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Abstract

Next generation sequencing panels are being used increasingly in cancer research to study tumor 

evolution. A specific statistical challenge is to compare the mutational profiles in different tumors 

from a patient to determine the strength of evidence that the tumors are clonally related, i.e. 

derived from a single, founder clonal cell. The presence of identical mutations in each tumor 

provides evidence of clonal relatedness, although the strength of evidence from a match is related 

to how commonly the mutation is seen in the tumor type under investigation. This evidence must 

be weighed against the evidence in favor of independent tumors from non-matching mutations. In 

this article we frame this challenge in the context of diagnosis using a novel random effects model. 

In this way, by analyzing a set of tumor pairs, we can estimate the proportion of cases that are 

clonally related in the sample as well as the individual diagnostic probabilities for each case. The 

method is illustrated using data from a study to determine the clonal relationship of lobular 

carcinoma in situ with subsequent invasive breast cancers where each tumor in the pair was 

subjected to whole exome sequencing. The statistical properties of the method are evaluated using 

simulations, demonstrating that the key model parameters are estimated with only modest bias in 

small samples in most configurations.
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1. Introduction

In recent years there have been increasing numbers of studies evaluating the clonal 

relatedness of distinct tumors in the same patient to determine whether the tumors arise from 

a common ancestral cell or if they developed entirely independently. Examples include 

studies that compared patterns of losses of heterozygosity (e.g. Imyanitov et al. 2002) and 

studies involving comparisons of genome-wide copy number arrays (e.g. Bollet et al. 2008). 

Clonality testing of this nature seeks to determine if the tumors share somatic mutations or 

copy number changes, providing evidence that the tumors arose from the same precursor, 
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clonal cell. The technology for conducting these investigations has changed as genetic 

technology has evolved, from studies of a few markers of loss of heterozygosity to genome-

wide studies of copy number profiling to, more recently, comparisons of mutational profiles 

from next generation sequencing. Based on such data, the determination of clonal 

relatedness is fundamentally statistical since many of the somatic changes in the tumors may 

have occurred after the tumors have evolved separately, so that the somatic fingerprints of 

the tumors may be quite different even if the tumors are truly clonal. Our group has 

developed statistical tests for clonal relatedness for use in various settings, including studies 

comparing patterns of losses of heterozygosity and genome-wide copy number changes 

(Begg et al. 2007; Ostrovnaya et al. 2010a,b).

Ostrovnaya et al. (2015) recently proposed a statistical test for clonal relatedness based on a 

comparison of the patterns of mutations observed in the two tumors from a sequencing 

panel. A likelihood ratio test was constructed, conditioned on the observed mutations in the 

two tumors being compared, taking into account the distinct, and widely varying marginal 

probabilities of the specific mutations. These marginal probabilities are important since a 

shared mutation that is very rare, i.e. where the marginal probability of the mutation is very 

small, provides much stronger evidence that the tumors are related than a shared mutation at 

a common locus, where independent occurrences of the same mutation in the tumors are 

more likely. The test was constructed as a classical significance test, where the null 

hypothesis is that the tumors are independent. An important practical characteristic of the 

test is that it can be applied to stand-alone cases, without the need for a larger sample of 

cases, as long as we have information on the marginal probability of occurrence of each 

specific observed mutation. However, an important drawback of using significance testing in 

this way is that, while the test can provide strong evidence against the null, i.e. in favor of 

clonal relatedness, it does not capture the strength of evidence in favor of the null 

hypothesis, i.e. the hypothesis that the tumors are independent. In particular, if no shared 

mutations are observed, there is no evidence for clonality. This is an important issue, since 

absence of detected matches does not define independent tumors. Clonal tumors must 

possess some matching somatic events, but the sequencing panel may simply not cover the 

genes in which the matches have occurred. Logic suggests that the more non-matching 

events observed the stronger the evidence that the tumors are independent, yet the p-value of 

the test is always 1 when no matches are observed, regardless of how many non-shared 

mutations are observed. The goal of this article is to propose a model quantifying the 

evidence of clonal relatedness for every case, with or without observed shared mutations. We 

use the entire sample of cases to estimate population parameters that permit us to assess the 

strength of evidence for and against clonal relatedness for each individual case. The 

proposed approach involves using a random effects model to capture the variation in the 

mutational profiles in pairs of clonally related tumors, and using this information to estimate 

the probabilities of clonality for each individual case. The statistical properties of the method 

are examined using simulations.

