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Abstract

Background—The clinical course of Idiopathic Pulmonary Fibrosis (IPF) is unpredictable. 

Clinical prediction tools are not accurate enough to predict disease outcomes.

Methods—All-comers with Idiopathic Pulmonary Fibrosis diagnosis were enrolled in a six-

cohort study. Peripheral blood mononuclear cells or whole blood was collected at baseline from 

425 participants and during follow up from 98 patients. The 52-gene signature was measured by 

the nCounter® analysis system in four cohorts and extracted from microarray data in two others. 

The Scoring Algorithm for Molecular Subphenotypes (SAMS) was used to classify patients into 

low or high risk groups based on a 52-gene signature. Mortality and transplant-free survival were 

studied using Competing risk and Cox proportional-hazard models, respectively. Time course data 

and response to anti-fibrotic drugs were analyzed using linear mixed-effect models.

Findings—The application of SAMS to the 52-gene signature identified two groups of IPF 

patients (low and high risk) with significant differences in mortality or transplant-free survival in 

each of the six cohorts (HR 2·03–4·37). Pooled data revealed similar results for mortality (HR:
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2·18, 95%CI:1·53–3·09, P<0·0001) or transplant-free survival (HR:2·04, 95%CI: 1·52–2·74, 

P<0·0001). Adding 52-gene risk profiles to the Gender, Age and Physiology (GAP) index 

significantly improved its mortality predictive accuracy. Temporal changes in SAMS scores were 

associated with changes in forced vital capacity (FVC) in two cohorts. Untreated patients did not 

shift their risk profile over time. A simultaneous increase in up score and decrease in down score 

was predictive of transplant-free survival (HR:3·18· 95%CI 1·16, 8·76, P=0·025) in the Pittsburgh 

cohort. A simultaneous decrease in up score and increase in down score after initiation of anti-

fibrotic drugs was associated with a significant (P=0·005) improvement in FVC in the Yale cohort.

Interpretation—The peripheral blood 52-gene expression signature is predictive of outcome in 

patients with IPF. The potential value of the 52-gene signature in predicting response to therapy 

should be determined in prospective studies.

Introduction

Idiopathic pulmonary fibrosis (IPF) is a progressive and highly lethal interstitial lung disease 

of unknown etiology. The median survival without transplant is approximately three to four 

years1. The natural history of the disease is highly variable and unpredictable with some 

patients demonstrating long term clinical stability and others experiencing a more rapid 

disease course2. While clinical parameters allow staging of patients, they do not predict 

outcome accurately3. In recent years, evidence emerged that blood molecular and genetic 

markers may be indicative of disease outcome and potentially improve the accuracy of 

clinical predictions4–9. However, the majority of these studies were limited in scope and 

replication.

We previously identified a 52 gene expression signature in peripheral blood mononuclear 

cells (PBMC) that predicted transplant-free survival (TFS) in IPF and validated four of these 

genes (CD28, ICOS, LCK, ITK) by qRT-PCR6. In this study, we hypothesized that genomic 

risk profiles based on the peripheral blood, 52-gene expression signature, would accurately 

predict outcome in IPF. Our objectives were to determine the outcome prediction accuracy 

of 52-gene risk profiles in multiple cohorts, to determine whether adding 52-gene risk 

profiles to currently accepted clinical staging tools improved their outcome prediction 

accuracy, and to identify whether genomic risk profiles change with disease progression or 

in response to anti-fibrotic therapy.

Methods

The following sections summarize our methods. The online supplement includes more 

details:

Design, settings and participants

Study design is summarized in figure 1. For time to event analyses, patients were recruited 

from the Universities of Yale (n=48), Imperial College London (n=55), Chicago (n=45), 

Pittsburgh (n=120), Freiburg (n=38) and Brigham and Women’s Hospital-Harvard Medical 

School (BWH-HMS) (n=119) (Table 1). Recruitment started on 07/2004 and ended on 

8/2015. For time course analyses, samples were available from Pittsburgh and Yale cohort 
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patients (Figure 1b). IPF diagnosis was established by a multidisciplinary group at each 

institution following ATS/ERS guidelines10. Studies were approved by Institutional Review 

Boards at each institution and informed consent was obtained from all patients. 

