
Functional Multiple Indicators, Multiple Causes Measurement 
Error Models

Carmen D. Tekwe1,*, Roger S. Zoh1, Fuller W. Bazer2, Guoyao Wu2, and Raymond J. 
Carroll3,4

1Department of Epidemiology and Biostatistics, Texas A&M University, College Station, Texas, 
U.S.A.

2Department of Animal Science, Texas A&M University, College Station, Texas, U.S.A.

3Department of Statistics, Texas A&M University, College Station, Texas, U.S.A.

4School of Mathematical Sciences, University of Technology, Broadway, Sydney, New South 
Wales 2007, Australia

Summary

Objective measures of oxygen consumption and carbon dioxide production by mammals are used 

to predict their energy expenditure. Since energy expenditure is not directly observable, it can be 

viewed as a latent construct with multiple physical indirect measures such as respiratory quotient, 

volumetric oxygen consumption, and volumetric carbon dioxide production. Metabolic rate is 

defined as the rate at which metabolism occurs in the body. Metabolic rate is also not directly 

observable. However, heat is produced as a result of metabolic processes within the body. 

Therefore, metabolic rate can be approximated by heat production plus some errors. While energy 

expenditure and metabolic rates are correlated, they are not equivalent. Energy expenditure results 

from physical function, while metabolism can occur within the body without the occurrence of 

physical activities. In this manuscript, we present a novel approach for studying the relationship 

between metabolic rate and indicators of energy expenditure. We do so by extending our previous 

work on MIMIC ME models to allow responses that are sparsely observed functional data, 

defining the sparse functional multiple indicators, multiple cause measurement error (FMIMIC 

ME) models. The mean curves in our proposed methodology are modeled using basis splines. A 

novel approach for estimating the variance of the classical measurement error based on functional 

principal components is presented. The model parameters are estimated using the EM algorithm 

and a discussion of the model’s identifiability is provided. We show that the defined model is not a 

trivial extension of longitudinal or functional data methods, due to the presence of the latent 

construct. Results from its application to data collected on Zucker diabetic fatty rats are provided. 

Simulation results investigating the properties of our approach are also presented.
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1. Background

Obesity results from a chronic imbalance between energy intake and energy expenditure. 

Objective measures of oxygen consumption and carbon dioxide production by mammals are 

used to predict their energy expenditure, which results from the basal metabolism, thermic 

effect of food, and physical activity (Hills et al., 2014). Energy expenditure can be viewed as 

a latent construct with multiple indicators including respiratory quotient (RQ), volumetric 

oxygen consumption (VO2), and volumetric carbon dioxide production (VCO2). A subject’s 

VO2 represents the amount of oxygen input needed by the body to perform its metabolic 

function. It measures the oxygen required to oxidize energy substrates such as glucose, 

carbohydrates, free fatty acids, and amino acids. While VCO2 is the output of metabolic 

processes, it measures the carbon dioxide production (CO2) from oxidation processes. RQ 

represents a quotient of CO2/VCO2. Even though the motivating example for the current 

manuscript is based on an energy expenditure study in animal models, interest also lies in 

assessing daily energy expenditure in humans as well, see (Passmore and Durnin, 1955; 

Ainslie et al., 2003; Leonard, 2010).

Energy is required to maintain life processes. Additionally, energy is neither created nor 

destroyed according to the first law of thermodynamics. Thus, in animals, energy is only 

converted from one form to another. Metabolism describes the process of converting food 

energy into biological energy used by the body to perform its functions. Metabolic rate is 

defined as the rate at which metabolism occurs. Additionally, the rate of metabolism in the 

body depends on activity level. For example, metabolic rate is higher among individuals who 

are more active when compared to sedentary subjects. Although metabolic rate is not 

directly observable, it is well known that heat is produced as an output of metabolism. Thus, 

it can easily be assumed that metabolic rate is approximated by heat production plus some 

unknown measurement error, introducing classical measurement error. Our current work 

focuses on assessing the relationship between metabolic rate and indicators of energy 

expenditure. While it is well known that energy expenditure and metabolic rates are 

correlated, the two constructs are not identical. Energy expenditure results primarily from 

the hydrolysis of adenosine triphosphate (ATP) and metabolic rate describes the rate at 

which metabolism occurs in the body. Some chemical processes within the body require 

energy in the form of ATP, guanosine triphosphate (GTP), or uridine triphosphate (UTP), 

while others do not. Our work is not the first to consider the relationship between metabolic 

rate and energy expenditure, see (Carpenter et al., 1995; Papamandjaris et al., 1998; 

