted through AS using RESTful manner. The AS runs the inference engine to deduce decisions
based on available VO and CVO, threshold values, and currently-collected data, and instructs
actuators to act.

In the implementation, TDB database has been used to store created VOs and CVOs. Due to its
lightweight and high performance, TDB has been used to store and query RDF. To enable semantic

Figure 9. Similar types of VOs and CVOs in ontology models of use case scenarios.

5.3. Prototype Implementation

Based on the use case scenario, a prototype has been implemented. Implementation architecture
includes an application server (AS), gateway, VO and CVO database, and a database to store data.
Sensors, such as temperature, humidity, light, accelerometers, CO2, etc., and actuators, such as HVAC,
LEDs, etc. have been connected through a gateway. All communications have been conducted through
AS using RESTful manner. The AS runs the inference engine to deduce decisions based on available
VO and CVO, threshold values, and currently-collected data, and instructs actuators to act.

In the implementation, TDB database has been used to store created VOs and CVOs. Due to its
lightweight and high performance, TDB has been used to store and query RDF. To enable semantic
web technology, the Apache Jena library has been used. The user can request service through a web
interface using HTML5 and JavaScript. MongoDB has been used to store data. HTTP REST has been
used for all sorts of communications. For interactive communications, such as sending and receiving
data, WebSockets has been used.

A conceptual semantic ontology model on the use case scenario has been designed using an
ontology editing tool called Protégé [37]. Required VOs and CVOs have been defined in RDF/
Extensible Markup Language (XML) format. The designed model has been represented in OWL and
stored in an ontology database.

CVOs have been created by combining multiple relevant VOs and service rules. The ontology
development tool, Protégé, allows an easy way to create a CVO by using its class expression editor.
Sensor values have been set as a threshold during CVO creation, which has been inferred to make
a decision.

In semantic ontology, service relevant VOs are interrelated, thus, necessary information can be
extracted using a SPARQL Protocol and RDF Query Language (SPARQL) query. SPARQL query
language has been used for querying the database in RDF. For querying the RDF, besides the
prefix of the active ontology URI, universally-fixed prefixes, including rdf, owl, rdfs, and xsd, have
been assigned.

Data collected through concerned VOs has been inferred to make an intelligent decision.
The prototype was tested by running an inference engine through the AS using Hermit 1.3.7, which

Sensors 2017, 17, 2180 17 of 21

generated output values for CVOs. The inference engine ran on collected data, VOs, and rules against
threshold values.

5.4. Results and Discussion

Specified features of the proposed logistic model have been verified and the performance of the
implemented prototype has been evaluated. In the experiments, time and bytes that are required for
executing components of the prototype have been considered. Experiments have been conducted
against the number of VOs in the ontology. All the experiments have been repeated a number of times
for the accuracy of the results, hence, mean values for each of the experiments have been used to
generate the results.

In the first experiment, the execution time for the CVO similarity matching component has
been observed against the increased number of VOs. Results represented in Figure 10a show that
the execution time for the CVO similarity matching remains steady, although the number of VOs
increased. The results imply that the number of available VOs does not have any impact on this
functional component.

Sensors 2017, 17, 2180 16 of 20

web technology, the Apache Jena library has been used. The user can request service through a web
interface using HTML5 and JavaScript. MongoDB has been used to store data. HTTP REST has been
used for all sorts of communications. For interactive communications, such as sending and receiving
data, WebSockets has been used.

A conceptual semantic ontology model on the use case scenario has been designed using an
ontology editing tool called Protégé [37]. Required VOs and CVOs have been defined in RDF/
Extensible Markup Language (XML) format. The designed model has been represented in OWL and
stored in an ontology database.

CVOs have been created by combining multiple relevant VOs and service rules. The ontology
development tool, Protégé, allows an easy way to create a CVO by using its class expression editor.
Sensor values have been set as a threshold during CVO creation, which has been inferred to make a
decision.

In semantic ontology, service relevant VOs are interrelated, thus, necessary information can be
extracted using a SPARQL Protocol and RDF Query Language (SPARQL) query. SPARQL query
language has been used for querying the database in RDF. For querying the RDF, besides the prefix
of the active ontology URI, universally-fixed prefixes, including rdf, owl, rdfs, and xsd, have been
assigned.