Demographic, clinical information, pulmonary function test and diffusion capacity of the 

lung for carbon monoxide (DLCO) were collected at the time of blood draw. The Gender, 

Age and Lung Physiology (GAP) index was calculated as reported by Ley and colleagues3.

Sample collection, RNA extraction and quality assessment

Yale, Chicago, Pittsburgh and Freiburg cohorts—PBMC collection, total RNA 

extraction and quality assessment methods have been previously described6. BWH-HMS 
and Imperial College Cohorts: Whole blood was collected using PAXgene blood RNA tubes 

(PreAnalytiX) and total RNA was extracted using the PAXgene Blood RNA Kit, following 

the manufacturer’s protocol.

52-gene signature measurement

Yale, Pittsburgh, Freiburg and BWH-HMS cohorts—The nCounter® analysis system 

(Nanostring)11 was used to validate the 52-gene signature. Imperial College London cohort: 
The 52-gene signature was analyzed from a previously published gene expression dataset of 

whole blood12 (GEO accession number: GSE93606). University of Chicago cohort: The 

expression of the 52-gene signature was analyzed from a previously published gene 

expression dataset of PBMC from IPF patients6 (GEO accession number: GSE27957). Gene 

expression microarrays were performed in accordance to MIAME guidelines. Gene 

normalization was performed by cohort (see online supplement for more details). 

transformed Log2 gene expression values were used for statistical analyses.

MMP7 measurement

Serum samples were obtained from Pittsburgh cohort patients who had PBMC collected 

simultaneously (N=114) in the time to event analysis. The MMP7 Elisa assay (R&D 

Systems) has been previously validated by us 13,14

Statistical methods and analysis

Development of the Scoring Algorithm of Molecular Subphenotypes (SAMS)—
SAMS is a classification algorithm of gene expression data generated from the calculation of 

two scores (up and down scores). The following steps summarize the calculation of SAMS 

Up and Down scores: Step 1: Geometric mean normalization - We subtract the log2 value of 

the gene from the geometric mean of the same gene in all the samples in the cohort. A gene 

with a positive value is considered increased, and a gene with a negative value is considered 

decreased. Step 2: Determination of increased and decreased ratios – This ratio is calculated 

by dividing the number of genes changed in a certain direction (increased or decreased) in a 

sample divided by the number of genes expected to change in the same direction. The 52-

gene signature contains 7 increased and 45 decreased genes. Thus the increased ratio is 

calculated by dividing the number of actually increased genes by 7 and the decreased ratio is 

the number of actually decreased genes divided by 45 (see example in online supplement). 

Step 3: Sums of the values of increased or decreased genes are calculated per sample. Step 
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4: Calculation of the scores - the up score is derived by multiplying the sum of the values of 

the increased genes by the increased ratio and the down score by multiplying the sum of the 

decreased genes by the decreased ratio. Because the gene expression values are log2 – the up 

score will be positive and the down score will be negative

To determine 52-gene risk profiles in each independent cohort, patients with up scores above 

the median value and down scores below the median value in each cohort were classified as 

“high risk”. Patients without this pattern of expression were classified as “low risk”. 

Analysis of variance (ANOVA) was used to identify significant differences in SAMS scores 

between cohorts. The SAMS calculator is publicly available at http://gem.med.yale.edu/

SAMSWeb3/index.jsp

Time to event analysis—Patients were followed from study entry until death, loss of 

follow up, or transplant. Because two cohorts (Yale and Imperial college) did not contain 

transplants, we used different outcome definitions, transplant-free survival (TFS) in 

Chicago, Pittsburgh, Freiburg and BWH-HMS and mortality in Yale and Imperial College. 

The association between genomic risk profiles and outcomes was determined by univariate 

Cox Proportional-Hazard models. For TFS, both transplants and deaths were considered 

events. To determine whether genomic risk profiles were predictive of the predetermined 

clinical outcomes, we pooled the data from all cohorts and adjusted for age, gender, percent 

predicted forced vital capacity (FVC%) and immunosuppressive therapy, defined as the use 

of prednisone, azathioprine, or a combination of both at the time of blood draw. Multivariate 

competing risk15 and Cox proportional-hazard16 models were applied to the pooled data to 

determine association with mortality or TFS respectively. For mortality analyses in the 

pooled data, transplants were considered a competing risk (Figure 1a). Differences in 

mortality and TFS between patients with high and low risk genomic profiles were evaluated 