Ricquier, 2005; Ouellet et al., 2012). For example, Carpenter et al. (1995) conducted a meta-

analysis evaluating the influence of body composition, resting metabolic rate on variation in 

total energy expenditure (Carpenter et al., 1995). Most of the literature mentioned in the 

meta-analyses focused on regression and correlation techniques. The resting metabolic rates 

included in the studies were predicted from the height, weight, and age based on equations 
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provided by the World Health Organization (1973). In this manuscript, we provide methods 

based on structural equation models and measurement error for an improved understanding 

of the relationship between metabolic rate and energy expenditure. In doing so, we 

recognize that metabolic rate is unobservable; however, heat production can reliably be used 

as its proxy measure. A better understanding of energy metabolism is expected to aid in the 

development of means to prevent metabolic and obesity-related diseases.

As a chronic syndrome, obesity is a risk factor for metabolic diseases (including type II 

diabetes) and cardiovascular diseases. Ovine interferon tau (IFNT) was discovered for its 

regulatory role in the reproductive cycle of sheep (Bazer and Johnson, 1991). We recently 

showed that oral administration of IFNT stimulates oxidation of energy substrates and 

reduces adiposity in Zucker diabetic fatty (ZDF) rats, animals genetically prone to obesity 

due to a deficiency in their leptin receptors. We also suggested that our finding may have 

broad implications for preventing and treating obesity-related diseases in mammals (Tekwe 

et al., 2013). In understanding how treatment with IFNT affects indicators of energy 

expenditure after adjusting for metabolic rate and energy intake, a variation of the multiple 

indicators, multiple causes measurement error (MIMIC ME) models can be applied. This 

article develops a methodology that allows simultaneous assessments of the impact of ovine 

IFNT (Bazer and Johnson, 1991) treatment, energy intake, and metabolic rate on multiple 

indicators of a latent construct, energy expenditure. Heat production, VO2, VCO2, and RQ 

are measured as curves and are best represented as sparsely observed functions of time. We 

extend our previous work on MIMIC ME models (Tekwe et al., 2014) to allow sparse 

functional outcomes in the presence of classical measurement error, defining the functional 

multiple indicators, multiple causes measurement error (FMIMIC ME) model.

The rest of the article is organized as follows: in Section 2, we define the functional MIMIC 

measurement error (FMIMIC ME) model and Section 3 briefly describes a likelihood-based 

estimation method to fit the model using the EM algorithm. We then apply the model to our 

motivating example in Section 4. The results of a simulation study investigating the merits of 

the proposed approach are given in Section 5. We conclude with some remarks in Section 6.

2. Functional MIMIC Measurement Error Models

2.1. The General Model

The Multiple Indicators, Multiple Causes Models (MIMIC) is a structural equation model 

with a single latent construct (Jöreskog and Goldberger, 1975; Posey et al., 2015) used to 

study underlying effects of an unobservable latent variable, L, on a set of outcomes or 

indicators. Additionally, the model can also be used to assess the validity of potential 

indicators used to define a latent construct. The model has been applied in various settings 

including the assessment of early tobacco experiences on current smoking status (Ríos-

Bedoya et al., 2009), to study behavioural and psychological symptoms of dementia (Proitsi 

et al., 2011), to study physical and cognitive function in aging research (Mast and 

Lichtenberg, 2000), in studies of customer equity management (Bruhn et al., 2008), to study 

home environmental factors on respiratory symptoms and asthma in Chinese children (Dong 

et al., 2014), to assess the impact of radiation exposure and dyslipidemia on physical 

indicators of dyslipidemia among atomic bomb survivors (Tekwe et al., 2014), and to study 
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the effects of ionizing radiation exposure on indicators of genetic damage among atomic 

bomb survivors (Tekwe et al., 2016). The MIMIC model extends confirmatory factor 

analysis and path models to allow covariates.