Data collected through concerned VOs has been inferred to make an intelligent decision. The
prototype was tested by running an inference engine through the AS using Hermit 1.3.7, which
generated output values for CVOs. The inference engine ran on collected data, VOs, and rules against
threshold values.

5.4. Results and Discussion

Specified features of the proposed logistic model have been verified and the performance of the
implemented prototype has been evaluated. In the experiments, time and bytes that are required for
executing components of the prototype have been considered. Experiments have been conducted
against the number of VOs in the ontology. All the experiments have been repeated a number of
times for the accuracy of the results, hence, mean values for each of the experiments have been used
to generate the results.

In the first experiment, the execution time for the CVO similarity matching component has been
observed against the increased number of VOs. Results represented in Figure 10a show that the
execution time for the CVO similarity matching remains steady, although the number of VOs
increased. The results imply that the number of available VOs does not have any impact on this
functional component.

(a) (b)

Figure 10. Observation of time required for executing (a) CVO similarity matching, and (b) VO
discovery and search processes in terms of the increased number of VOs.
Figure 10. Observation of time required for executing (a) CVO similarity matching, and (b) VO
discovery and search processes in terms of the increased number of VOs.

The second experiments were conducted to observe the required time that is required to discover
requested VOs and acquire their information from the VO registry with respect to the increased
number of available VOs. The results that are shown in Figure 10b represent the time of the process
that is required to discover and look up available VOs. The required time increases with respect
to the increased number of available VOs, which is due to the creation time of the CVO, because a
CVO is created by combining relevant multiple VOs and their functionalities. The figure shows that
the average required time for the 100, 200, 300, and 500 VOs is 2.9, 1.7, 1.3, and 1.07 milliseconds,
respectively. It is apparent that the discovery and search of the first 100 VOs takes the most of the total
discovery and search time. The VO discovery and search time increases logarithmically rather than
linearly for the later ones, due to the reuse of available VOs.

Comparisons between CVO creation and instantiation process time with respect to the increased
number of VOs was conducted in the third set of experiments. The results depicted in Figure 11a
illustrate that the time required for CVO instantiation is lower than that for CVO creation. As discussed
earlier, CVO instantiation only requires matching similar CVOs in the CVO registry, which depends
on the similarity matching time, and does not require the discovery and search of relevant VOs and
their information. On the other hand, CVO creation from scratch requires the discovery and search
of requested VOs in the VO registry, and their composition requires additional time. Following the

Sensors 2017, 17, 2180 18 of 21

convention of Figure 10b, a similar trend can be visualized for a CVO creation while taking into account
the VO discovery.

Sensors 2017, 17, 2180 17 of 20

The second experiments were conducted to observe the required time that is required to discover
requested VOs and acquire their information from the VO registry with respect to the increased
number of available VOs. The results that are shown in Figure 10b represent the time of the process
that is required to discover and look up available VOs. The required time increases with respect to
the increased number of available VOs, which is due to the creation time of the CVO, because a CVO
is created by combining relevant multiple VOs and their functionalities. The figure shows that the
average required time for the 100, 200, 300, and 500 VOs is 2.9, 1.7, 1.3, and 1.07 milliseconds,
respectively. It is apparent that the discovery and search of the first 100 VOs takes the most of the
total discovery and search time. The VO discovery and search time increases logarithmically rather
than linearly for the later ones, due to the reuse of available VOs.

Comparisons between CVO creation and instantiation process time with respect to the increased
number of VOs was conducted in the third set of experiments. The results depicted in Figure 11a
illustrate that the time required for CVO instantiation is lower than that for CVO creation. As
discussed earlier, CVO instantiation only requires matching similar CVOs in the CVO registry, which
depends on the similarity matching time, and does not require the discovery and search of relevant
VOs and their information. On the other hand, CVO creation from scratch requires the discovery and
search of requested VOs in the VO registry, and their composition requires additional time. Following
the convention of Figure 10b, a similar trend can be visualized for a CVO creation while taking into
account the VO discovery.