using cumulative incidence and Kaplan Meier curves, respectively. To test whether 52-gene 

risk profiles could improve outcome prediction when used in combination with the GAP 

index3, we fit competing risk15 and Cox proportional-hazard16 models as follows: GAP 

only, genomic only, GAP and genomic or the G-GAP index. The G-GAP index was 

calculated by adding three points (the maximum score in the GAP index) to the GAP index 

if a patient had a high risk genomic profile and no points if they had a low risk profile. To 

determine the prediction accuracy of these models and to compare their predictive 

performance, we used time-dependent Receiver Operating Characteristic (ROC) for 

censored data17 and Area Under the Curve (AUC) using a 10-fold cross validation 

procedure. Pooled data analysis results were adjusted by patient’s age, gender, 

immunosuppression use and percent predicted forced vital capacity (FVC%). MMP7 and 

52-gene risk profiles where compared head-to-head using the Concordance index (C-index), 

an equivalent of the area under the curve (AUC) in a receiver operator curve (ROC), a well-

accepted measure of the probability that predicting the outcome is better than chance. 18. 

GAP index was not included in the comparisons between 52-gene risk profiles and MMP7.

Time course analysis—Time course analyses were performed in the Pittsburgh and Yale, 

time course cohorts (Figures 1b and S1). Trends in SAMS scores and forced vital capacity 

volumes (FVC) were plotted to identify shifts in genomic risk profiles over time. To identify 
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statistically significant differences in up and down scores, and FVC across time between 

high and low risk patients, we used a linear mixed-effect (LME) model19 with random 

intercepts. A linear mixed-effect model with random intercepts was also used to study the 

associations between changes in up and down scores and changes in FVC in patients with 

simultaneous measurements. LME models were adjusted by patient’s age, gender and 

therapy (immunosuppression therapy in the Pittsburgh cohort and anti-fibrotic therapy in 

Yale). Anti-fibrotic therapy was initiated after baseline sample was collected and defined as 

the use of Pirfenidone or Nintedanib. To determine the association between changes in 

SAMS scores and survival, we calculated the relative changes in up and down scores for 

each IPF patient based on their first two visits, adjusting to the duration of time intervals. 

Thus, for each one of the Pittsburgh cohort patients with at least two visits (N=66), we 

calculated the relative changes in both scores per month, from one to six months (see 

supplementary methods). Patients were classified as high risk if relative changes in up and 

down scores between two subsequent visits occurred simultaneously and were ≥10% 

(bidirectional changes). A Cox proportional-hazards model was used to determine the 

association between bidirectional changes in SAMS scores and TFS. Results were adjusted 

by patient’s age, gender, FVC and immunosuppressive therapy. Finally, we used a LME 

model to compare the rate of FVC decline per year in IPF patients from the Yale cohort who 

had a simultaneous decrease in up score and increase in up score (N=6) from those with 

other time course changes in SAMS scores (N=16), after initiation of anti-fibrotic therapy. 

Statistical significance was defined as two-sided P<0·05. Analyses were performed using R. 

Details on the R packages are provided in the online supplement.

Results

52-gene risk profiles are predictive of outcome in IPF and non-inferior to serum MMP7 
levels

We measured the expression of a peripheral blood 52-gene signature6 in IPF patients from 

six independent academic centers (Table 2). Gene expression levels, clinical and 

demographic data were collected at baseline in all patients and across time in patients from 

the Pittsburgh and Yale cohorts to perform time to event (Figure 1a) and time course analysis 

(Figure 1b), respectively. To classify patients as high or low risk we calculated up and down 

scores using SAMS. Up or down scores were not significantly different between cohorts 

suggesting a similar distribution of patients with 52-gene, high risk profiles in each cohort 

(Figure S2). SAMS scores separated patients into high and low risk groups with impressive 

similarity in gene expression patterns within risk groups across the various cohorts (Figure 

2a). Univariate Cox Proportional-hazard models demonstrated that patients in the high risk 

group had significantly (P<0·05) higher mortality (Yale and Imperial College London 

cohort) or lower TFS (Chicago, Pittsburgh, Freiburg and BWH-HMS cohorts), respectively, 

when compared to patients in the low risk group (Figure 2b). The hazard ratios (HR) for 

mortality and TFS ranged from 2·03 to 4·37 indicating that patients with a 52-gene, high risk 

profile had at least a two-fold increased risk of dying or having a lung transplant during 

follow-up in each independent cohort.
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To determine how outcome prediction using 52-gene risk profiles compared to serum 