The method is illustrated using a recently published study that examined the clonal 

relatedness of pre-malignant lobular carcinoma in situ (LCIS) with subsequent invasive 

breast cancers (Begg et al. 2016). The tumors in the study were profiled using exome 

sequencing. We emphasize that although exome sequencing searches for somatic mutations 
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in the coding regions of all genes, matching mutations could exist in the non-coding regions 

of the genome, or could be gains or losses of segments of an allele, i.e. copy number 

changes. Consequently, absence of shared mutations in the exome does not guarantee that 

the tumors are independent. Our analysis is focused on the estimation of the overall 

proportion of cases that are truly clonal, and the diagnostic probabilities of each individual 

case.

2. Methods

2.1 Basic Formulation and Notation

We consider a sample consisting of n cases (j = 1,…,n) with each case having two 

anatomically distinct tumors. There are G potential genetic loci at which somatic mutations 

can occur. We note that typically G will be a very large number. It is difficult to define it 

precisely since more than one type of substitution can occur at each nucleotide and since 

there is an innumerable number of potential insertions and deletions. However, essentially 

all of the information regarding the classification of the case as clonal versus independent is 

contained in the somatic mutations that are actually observed to occur (Ostrovnaya et al. 

2015). Consequently we can adopt an analysis that is conditioned on observed mutations and 

as a result precise definition of G is unnecessary. We therefore define {Gj} as the set of 

mutations observed in either or both of the two tumors of the jth case. The marginal 

probabilities of these individual mutations are influential, as the probability of the same 

mutation being observed in two independent tumors decreases as the marginal probability 

decreases. We define {pi} to be the known marginal probabilities of the mutations in the 

dataset, where i indexes the specific mutation.

For each case the observed mutations can be classified as either shared or private. A shared 

mutation is one that is present in both tumors while a private mutation is one that has been 

observed in only one of the tumors. Let Aj denote the set of observed mutations in the jth 

case that are shared and let Bj be the set of private mutations. Thus Gj = Aj∪Bj.

The proposed method relies on a case-specific parameter, the clonality signal ξj This 

represents, in the context of the evolution of the tumors, the relative duration of the period in 

which the original clonal cell accumulated mutations, prior to the period where the two 

tumors evolved separately and accrued additional independent mutations (see Figure 1). 

Thus ξj represents the probability that an observed mutation occurred during the clonal 

phase as opposed to the independent phase of tumor development. For independent tumors, 

ξj= 0 It follows that for a case with a given clonality signal the probabilities of observing 

shared and private mutations at each locus are given by:-

(1)
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We further define π to be the proportion of clonal cases in the population, i.e. the proportion 

of cases for which ξj>0. Finally, we denote by Cj the event {case j is clonal} and by C̄
j the 

event {case j is not clonal}. The primary goals of our analysis are to estimate π, and to 

determine the individual probabilities that the tumor pairs in each case are clonally related 

tumors. In our example involving breast cancer cases having both a pre-malignant LCIS 

lesion and an invasive tumor, π is the proportion of cases for which the LCIS is the 

precursor of the invasive tumor.