(a) (b)

Figure 11. Comparison between (a) creation and instantiation process time, and (b) CVO creation and
similarity matching components in terms of the required data.

The comparison between CVO similarity matching and the CVO creation component in terms
of received bytes was conducted and is shown in Figure 11b. The amount of received bytes represents
the acquired information from the VO registry. As usual, the amount of received bytes increases due
to the increased number of VOs, but the amount from both of these two components is similar
because both of them acquire VO information for the requested VOs from the VO registry.

The experiments were conducted to validate the proposed logistic model in the WoO platform.
The experiments show that the reusability of available CVOs and VOs reduces the creation and
instantiation time and optimizes resources. Similar types of experiments were previously conducted
in Reference [25]. Comparing to the research works performed in Reference [25], this article used a
modular approach for the implementation of a CVO. Since a CVO is the combination of multiple
CVOs and VOs, a service task was divided into multiple CVOs to support service modularity as a
plug and play concept. To realize this service modularity, we implemented three different CVOs in
the smart hotel ontology that could perform three different tasks and could be reused in other
ontologies as well. Comparing to the experiments performed in Reference [25], our experiments
performed better, as less execution time and resources were used for a greater number of available VOs.

Figure 11. Comparison between (a) creation and instantiation process time, and (b) CVO creation and
similarity matching components in terms of the required data.

The comparison between CVO similarity matching and the CVO creation component in terms of
received bytes was conducted and is shown in Figure 11b. The amount of received bytes represents
the acquired information from the VO registry. As usual, the amount of received bytes increases due
to the increased number of VOs, but the amount from both of these two components is similar because
both of them acquire VO information for the requested VOs from the VO registry.

The experiments were conducted to validate the proposed logistic model in the WoO platform.
The experiments show that the reusability of available CVOs and VOs reduces the creation and
instantiation time and optimizes resources. Similar types of experiments were previously conducted
in Reference [25]. Comparing to the research works performed in Reference [25], this article used a
modular approach for the implementation of a CVO. Since a CVO is the combination of multiple CVOs
and VOs, a service task was divided into multiple CVOs to support service modularity as a plug and
play concept. To realize this service modularity, we implemented three different CVOs in the smart
hotel ontology that could perform three different tasks and could be reused in other ontologies as well.
Comparing to the experiments performed in Reference [25], our experiments performed better, as less
execution time and resources were used for a greater number of available VOs.

6. Conclusions

Due to the immense number of virtual objects and the insufficient amount of available
data, intelligent service provisioning in the IoT environment faces a lack of common standards.
The Web Objects-based IoT environment addresses these lacking standards and facilitates application
deployment and operations by virtualizing real-world objects. WoO allows the use of semantic
ontology to virtualize real-world objects, where multiple VOs are combined for service provisioning.

In the ubiquitous IoT environment, the number of virtual objects is increasing exponentially.
Additionally, if a new virtual object needs to be created for each new service request, then they will
burden the network and decrease system performance. WoO applies the principle of service modularity
in terms of VO and CVO. Service modularity is a key concept in a service-oriented architecture that
allows for the reuse of existing VOs and CVOs in the WoO platform. If a required VO and CVO
are not available in a particular domain, then similar types of functionalities could be supported by
similar types that are available in other domains. The reuse of existing VOs and CVOs allows for the
reuse of similar types of functionalities, avoids additional and duplicate VOs and CVOs under similar

Sensors 2017, 17, 2180 19 of 21

circumstances, reduces the time it takes to search and instantiate directly from their repositories, and
increases scalability and interoperability in heterogeneous ontologies.

This article proposes a logistic model that supports service modularity for the reuse of available
CVOs and VOs in the Web of Objects platform. To support the reuse of CVOs and VOs, necessary
functional components and methodologies to search and match CVO and VO discovery processes
have been discussed. To realize the service modularity, a use case scenario has been studied and a
prototype on the use case has been implemented.