MMP7, we measured MMP7 concentrations by ELISA in Pittsburgh cohort patients with 

simultaneous PBMC and serum collections (N=114) and compared their TFS prediction 

performance using the C-index. Our analysis demonstrated that the C-index for TFS 

prediction in the Pittsburgh cohort was significantly higher (P=0·011) when using 52-gene, 

genomic risk profiles (C-index=0·72 95%CI 0.659, 0.779) versus MMP7 levels in serum (C-

Index=0·61, 95%CI 0.535, 0.683).

52-gene, genomic risk profiles are predictive of outcome independent of demographic and 
clinical variables

To identify demographic and clinical characteristic differences between 52-gene risk 

profiles, a pooled data analysis was performed using data from all 425 IPF patients (Figure 

3a). High risk patients were predominantly Caucasian males with lower FVC% and DLCO% 

at presentation. There were more high-risk patients under immunosuppressants (Table 3). A 

high risk, 52-gene profile was independently predictive of mortality (HR 2·18, 95% CI 1·53, 

3·09, P<0·0001) or TFS (HR 2·04, 95%CI 1·52, 2·74, P<0·0001) (Figure 3b and c) after 

adjusting for age, gender FVC% and immunosuppressive therapy in the pooled dataset. To 

account for possible cohort heterogeneity, we also performed multivariate competing risk 

and Cox PH models stratified by cohort in the pooled data and the results did not differ 

significantly (HR 2·36, 95% CI 1·67, 3·35, P= 1.3e-6 for mortality and HR 2·08, 95% CI 

1·54, 2·80, P= 1.6e-6 for TFS). Because of the known adverse effects of immunosuppressive 

therapy on survival of patients with IPF20, we repeated the analysis only on patients that did 

not receive immunosuppression. A 52-gene, high risk genomic profile was also 

independently predictive of mortality (HR 2·27, 95% CI 1·54, 3·35, P<0·0001) or TFS (HR 

2·13, 95%CI 1·54, 2·96 P<0·0001) in this dataset, after excluding patients under 

immunosuppressants (Figure S3). A prediction model based on the calculated G-GAP index 

outperformed all other prediction models studied (Supplementary Tables 1 and 2) and 

significantly improved accuracy prediction of mortality or TFS (Figure 3d and e). The 

maximal Area Under the Curve changed by 13% (69% to 82%) or 10·6% (70% to 80·6%) 

for a 30-day mortality and TFS prediction, respectively.

Association of 52-gene expression trends over time with disease progression and survival

For time course analyses, we measured the expression of the 52-gene signature in RNA 

isolated from PBMC using the nCounter system, calculated up and down scores at each time 

point and collected FVC values over time in two cohorts (Pittsburgh and Yale, Figure 1b). 

Details about number of visits and follow up duration can be seen in Figure 1.

To determine the association between changes in up and down scores over time with FVC, 

we performed a LME model adjusted for age and gender in Pittsburgh and Yale cohorts. In 

both cohorts, up scores were negatively associated with FVC and down scores were 

positively associated with FVC. The association of up scores with FVC was −0·025 (95%CI 

−0·039, −0·011, P=0·0004) in the Pittsburgh cohort and −0·010 (95%CI −0·017, −0·004, 

P=0·004) in the Yale cohort. Similarly, the association of down scores with FVC was 0·008 

(95%CI 0·005, 0·011, P<0·0001) in the Pittsburgh cohort, and 0·027 (95%CI 0·004, 0·051, 

P=0·029) in the Yale cohort.
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To determine whether 52-gene, high or low risk patients, not on anti-fibrotic drugs 

(Pittsburgh cohort) shifted their risk profile, we plotted up and down scores and FVC trends 

and compared their values across time in high versus low risk groups using a LME model. 

Our results indicate no shift in risk profiles or FVC trends (Figure 4a, b and c), results 

confirmed by the LME model. This model demonstrated a significant difference for up 

scores (high risk: 4·05 vs low risk: 0·99, P<0·0001), down scores (high risk: −14·9 versus 

low risk: −4·57, P<0·0001) and FVC (high risk: 2·28 liters versus low risk: 2·60 liters, 

P=0·04) between high and low risk groups across time in this cohort.