2.2 Parameter Estimation

Let Yj= (Aj, Bj) denote the data from the jth case. We use a likelihood conditional on the 

observed mutations. Let Lj(π,ξj) be the contribution to the conditional likelihood of an 

individual case, defined by:

Where

and

We consider the clonality signal ξj as a random effect with probability density g(ξj) We 

assume that ξj=0 with probability 1–π and that, with probability π, φj=– log (1 –ξj) follows 

a logN (μ, σ2) distribution. The corresponding density of the clonality signal is thus zero-

inflated but has a flexible structure for modeling the positive random effects in the range 

0<ξj≤1 It depends on μ and σ2, corresponding to the mean and variance of φj on the log 

scale. Thus the parameter μ indicates the mean magnitude of the clonality signal and σ2 

characterizes the extent to which this varies from case to case, among cases that are truly 

clonal. We also explored the use of the Beta distribution, as discussed later in Section 4.

The marginal likelihood for the entire sample is obtained by integrating the individual 

contributions over the distribution of the random effects as follows:

(2)
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The model parameters π,μ and σ are estimated by maximizing the likelihood L(π, μ, σ). The 

integral in (2) is approximated using adaptive quadrature. The function is maximized using a 

Newton-like method (Byrd et al. 1995). The variance of the parameters is estimated from the 

Hessian matrix.

Finally, using the parameter estimates and the data from each individual case, we can obtain 

the diagnostic probability that the tumors of a given case are clonally related, i.e. P (Cj|Yj). 

This probability can be estimated using Bayes formula:

(3)

3. Application: evaluation of LCIS as a precursor of invasive breast cancer

We illustrate the method using data from a recently published study that was designed to 

investigate the hypothesis that LCIS is a frequent precursor of invasive breast cancer, as 

opposed to merely a marker of increased risk, the prevailing hypothesis for the past 40 years 

(Begg et al. 2016). The study included cases with LCIS lesions, some of which also had 

ipsilateral invasive breast cancers. We focus on the 22 examples of invasive breast cancers 

for which exome sequencing data were available for both the invasive lesion and an index 

LCIS lesion. The mean number of mutations per tumor was 34 (range, 15 to 56).

The results are summarized in Table 1. Columns 2-4 display the numbers of mutations 

observed in each tumor and the numbers of these that were shared. Details of the individual 

mutations observed and their marginal probabilities of occurrence are supplied in 

Supplementary Table 1 of Begg et al. (2016). The marginal probabilities were estimated 

based on their observed relative frequencies in breast cancers in the Cancer Genome Atlas 

(Cancer Genome Atlas Network 2012) combined with our current study. Among the 22 

studied pairs, 14 pairs (64%) had a probability of being clonal exceeding 50%, which we 

interpret as evidence favoring clonality from the whole-exome sequencing (identified by an 

asterisk in Table 1). These cases had at least one shared mutation. Using the methods from 

Section 2 the proportion of clonal cases in the population was estimated at 75% (95% 

confidence interval, 34-100%). The parameters of the normal distribution were estimated to 

be μ̂ = −2.26 and σ̂ = 1.47, representing a density function that is positively skewed, i.e. for 

the preponderance of clonal cases the clonality signal is considerably less than 0.5. In cases 

with at least one observed shared mutation, the estimated probabilities of clonal relatedness 

ranged from 0.87 to >0.99. The probabilities of clonal relatedness in cases with no observed 

shared mutations range from 0.31 to 0.38.

In this example, all pairs with a single shared mutation have a high probability of being 

clonal (>85%). The reason is that the shared mutation is a rare mutation, i.e. a mutation with 

an estimated marginal probability of occurrence of 0.001 (pairs 47c, 48b, 53b) and 0.003 

(pair 47d). To illustrate the influence of this marginal probability we have recalculated the 

probability of clonal relatedness for case 47c by replacing the marginal probability of the 
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shared mutation with the values 0.01 and 0.1, representing the frequencies of more 

commonly occurring mutations. In these circumstances the probability of clonality would be 

reduced from 94% to 68% and 42%, respectively.

Similarly, we can assess the sensitivity of the probability to the total number of mutations 

when no shared mutations are observed. Let's consider case 26, with 32 and 29 observed 

mutations in the two tumors (61 total), but none shared. In this case the probability of 

clonality is 35%. This probability would be 26% if 100 mutations were observed. By 

contrast, the probability would be 61% if only 10 mutations were observed, and it becomes 

closer to the estimated π̂ as the number decreases.