To validate the proposed logistic model, experiments on the implemented functionalities have
been performed. The experiments show that the reusability of available CVOs and VOs reduces
creation and instantiation time and optimizes resources. Currently, we have been working on the
implementation of identified functionalities. In our future work, we wish to evaluate performance in
terms of capacity and scalability as a whole and provide a comprehensive analysis of this model.

Acknowledgments: This work was supported by Institute for Information and Communications Technology
Promotion (IITP) grant funded by the Korea government (MSIP) (no. B0113-16-0002, Development of Self-Learning
Smart Ageing Service Based on Web Objects).

Author Contributions: The research work was conducted in collaboration with all authors. Muhammad Golam
Kibria and Ilyoung Chong defined the research theme and designed the logistic model on service modularity.
Muhammad Golam Kibria, Sajjad Ali, Muhammad Aslam Jarwar, and Sunil Kumar implemented the prototype.
Muhammad Golam Kibria wrote the article. Muhammad Golam Kibria and Ilyoung Chong discussed and
analyzed the prototype. All the authors have contributed to, read, and approved the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Web of Objects. ITEA3 Projects, D2.1: State-of-the-Art Relevant to the Web of Objects. Available online:
https://itea3.org/project/web-of-objects.html (accessed on 2 March 2017).

2. Y.4452: Functional Framework of Web of Objects—ITU, September 2016. Available online: http://www.itu.
int/rec/T-REC-Y.4452 (accessed on 3 August 2017).

3. Shamszaman, Z.U.; Ara, S.S.; Chong, I.; Jeong, Y.K. Web-of-Objects (WoO)-based context aware emergency
fire management systems for the Internet of Things. Sensors 2014, 14, 2944–2966. [CrossRef] [PubMed]

4. Ara, S.S.; Shamszaman, Z.U.; Chong, I. Web-of-objects based user-centric semantic service composition
methodology in the internet of things. Int. J. Distrib. Sens. Netw. 2014, 10, 482873. [CrossRef]

5. Sundmaeker, H.; Guillemin, P.; Friess, P.; Woelfflé, S. Vision and Challenges for Realising the Internet of Things;
Publications Office of the European Union: Luxembourg, 2010; pp. 34–36.

6. Gubbi, J.; Buyya, R.; Marusic, S.; Palaniswami, M. Internet of Things (IoT): A vision, architectural elements,
and future directions. Future Gener. Comput. Syst. 2013, 29, 1645–1660. [CrossRef]

7. Atzori, L.; Iera, A.; Morabito, G. The internet of things: A survey. Comput. Netw. 2010, 54, 2787–2805.
[CrossRef]

8. Nitti, M.; Pilloni, V.; Colistra, G.; Atzori, L. The virtual object as a major element of the internet of things:
A Survey. IEEE Commun. Surv. Tutor. 2016, 18, 1228–1240. [CrossRef]

9. Kortuem, G.; Kawsar, F.; Sundramoorthy, V.; Fitton, D. Smart objects as building blocks for the internet of
things. IEEE Internet Comput. 2010, 14, 44–51. [CrossRef]

10. Uckelmann, D.; Harrison, M.; Michahelles, F. An architectural approach towards the future internet of things.
In Architecting the Internet of Things; Springer: Berlin/Heidelberg, Germany, 2011.

11. Pramudianto, F.; Kamienski, C.A.; Souto, E.; Borelli, F.; Gomes, L.L.; Sadok, D.; Jarke, M. IoT link: An internet
of things prototyping toolkit. In Proceedings of the 2014 IEEE 11th International Conference on Ubiquitous
Intelligence and Computing and 2014 IEEE 11th International Conference on Autonomic and Trusted
Computing and 2014 IEEE 14th International Conference on Scalable Computing and Communications and
Its Associated Workshops, Bali, Indonesia, 9–12 December 2014; pp. 1–9.