We also assessed whether substantial changes in SAMS scores over time were predictive of 

IPF survival in patients not on anti-fibrotic drugs (Pittsburgh cohort). Since relative changes 

in FVC ≥10% have been associated with decreased IPF survival 21,22, we hypothesized that 

a relative increase in up score and a simultaneous decline in down score ≥10%, was also 

predictive of IPF survival. Univariate and multivariate Cox models (Supplementary Table 3) 

demonstrated that a simultaneous ≥10% increase in up score and decrease in down score 

(Bidirectional changes), between two measurements obtained 30-days apart (Figure 4d), was 

significantly predictive of future transplant-free survival (HR: 3·18· 95%CI 1·16, 8·76, 

P=0·025) (Figure 4e). Only three out of 32 patients in the Yale time course cohort had ≥10% 

bidirectional changes across time thus we could not assess the relationship between 

bidirectional changes and survival in this cohort.

Changes in 52-gene expression trends over time are associated with clinical response to 
anti-fibrotic agents

To determine the effect of anti-fibrotic drugs on 52-gene risk profiles, we first plotted up and 

down score trends over time in the Yale time course cohort. Low risk profile patients 

exhibited the same patterns as observed in the Pittsburgh cohort, but high risk profile 

patients exhibited shifts in up scores (Figure S4a) and down scores (Figure S4b). Because a 

higher proportion of high risk patients were initiated on anti-fibrotic therapy (90%) 

compared to low risk patients (59%) (Supplementary table 4), we analyzed the interaction 

between changes in scores and response to therapy. Impressively, in patients who exhibited a 

simultaneous decrease in up score and increase in down score, we observed an average 

increase in FVC (0·06 liters per year), while in patients that did not exhibit these changes in 

scores, we observed an average decrease in FVC (−0.21 liters per year). The difference was 

statistically significant (P=0·005) (Figure S4c).

Discussion

We have previously identified a 52-gene signature predictive of TFS in two IPF patient 

cohorts by using microarray analysis of PBMC6. Here, we analyzed the 52-gene signature in 

the peripheral blood from 425 IPF patients from six independent cohorts. Using the novel 

Scoring Algorithm of Molecular Subphenotypes (SAMS), we derived risk profiles from the 

52-gene signature that identified two classes of IPF patients with significant differences in 

outcome in all six cohorts. The prediction accuracy of 52-gene risk profiles was better than 

serum concentrations of MMP7 and adding 52-gene risk profile information to the clinical 

GAP index significantly increased its prediction accuracy. Temporal analysis revealed that 
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untreated patients generally did not change their risk profiles; however, simultaneous 

increase in up score and decrease in down scores was predictive of subsequent transplant-

free survival. In patients initiated on anti-fibrotic therapy, a simultaneous decrease in up 

score and increase in down score was associated with stabilization of FVC.

The recognition of the variable clinical course in IPF led to a substantial effort to identify 

clinical tools and reliable peripheral blood biomarkers for risk stratification. Changes in 

peripheral blood proteins such as MMP74,13, ICAM and IL84, SP-A and SP-D5, KL-623, 

CCL-1824, YKL4025, CXCL1326, POSTN27, anti-hsp70 IgG antibodies28 and protease 

degradation products29, have been found to be predictive of poor IPF outcomes. Changes in 

circulating cells (CD4+CD28+ T cells6, fibrocytes30 and Semaphorin 7a+ regulatory T 

cells31), gene polymorphisms (TOLLIP32, TLR333 and MUC5B7) and aging biomarkers 

(Telomere length8, free mitochondrial DNA34) have also been associated with mortality in 

IPF. While these studies strongly suggested the value of peripheral blood biomarkers for risk 

stratification in IPF, no marker is currently used in clinical practice. This is, in part, because 

the majority of the studies did not have truly independent replication cohorts, nor did they 

demonstrate added value over clinical staging tools. In contrast to previous studies, our study 

provides validation of our 52-gene expression signature in six independent IPF cohorts and 

demonstrates a substantial improved accuracy when incorporated with currently used 

clinical tools. This is important, because accurate outcome prediction has very practical 

implications for IPF patients. Based on the current lung allocation score, and on their 

clinical characteristics, nearly all of the patients in our study would be referred for transplant 