We also analyzed the data using the previously proposed clonality test (Ostrovnaya et al. 

2015). These p-values are in the final column of Table 1. We see that all cases with at least 

one match are significant at the 5% level. In this sense the two methods are consistent, 

classifying these patients as clonal and the remaining cases as independent. However, our 

modeled approach adds important insight beyond the use of individual statistical tests. While 

the individual tests have the advantage that they can be applied to individual patients without 

recourse to the analysis of a dataset of many patients, and only need specification of the 

marginal mutation probabilities of each the mutations observed, the test always leads to a p-

value of 1 for cases with no matches observed. By contrast, the random effects model 

provides individual diagnostic probabilities for every case, and provides probabilistic 

recognition of the possibility that the case might be clonal even if no matches are observed 

on the genes in the panel employed. As can be seen from Table 1, in this study these 

probabilities are relatively high, ranging from 0.32 to 0.38, due to both the high overall 

probability that a case is clonal (π̂=0.75), and the fact that several cases are diagnosed as 

clonal with a low frequency of matches, leading to a high estimate of the random effects 

variance σ̂ =1.47.

Finally, we acknowledge that each of the 22 cases analyzed involves a unique invasive lesion 

but in fact some tumor pairs actually come from the same case (indicated by the case 

numbers). For example in case #24 there were two distinct LCIS lesions, and we tested these 

separately for clonal relatedness with the same invasive lesion. The model is based on the 

implicit assumption that these pairs are independent.

4. Statistical Properties

Our data analysis in Section 3 was based on a relatively small sample size with a modest 

proportion of cases determined to be clonal. Further, since the model parameters, especially 

those defining the random effects distribution of clonality signals, are derived primarily from 

the subset of cases that are clonal, evaluation of the statistical properties of the method is 

essential, especially for datasets with small sample sizes.

Analyses of this type will inevitably involve large numbers of genetic loci, most of which 

will have a very small probability of experiencing a mutation in any given tumor, and a 

much smaller number of hot spot mutations with relatively large mutation probabilities. We 

simulated data using the framework of the breast cancer data in Section 3 to construct the 
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distribution of marginal mutation probabilities. These probabilities of mutation pi,i = 1, … 

G, were sampled with replacement from the set of observed mutations in the breast cancer 

study. We set G= 19000 mutational loci, representing in theory the set of distinct mutations 

that could occur. In reality there are billions of loci in the exome that could experience a 

mutation. The use of G = 19000 was chosen to produce a mean of 34 mutations per case, 

similar to the mean observed in our LCIS study. We varied the true values of the parameters, 

π, μ and σ and the sample size n. Each of 200 simulation runs was then generated as 

follows. For each case, we determined randomly with probability π whether or not the case 

was clonal. For each clonal case, we simulated its clonality signal ξj=1-exp(-φj), where φj is 

sampled from a log-normal distribution with parameters (μ, σ). Figure 2 displays the 

selected distributional scenarios used in our simulations. These scenarios were chosen to 

reflect settings where the typical signals produce few matches (scenarios 1 and 2), where the 

typical signals lead to mutations being predominantly matches (scenarios 4 and 5), and one 

scenario (3) where there is typically a more even distribution of matches and non-matches. 

For each distinct potential mutation i, we determined if a clonal or a private or no mutation 

was observed by sampling from trinomial probabilities (pA,pB,1 − pA − pB), where pA = P(i 
∈ Aj|ξj) and pB = P(i ∈ Bj|ξj) as defined in (1). If the case involved independent tumors then 

the trinomial sampling probabilities were replaced with pA = P(i ∈ Aj|ξj = 0) and pB = P(I ∈ 
Bj|ξj = 0). The resulting dataset was then analyzed using the method from Section 2 and the 

results summarized as described below.