The classical MIMIC model assumes that the multiple causes, Xi, are measured without 

error, while all the outcome models are assumed to be of a linear form. However, there are 

times when the relationship between some of the outcome models and the underlying latent 

construct are best explained by curves rather than lines. Additionally, it is also not always 

feasible or possible to measure some of the causal variables directly, introducing potential 

measurement error on the surrogate measures (Fuller, 1987; Carroll et al., 2006). In our 

current setting, the functional data appear as sparsely observed curves over a given period, 

and we consider these curves are the units in the data analysis (Müller, 2005; Silverman and 

Ramsay, 2005).

Suppose that there are j = 1, …, J functional indicators, and i = 1, …, n subjects. Let Wi 

denote the measured version of a scalar Xi, and let Zi be additional covariates measured 

without error. Let Li be an unobserved latent construct that is a function of an unobserved 

variable Xi and some observed covariates Zi, see Figure 1. Finally, let Q(·) and R(·) be basis 

functions.

The functional MIMIC measurement error model (FMIMIC ME) for the ith individual at 

time t is

(1)

(2)

(3)

(4)

In the functional MIMIC ME model, the outcome variables Yij(t) are sparsely observed 

functional data. The Yij(t)’s are multiple indicators of Li obtained at time t and are best 

represented by curves. The εij(t) describe an error process and are assumed white noise with 

mean 0 and variance . Equation (1) represents the outcome equation, while equation (2) is 

the causal equation model, making up the MIMIC component of the model. The equation (3) 

is considered the measurement error component of the model. We make the following 

assumptions:
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1. The εij(t) are independent of one another and (Xi, Li, Zi, bij, Ui), with mean zero 

and variance .

2. The random effects bij = Normal(0, Λj) are mutually independent and are also 

independent of (ηi, Ui, Xi, νi, Zi). This means that the correlations among the 

functional responses Yij(·) for different j come from Xi and ηi, but this 

assumption is easily relaxed.

3. The random variable ηi has mean zero and for identifiability var(ηi) = 1. In 

addition, ηi is also independent of (Ui, Zi, Xi).

4. The measurement errors  and are also independent of (Zi, Xi, 

νi). As in all measurement error models, additional data are necessary in order to 

estimate , as in our example in Section 4.

5. The random variables  are also independent of Zi.

The identifiability of the model is discussed in Web Appendix D.

2.2. Reduced Form Equations

The reduced form equations are obtained by substituting Li in equation (2) into (1). The 

reduced form equation for the FMIMIC ME model is

(5)

where κ1j = β1j + β2jα1 denotes total effect of Xi while κ2j = γj + β2jα2 are the total effects 

of the error free covariates Zi. The likelihood used to obtain the estimated model parameters 

for the functional MIMIC ME model are based on the likelihood for the reduced form 

models. The effects of the underlying latent construct, Li are assessed through β2j. Finally, 

the direct effects of Xi on the responses are assessed through κ1j.

Remark 1—In terms of directed graphs, an interesting submodel of model (1) is

(6)

which says that the effect of (X, Z) on the responses is explained completely by their effect 

on L. We can investigate whether model (6) holds in the following manner. If (6) holds, then 

β1j = γj = 0. Thus, if α1 ≠ 0, this implies that κ2j/κ1j = α2/α1 is independent of j. Since (κ1j, 