evaluation, and many would be eligible for lung transplantation. However, our data suggests 

that only patients with a high risk genomic profile could require this evaluation urgently, and 

many may not require lung transplantation even three to five years after diagnosis. Thus, 

incorporating 52-gene risk profiles in the evaluation of IPF patients, may enhance the 

precision of lung transplantation referral – avoiding delays in transplants to those who need 

it early, and delaying those who may not need it. Similarly, when lung transplantation is not 

an option, this test could also help physicians deciding when to refer IPF patients to 

palliative care, a currently significant unmet need35 or distinguish patients who respond to 

drug therapy from those who do not. Similarly, the majority of previous studies did not 

assess the change of markers over time. This is important, as it is unknown whether IPF 

patients shift their risk profiles. We demonstrate that a patient’s 52-gene, genomic risk 

profile rarely changes in the absence of anti-fibrotic therapy. However, when the profile does 

change it is important. In untreated patients, a simultaneous increase in up score and 

decrease in down score reflects subsequent increased mortality.

In patients treated with anti-fibrotic agents, a simultaneous decrease in up score and increase 

in down score, reflects stabilization or even increase in FVC. Thus, our study demonstrates 

that 52-gene risk profiles at presentation are predictive of outcome and changes in a patient’s 

genomic risk profile are informative of clinical deterioration as well as potential response to 

anti-fibrotic therapies.

While our study focuses on the biomarker applications of the 52-gene signature for risk 

stratification in IPF, it could also serve to generate hypotheses for follow up studies. We 

have previously shown that four genes of this signature (CD28, ICOS, LCK and ITK), that 
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belong to the T-cell co-stimulatory signaling pathway, were correlated with the percentage of 

CD4+CD28+ T cells in the circulation of these patients6. Similarly, previous reports have 

demonstrated that changes in circulating CD4+ T cells with CD28 down-regulation36 of IPF 

patients are also associated with poor disease outcomes. These reports suggest a potential 

link between changes in the expression of genes in the 52-gene signature with phenotypic 

shifts in circulating immune cells. Similarly, a recent report suggested that down-regulation 

of T cell co-stimulation markers is associated with T cell exhaustion and poor outcomes in 

inflammatory and autoimmune diseases37. While IPF is not generally considered an 

autoimmune disease, T cell exhaustion is a mechanism that should be explored as a potential 

explanation of our findings. Additionally, other members of the 52-gene expression 

signature may have also some clues about the role of immune aberrations in IPF. As an 

example, MCEMP1 (mast cell-expressed membrane protein 1) one of the outcome 

predictive genes when overexpressed, encodes a transmembrane protein isolated from 

human mast cells38, known to work in concert with fibroblasts to aggravate pulmonary 

fibrosis39 or FLT3 (Fms-related tyrosine kinase 3) a strong Nintedanib-responsive tyrosine 

kinase with unknown roles in pulmonary fibrosis. While such studies were beyond the scope 

of this paper, they could potentially shed light on the role of immune aberrations in IPF.

Despite the impressive reproducibility of our findings, we need to recognize some of the 

limitations of our study. First, SAMS scores were calculated for each individual after 

normalization within each cohort. The normalization within cohort was required because the 

data was obtained by different technologies using RNA extracted from whole blood or 

PBMC (Figure 1). This of course limits the clinical applicability of our results because the 

expressions of the 52 genes of an entire IPF cohort need to be available for the calculation of 

the genomic risk profile of an individual patient. For our results to be implemented in the 

clinic, we would need to generate a set of reference values for the 52 genes in IPF patients. 

Such reference values could be used to calculate SAMS up and down scores for every new 

sample and determine the 52-gene risk profile of patients, independently of a specific cohort. 

The significant reproducible performance of the 52-gene signature, should encourage the 

development of this reference set and the standardization as an essay for clinical use. 

Second, we did not determine the specificity of the 52-gene signature to IPF. To assess the 

effect of aging, we analyzed the 52-gene signature in control individuals older than 90 years 

of age40,41 (Figure S5), and found that it was not predictive of mortality in the aged, but we 

did not study other chronic lung disease. Third, treatment guidelines have changed in IPF in 

some cohorts, patients were at least initially on immunosuppressive therapy, which it is well 

known, affect outcome. However, the 52-gene signature was originally discovered in a 

cohort (Chicago cohort) where only two out of 45 patients were on immunosuppressive 

therapy at study entry. Such small number of patients under immunosuppression should not 

account for the transplant-free survival and mortality prediction accuracy of the signature. 