In Table 2 we display results for three sample size settings: n=25, representing the 

approximate size of our breast cancer example, n=100 and n=1000. For each configuration, 

biases of the parameter estimates were calculated by subtracting the true parameter value 

from the mean of the parameter estimates from the 1000 simulations. We see that the clonal 

prevalence parameter π is estimated with essentially no bias in large sample sizes and very 

modest bias in small sample sizes, except for the extreme scenario 1 where somewhat larger 

biases are observed. The high number of small values for the signal ξj in this scenario makes 

it difficult for the model to distinguish between clonal cases with low signals and non-clonal 

cases with a null signal. The parameters of the random effects distribution of the clonality 

signals, μ and σ, are estimated with nearly no bias for large sample sizes, and with modest 

biases for medium and small sample sizes. These parameters are, however, not of intrinsic 

importance. What is important is their effect on the estimates of the predicted probabilities 

of clonal relatedness for each individual case.

The predicted probabilities are estimated using (3) while true probabilities were calculated 

using (3) with π and the true parameters for the distribution of ξj replacing the 

corresponding estimates. The prediction error is defined as the mean absolute difference 

between the two measures. Prediction errors computed during the simulations, using 100 

new cases that were not involved in the model estimation, are relatively small for small 

sample size and almost null for large sample sizes, except for scenario 1 where it can reach 

14% when n=25.

More extensive simulations were conducted to explore the extent to which the statistical 

properties are influenced by a lower number of mutations per case. We present analogous 

results when there are 10 mutations on average per tumor (Supplemental Table 1) and 5 
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mutations per tumor (Supplemental Table 2). These configurations are more typical of 

sequencing panels in which only important genes are selectively genotyped, as opposed to 

all genes as in our breast cancer example. They are also representative of other cancer types, 

such as liquid or pediatric cancers, for which the average number of mutations is lower 

(Vogelstein et al. 2013). As expected, the results show larger biases, especially when 

estimating π in the settings where the random effect density concentrates near zero as in 

scenario 1 and, to a lesser extent, scenario 2. Even in large samples, the model has difficulty 

distinguishing clonal from independent cases when the clonality signal is frequently low 

among clonal cases, since the probability distributions of matches will often be similar 

between clonal and independent cases in this setting.

We also studied alternative models for the random effects distribution, notably the beta 

model. However, although π was estimated typically with modest bias the estimates for the 

distribution parameters α and β were heavily biased (data not shown). To assess the 

robustness of the lognormal model to model misspecification we simulated data according to 

a Beta distribution and estimated the model assuming the lognormal distribution. Results are 

displayed in Table 3. The biases are substantially higher than when the models are aligned as 

in Table 1. However the biases are generally modest for π except when π is very large, and 

the prediction errors are modest, demonstrating that model mis-specification has limited 

adverse consequences on the key parameter estimates.

5. Discussion

In this work we aimed at assessing clonal relatedness based on comparisons of somatic 

mutational profiles of two tumors. We have framed the problem as one of differential 

diagnosis, rather than significance testing. The proposed method estimates three quantities 

of importance: the proportion of clonal cases in the population of interest, the distribution of 

the clonality signal, and individual probabilities of clonality for each case. This addresses 

the problem that the significance testing approach does not provide quantitative evidence in 

favor of the (null) hypothesis that the tumors are independent, regardless of the numbers of 

non-matching mutations observed (Ostrovnaya et al. 2015). We resolved this problem by 

modeling the data from the entire sample of cases using a random effects model with a 

marginal likelihood, estimating the proportion of cases that are clonal, and reframing the 

problem as one of diagnosis. In our illustrative example based on a relatively small sample 

of cases with LCIS paired with an invasive breast cancer in which exome sequencing was 

performed on all of the tumors we were able to successfully obtain estimates of all of the 

relevant probabilities. Our simulations demonstrate that the method has good properties even 

for relatively small sample sizes as in the example.