κ2j) are estimable from the reduced form equation (5), we can either use model selection 

methods or test the null hypothesis is H0 : κ2j/κ1j = κ2j′/κ1j′ for all (j, j′). The only way that 

model (6) can fail to hold and the null hypothesis remains true is if there is a constant c1 and 

a vector c2 independent of (j) such that β1j = c1β2j and γ2j = c2β2j for all (j), a coincidence 

that would be remarkable.
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2.3. Connection to Mixed Effects Models

The FMIMIC ME model can be seen as a form of multivariate linear mixed effects models 

with a complicated error structure due to ηi. In addition to the random effects, the outcome 

models in equation (1) also include the latent construct, ηi. Thus, the presence of the latent 

construct makes this model different from trivial extensions of methods developed for 

longitudinal or functional data. To see this, suppose , where ηij is 

not independent across all j. The covariance matrix of ηij has a special form indicated as

(7)

The ηij’s are correlated across j with a highly structured covariance structure that does not 

allow standard mixed effects program to be used in its estimation. Additionally, the crucial 

part of the model is the estimation of β2j, the coefficient on the latent construct. Standard 

mixed effects programs are not currently able to estimate the effects of the latent construct 

on its multiple outcomes.

3. Estimation of the FMIMIC ME Model

3.1. Joint Distributions

To implement the EM-algorithm, we first compute the joint distribution of the observed data 

and the unobserved random effects given Zi. Define ij to be a matrix of ones of the 

appropriate dimension. The conditional means and covariance of the observed data given Zi 

are
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The remaining conditional covariates given Zi involving the latent variables are given as 

, cov(Yij, ηi|Zi) = β2j1ij, cov(Yij, bij|Zi) − RijΛj, cov(Yij, bik|Zi) = 

0, , cov(Xi, ηi|Zi) = 0, cov(Xi, bij|Zi) = 0, cov(Wi, ηi|

Zi) = 0, cov(Wi, bij|Zi) = 0, var(ηi|Zi) = 1, cov(ηi, bij|Zi) = 0, cov(bij|Zi) = Λj.

Order the missing data for the jth functional response for person i as 

 and write the observed data as . Then, 

given Zi, the joint covariance matrix of ( i, iobs) is Σ apportioned to have block diagonals 

Σ11 and Σ22 and off diagonals blocks Σ12 and . Thus, given Zi, ( i, iobs) = Normal(μi, 

Σ), where . Assuming normality of the random 

effects, this means that  and 

. Thus, for any matrix C1, and any matrix C2,

(8)

(9)

Also,

(10)

3.2. Complete Data Loglikelihood

From (3)–(4), the covariance matrix of (Wi, Xi) given Zi is Σwx, which has variances 

 and covariance . Let the collection of all parameters be denoted by Ω. Recall 

that there are i = 1, …, n subjects. Let Mij be the number of observed responses for subject i, 
outcome j, and let the times at which Yij(·) is observed be tijk for k = 1, …, Mij. Define 

AB(•) = ABAT.

Define 1ij to be the Mij × 1 vector of ones and define . Define Iij to be the identity 

matrix of size Mij. Write Yij = (Yij1, …, YijMij)
T and similarly, write Qij, Rij, and εij to be 
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the stacked versions of , Rj(tijk), and ε(tijk). As a preliminary to the EM-calculations, 

we will compute the joint distribution of (Yij, Xi, Wi, ηi, bij) given Zij. Then

The complete data loglikelihood is

Once the elements of Ω have been estimated, re-sampling approaches such as nonparametric 

bootstrap can be used to obtain the uncertainties around the estimated parameters, as well as 

their confidence intervals.

4. Application

4.1. The Data

Male ZDF rats were obtained from Charles River Laboratories at the age of 23 days and fed 

a Purina 5008 diet throughout the study. The Purina 5008 diet consists of 23.5% crude 

protein, 6.0% fat, 34.9% starch, 2.6% sucrose, 0.5% glucose plus fructose, 6.8% minerals, 

3.8% fiber and 17,364 kJ gross energy/kg (Fu et al., 2005). The animals were housed in a 

temperature- and humidity-controlled facility on a 12-hour light: 12-hour dark cycle. The 

study was approved by the Texas A&M University Animal Use and Care Committee (Fu et 

al., 2005; Tekwe et al., 2013).