To further address this, we performed a separate analysis in which we excluded all patients 

on immunosuppressive therapy at the time of blood draw. The 52-gene signature was 

predictive of outcome in this population indicating that immunosuppression did not 

confound our results. Fourth, our initial predictive model was not adjusted to DLCO because 

we had missing data especially among high risk patients who did not have DLCO 

measurements performed at the time of blood draw. However, we did address the effect of 
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DLCO indirectly, through the comparison to the GAP index. DLCO is a component of the 

GAP index, and adding the 52-gene risk profile to the GAP index significantly improved its 

outcome predictive accuracy. Finally, our longitudinal analysis was limited by the size of 

cohorts and the difference between them, however we have demonstrated significant 

reproducibility on two observations, that untreated IPF patients do not generally shift their 

genomic risk profile and that 52-gene SAMS scores are significantly associated with FVC. 

The observation that in treated high risk patients, a simultaneous decrease in up score and 

increase in down score is associated with a significant stabilization of FVC is intriguing, but 

will require replication, as it is based on a very small number of patients.

In conclusion, our study demonstrates that the 52-gene risk profiles are reproducible 

predictors of outcome in IPF patients. The enhanced outcome prediction accuracy when 52-

gene risk profiles are added to the GAP index (G-GAP index) and the association of changes 

in genomic risk profiles with changes in FVC, survival and potential response to anti-fibrotic 

therapy, indicate the potential value of the 52-gene signature as a blood test to risk stratify 

and monitor disease in IPF. To develop this blood test, we would need prospective studies 

that specifically address some of the limitations of our study including, the establishment of 

universal reference values for the 52 genes, a prospective comparison to other molecular 

markers, and determination whether the 52 gene signature is predictive or associates with 

acute exacerbations.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Evidence before this study

We searched the scientific literature using PubMed to identify studies that use gene 

expression in the peripheral blood to identify outcome prediction markers in IPF. We 

used the search terms “Pulmonary Fibrosis”, “biomarkers”, “outcome prediction”, and 

“blood” and did not use language or date restrictions. We identified multiple studies that 

assessed the value of proteins carried in the blood stream to predict outcome in IPF. 

When we added the term gene expression we identified two relevant studies, one that 

assessed the correlation of the peripheral blood transcriptome with extent of fibrosis, and 

our own previous study that discovered the 52 gene signature, but did not include a 

complete validation of the signature or assessment of its change over time and in 

response to novel therapies.

Added value of this study

In this study, we developed a genomic risk scoring system (SAMS) based on the 52-gene 

signature, and tested it on 425 patients from six independent cohorts from Academic 

Centers in the United States, United Kingdom and Germany. We identified two groups of 

IPF patients (low and high risk) with significant differences in mortality or transplant-free 

survival in each of the six cohorts (HR 2·03–4·37). Pooled data revealed similar results 

for mortality (HR 2·18, 95%CI:1·53–3·09, P<0·0001) or transplant-free survival (HR: 

2·04, 95%CI: 1·52–2·74, P<0·0001). Adding 52-gene risk profiles to the Gender, Age and 

Physiology (GAP) index significantly improved its outcome predictive accuracy. 

Temporal changes in SAMS were associated with changes in forced vital capacity in two 

cohorts. Untreated patients tended not to change their risk profiles, but some high risk 

patients started on antifibrotic therapy experienced a reversal of their high risk profile. 

Change in 52-gene risk profiles after initiation of anti-fibrotic therapy was associated 

with a significant (P=0·005) improvement in Forced Vital Capacity.

Implications of all the available evidence

The 52-gene signature is a reproducible predictor of mortality and transplant-free survival 

in patients with IPF that can improve the performance of the GAP index. The signature 

correlates with Forced Vital Capacity (FVC) and without therapy, patients do not shift 

their risk profile. Limited data suggest that a reversal of a high-risk genomic profile is 

associated with stabilization of FVC. Prospective studies are required to establish the 

value of the 52-gene signature as a marker for response to antifibrotic therapy in IPF.
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Figure 1. Study design
The outline summarizes the (a) time to event and (b) time course analysis design for this 

study including the cohorts, blood compartments, experiments and statistical methods used 

in each independent cohort and in the pooled data analysis. PBMC: Peripheral blood 

mononuclear cells. BWH-HMS: Brigham and Women’s Hospital-Harvard Medical School. 