12. Kibria, M.G.; Chong, I. Context-awareness provisioning to support user-centric intelligence in a
Web-of-Objects platform. In Proceedings of the International Conference of ICT Convergence (ICTC 2015),
Jeju, Korea, 2015; pp. 388–392.

https://itea3.org/project/web-of-objects.html
http://www.itu.int/rec/T-REC-Y.4452
http://www.itu.int/rec/T-REC-Y.4452
http://dx.doi.org/10.3390/s140202944
http://www.ncbi.nlm.nih.gov/pubmed/24531299
http://dx.doi.org/10.1155/2014/482873
http://dx.doi.org/10.1016/j.future.2013.01.010
http://dx.doi.org/10.1016/j.comnet.2010.05.010
http://dx.doi.org/10.1109/COMST.2015.2498304
http://dx.doi.org/10.1109/MIC.2009.143

Sensors 2017, 17, 2180 20 of 21

13. Shamszaman, Z.U.; Lee, S.; Chong, I. WoO based user centric Energy Management System in the internet
of things. In Proceedings of the International Conference on Information Networking (ICOIN), Phuket,
Thailand, 10–12 February 2014; pp. 475–480.

14. Fattah, S.M.M.; Kibria, M.G.; Jeong, K.; Chong, I. Knowledge driven architectural model to support smart
emergency service in web of objects based iot Environment. J. Korean Inst. Commun. Inf. Sci. 2015, 40,
408–418. [CrossRef]

15. Kibria, M.G.; Chong, I. A WoO based knowledge driven approach for smart home energy efficiency.
In Proceedings of the IEEE International Conference on ICT Convergence (ICTC 2014), Busan, Korea,
22–24 October 2014; pp. 45–50.

16. Kibria, M.G.; Jeong, K.; Fattah, S.M.M.; Chong, I. WoO based energy efficient for smart shopping mall.
In Proceedings of the IEEE International Conference on ICT Convergence (ICTC 2014), Busan, Korea,
22–24 October 2014; pp. 1001–1002.

17. Kibria, M.G.; Chong, I. Knowledge based open IoT service provisioning through cooperation between
physical web and WoO. In Proceedings of the Seventh International Conference on Ubiquitous and Future
Networks (ICUFN 2015), Sapporo, Japan, 7–10 July 2015; pp. 395–400.

18. Kibria, M.G.; Chong, I. Knowledge-based open Internet of Things service provisioning architecture on
beacon-enabled Web of Objects. Int. J. Distrib. Sens. Netw. 2016, 12. [CrossRef]

19. Kim, Y.; Jeon, Y.; Chong, I. Device objectification and orchestration mechanism for IoT intelligent service.
J. Korean Inst. Commun. Inf. Sci. 2013, 38, 19–32. [CrossRef]

20. Kim, Y.; Lee, S.; Chong, I. Orchestration in distributed web-of-objects for creation of user-centered iot service
capability. Wirel. Pers. Commun. 2014, 78, 1965–1980. [CrossRef]

21. Do-it-Yourself Smart Experiences (DiY Smart Experiences). D3.1: Service Ontologies, ITE2 Project 08005.
Available online: https://itea3.org/project/diy-smart-experiences.html (accessed on 15 April 2017).

22. Wang, X.H.; Zhang, D.Q.; Gu, T.; Pung, H.K. Ontology based context modeling and reasoning using OWL.
In Proceedings of the Second IEEE Annual Conference on Pervasive Computing and Communications
Workshops (PERCOMW’04), Orlando, FL, USA, 14–17 March 2004; pp. 18–22.

23. iCore, Empowering IoT through Cognitive Technologies. Available online: http://www.iot-icore.eu/public-
deliverables (accessed on 20 April 2017).

24. Kelaidonis, D.; Somov, A.; Foteinos, V.; Poulios, G.; Stavroulaki, V.; Vlacheas, P.; Demestichas, P.; Baranov, A.;
Biswas, A.R.; Giaffreda, R. Virtualization and cognitive management of real world objects in the internet of
things. In Proceedings of the IEEE International Conference on Green Computing and Communications
(GreenCom), Besancon, France, 20–23 November 2012; pp. 187–194.