Our study of LCIS and invasive cancers addressed a theoretical question of interest to breast 

cancer specialists: is LCIS a precursor of invasive cancer or merely a marker of elevated 

risk? Clonality studies are clearly useful for addressing specific scientific questions of this 

nature. Moreover these methods are likely to have much broader clinical applicability as 

sequencing of tumors becomes more common practice in the clinic. Although formal testing 

for clonal relatedness is not yet commonly used in clinical practice, its potential value is 

clear. For example, in breast cancer it has been found that the patient's survival probability is 
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lower for patients with a locoregional recurrence compared to patients with a second 

primary cancer, emphasizing the importance of distinguishing local recurrences from 

ipsilateral second primaries (Witteveen et al. 2015). In this and numerous other clinical 

settings, determining whether two tumors are clonally related can have important clinical 

implications, since the presence of distinct, clonally related tumors represents metastasis and 

the consequent need for systemic therapy, while two independent tumors might both be 

effectively treated by local therapy, such as surgery, depending on the clinical context 

(Klevebring et al. 2015). Recent publications have demonstrated that pathologists' judgment 

can frequently be wrong, notably when diagnosing multiple lung tumors (Girard et al. 2009; 

Wang et al. 2009). Increasingly, cancer hospitals are introducing genetic tests to sequence 

tumors as a routine clinical tool (Wagle et al. 2012). The primary goal is to identify 

“actionable” mutations that could serve as targets for drugs specially designed to act against 

the identified mutations. The routine availability of information on mutations in such gene 

panels will inevitably provide data that can potentially be used for clonality testing when a 

new tumor is identified in the patient and there is doubt as to whether this represents an 

independent primary cancer or a recurrence of the initial tumor. However, gene panels for 

clinical use typically contain far fewer genes than the whole exome panel used in our study. 

As a result the numbers of observed mutations will necessarily be much smaller, and it is 

intuitive that there is a greater chance that shared mutations will not be observed in tumor 

pairs that are truly clonal.

The illustration of our method in the breast LCIS study is limited by a small sample size, 

resulting in imprecision in the parameter estimates. If these methods were to be employed 

ultimately in clinical practice, the parameter estimates would ideally be derived from a 

suitably large dataset and the diagnostic algorithm could use (3) with the estimates supplied.

Our proposed method makes a number of assumptions. First, we assume that the marginal 

mutation probabilities are known, when in fact they are estimated. This is a significant 

limitation, since it is common to observe mutations that have never previously been 

observed. We used a common sense estimator of n-1 in these situations, where n is the total 

number of genotyped cases observed to date in both our study and the TCGA resource. 

However, this probability can be quite influential, especially for cases with a single match. 

Finding the most appropriate strategy for assigning these probabilities is a topic for future 

research. Second, we assume that the order in which mutations occur is random, when in 

fact it is plausible that common mutations are more likely to occur earlier in tumor 

evolution. Third, uncertainty exists with respect to the accuracy of mutation calling. Further 

research is needed to explore the impact of these assumptions on the properties of the 

method. Our approach is conceptually similar to other mixture models that have been 

developed to account for an excess of zeros in count data, notably using Poisson regression 

(see for example Lam et al. 2006, Ma et al. 2009, and Wong and Lam 2013 for application in 

medical studies), although the model structure and estimation strategies we have used are 

novel in this context.

In summary, we have developed a practical statistical modeling approach to a complex 

problem involving the use of genomic data to diagnose tumor pairs as related (clonal) or 

independent. Our method involves a novel application of well known statistical strategies, 
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including random effects modeling and zero inflated distributions, applied to sparse data. 

Our simulations demonstrate that the method has good statistical properties in relatively 

large samples. In the small sample setting, although the parameters of the random effects 

distribution are estimated with bias, the method succeeds in estimating the key diagnostic 

parameters with only modest bias.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Schema of two tumors from the same clone versus two independent tumors.
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Figure 2. 
Different scenarios for the simulations.
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