Dates of enrollment for each cohort are included in figure 1a. For figure 1b, time is 

presented in years (average and range, in parenthesis).
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Figure 2. 52-gene risk profiles are predictive of outcome in IPF
(a) Clustering of IPF patients based on52-gene risk profiles (high vs low) derived using 

SAMS in each one of the six cohorts studied. Every row represents a gene and every column 

a patient. Color scale is shown adjacent to heat maps in log-based two scale; yellow denotes 

increase over the geometric mean of samples and purple, decrease. (b) Mortality and 

Transplant-free survival (TFS) differs between high vs low risk profiles based on the 52-

gene signature in each independent cohort.
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Figure 3. 52-gene risk profiles are predictive of outcome independent of demographic and 
clinical variables
(a) Pooled data analysis comparing high vs low risk profile patients from all cohorts. Color 

scale is shown adjacent to heat maps in log-based two scale. (b) Mortality and (c) 

Transplant-free survival (TFS) differs between high vs low risk patients from all cohorts 

after adjusting for age, gender, FVC% and immunosuppressive therapy. (d) Area Under the 

Curve (AUC) of time-dependent ROC analysis for (d) mortality and (e)TFS based on the 

GAP index alone or the G-GAP index in all patients.
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Figure 4. 52-gene signature trends over time demonstrate association with disease progression 
and survival
(a) up and down (b) scores from SAMS, and (c) FVC volumes do not shift their trends over 

time in high (continuous red line) vs low (continuous black line) risk groups (Pittsburgh 

cohort). Pointwise confidence intervals are represented in purple. (d) Bidirectional changes 

in SAMS scores (Simultaneous increase in up score and decrease in down score) can be 

observed during disease course in IPF and are more prominent in high risk individuals 

(example shown in dotted black line box). (e) Bidirectional changes in SAMS scores are 

predictive of Transplant-free survival (TFS). Dotted blue line (high risk) –Pittsburgh cohort 

patients with 30-day bidirectional changes in SAMS scores ≥10%. Continuous red line (low 

risk) – Pittsburgh cohort patients with 30-day bidirectional changes in SAMS scores <10%. 

Results adjusted by age, gender, FVC and immunosuppressive therapy.
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Table 2
Clinicopathological characteristics of the IPF patients in the two risk groups (pooled data) 
for time to event analysis

P-values were calculated using the Fisher’s exact test except for age, pulmonary function tests and GAP index 

where an unpaired, two tailed, t-test was used. FVC%, forced vital capacity, percent predicted, DLCO%, 

carbon monoxide diffusing capacity, percent predicted. FEV1%, forced expiratory volume in 1 second, percent 

predicted. HRCT, high-resolution computed tomography. UIP, usual interstitial pneumonia.

Characteristics Low risk (n=278) High risk (n=147) P-value†

Age (yr)

 Mean ± SD 67·4 ± 7·9 68·4 ± 8·7 0·24

Gender, n (%)

 Males 198 (71·2) 120 (81·6) 0·019

 Females 80 (28·8) 27 (18·4)

Race, n (%) 0·077

 Caucasian 257 (92·4) 143 (97·7)

 Black 10 (3·6) 0 (0)

 Hispanic 5 (1·8) 3 (2)

 Other 6 (2·2) 1 (0·7)

Smoking status, n (%) 0·27

 Ever smoker 185 (66·5) 106 (72·1)

 Never smoker 93 (33·5) 41 (27·9)

Immunosuppression use, n (%)

 No 252 (90·6) 103 (70·1) <0·0001

 Yes 26 (9·4) 44 (29·9)

Spirometry (mean ± SD)

 FVC% 69·3 ± 18·4 62·7 ± 17·3 0·0004

 DLCO% 46 ± 17·3 40·9 ± 16·2 0·005

 FEV1% 76 ± 19·8 70·6 ± 18·4 0·007

GAP Index 0·002

 Mean ± SD 3·9 ± 1·4 4·3 ± 1·5

Diagnosis, n (%) 0·41

 HRCT+ UIP biopsy 126 (45·3) 60 (40·8)

 HRCT 152 (54·7) 87 (59·2)
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