25. Foteinos, V.; Kelaidonis, D.; Poulios, G.; Vlacheas, P.; Stavroulaki, V.; Demestichas, P. Cognitive management
for the internet of things: A framework for enabling autonomous applications. IEEE Veh. Technol. Mag. 2013,
8, 90–99. [CrossRef]

26. Shvaiko, P.; Euzenat, J. A survey of schema-based matching approaches. J. Data Semant. 2005, 146–171.
27. Mikalai, Y.; Fausto, G. Element Level Semantic Matching; DIT-04-035; University of Trento: Trento, Italy, 2004.
28. Leacock, C.; Chodorow, M. Combining local context and WordNet similarity for word sense identification.

In WordNet: An Electronic Lexical Database; Fellbaum, C., Ed.; MIT Press: Cambridge, MA, USA, 1998;
pp. 265–283.

29. Jurisica, I.; Mylopoulos, J.; Yu, E. Ontologies for knowledge management: An information systems
perspective. Knowl. Inf. Syst. 2004, 6, 380–401. [CrossRef]

30. Li, H.; Li, W.; Cai, Q.; Liu, H. A framework of ontology-based Knowledge Management system.
In Proceedings of the 2nd IEEE International Conference on Computer Science and Information Technology
(ICCSIT), Beijing, China, 8–11 August 2009; pp. 374–377.

31. Staab, S.; Studer, R.; Schnurr, H.P.; Sure, Y. Knowledge processes and ontologies. IEEE Intell. Syst. 2001, 16,
26–34. [CrossRef]

32. Kibria, M.G.; Fattah, S.M.M.; Jeong, K.; Chong, I.; Jeong, Y.K. A User-Centric Knowledge Creation Model in a
Web of Objects Enabled Internet of Things Environment. Sensors 2015, 15, 24054–24086. [CrossRef] [PubMed]

33. BUTLER Project. Available online: http://www.iot-butler.eu (accessed on 15 April 2017).
34. Liu, Y.; Seet, B.C.; Anbuky, A.A. An ontology-based context model for wireless sensor network (WSN)

management in the Internet of Things. J. Sens. Actuator Netw. 2015, 2, 653–674. [CrossRef]

http://dx.doi.org/10.7840/kics.2015.40.2.408
http://dx.doi.org/10.1177/1550147716660896
http://dx.doi.org/10.7840/kics.2013.38C.1.19
http://dx.doi.org/10.1007/s11277-014-2056-9
https://itea3.org/project/diy-smart-experiences.html
http://www.iot-icore.eu/public-deliverables
http://www.iot-icore.eu/public-deliverables
http://dx.doi.org/10.1109/MVT.2013.2281657
http://dx.doi.org/10.1007/s10115-003-0135-4
http://dx.doi.org/10.1109/5254.912382
http://dx.doi.org/10.3390/s150924054
http://www.ncbi.nlm.nih.gov/pubmed/26393609
http://www.iot-butler.eu
http://dx.doi.org/10.3390/jsan2040653

Sensors 2017, 17, 2180 21 of 21

35. Abowd, G.D.; Dey, A.K.; Brown, P.J.; Davies, N.; Smith, M.; Steggles, P. Towards a better understanding
of context and context-awareness. In Handheld and Ubiquitous Computing; Springer: Berlin, Germany, 2001;
Volume 1707, pp. 304–307.

36. Quinn, A.; Stranieri, A.; Yearwood, J. Classification for accuracy and insight: A weighted sum approach.
In Proceedings of the Sixth Australasian Data Mining Conference (AusDM 2007), Gold Coast, Australia,
3–4 December 2007; pp. 203–207.

37. Horridge, M. A Practical Guide to Building OWL Ontologies Using Protege 4 and CO-ODE Tools, Edition 1.3;
The University of Manchester: Manchester, UK, 2004.

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Works
	Semantic Ontology Representation in the Web of Objects Platform
	Web of Objects Archietcture
	CVO Creation and Instantiation

	Service Modularity for Reusability in the WoO Platform
	CVO Reuse in the Web Objects-Enabled IoT Environment
	Discovery of a VO in an Ontology
	Logistic Model to Support Service Modularity

	Prototype Implementation for a Use Case in Smart Space
	Use Case Scenario
	Proof of Concept
	Prototype Implementation
	Results and Discussion

	Conclusions