The details of the experiment have been described elsewhere (Tekwe et al., 2013). But 

briefly, at 28 days of age, six rats were assigned randomly to receive either drinking water 

(distilled and deionized water) that delivered 0, 4, or 8 µg IFNT/kg body weight per day. 

Concentrations of IFNT in the drinking water were adjusted daily based on the volume of 

water consumed to provide the desired treatment dosages. The drinking water was changed 

every other day and the rats were studied over an eight-week period. At 12 weeks of age, 

each animal was placed in an Oxymas instrument (Columbus Instruments, Columbus, OH) 

for 24 hours to obtain measures of heat production used to approximate daily metabolic rate. 

The Oxymas instrument was also used to obtain measures of the indicators of energy 

expenditure data approximately every 5 to 10 minutes over 24 hours. Thus, all data collected 

on the indicators of energy expenditure and heat production were obtained once over a 24 
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hour period. The rats had free access to food and drinking water during the observational 

period and the following indicators of energy expenditure were obtained: volumetric O2 

consumption (L/h/kg BW) (VO2), volumetric CO2 production (L/h/kg BW) (VCO2), 

respiratory quotient (moles of CO2 production/moles of O2 consumption) (Tekwe et al., 

2013).

4.2. Model Application to Data

In our example, we have one underlying construct Li = energy expenditure, with several 

causal variables including body weight and food intake, which are all assumed to be 

measured without error. There are three treatment groups (control, low dose IFNT, high dose 

IFNT) that are also error-free covariates. Metabolic rate, Xi is a true covariate that is not 

directly observable and is assumed to be approximated by heat production, Wi, but with an 

error. Some of the indicators for metabolic rate include RQ, VCO2, and VO2. In this study, 

we assess the impact of IFNT treatment, body weight, energy expenditure on the outcome 

measures of metabolic rate. A question of interest is to determine how metabolic rate 

predicts indicators of energy expenditure.

In the model application, the function-valued data were obtained every 5–10 minutes and 

were averaged to obtain hourly measured values. There are six animals per treatment group, 

resulting in 18 animals total. See Figure 1 in the Supplementary materials for the graphical 

illustration of our example. We consider energy expenditure as a latent construct with 

multiple indicators, while the metabolic rate is not directly observable but is approximated 

by heat production plus an unknown measurement error. The FMIMIC ME model can be 

used to assess impacts of metabolic rate, and therapeutic measures designed to combat 

obesity such as IFNT on indicators of energy expenditure. Questions such as, does metabolic 

rate predict indicators of energy expenditure or can IFNT be considered a treatment option 

for increasing daily energy expenditure among animal models genetically prone to obesity 

can be answered with the current application.

4.3. Estimation of 

Additional data or information on Xi are needed to identify the model. In this section, we 

show that the measurement error in the FMIMIC ME model can be estimated using 

functional data analysis methods. We illustrate that the curves can be re-parameterized as 

smooth functions and methods from functional data analysis can be used to obtain the 

distribution of Xi. Therefore, we can identify the measurement error component of the 

model without having direct observations on Xi for subjects in the study.

In our example, there are systematic time trends in the measurement error model. 

Observations are obtained at equally spaced times t1, …, tK. For k = 1, …, K, the 

measurement error model in equation (3) is reformulated as

(11)
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(12)

The error terms ψi(tk) are independent and identically distributed with mean zero and 

variance  and are also independent of fi(·). There are a variety of principal component 

approaches to fitting model (11)–(12), example, the usual Karhunen–Loeve approach 

(Silverman and Ramsay, 2005) approach or the much simpler method of (Zhou et al., 2008).

We define Xi as the “truth” or the average of the functions, fi(·), for the ith individual, that is, 

. Our observed surrogate is

where Ui is independent of Xi, E(Ui) = 0, , and 

. In this case, σxu = 0.

A two-stage algorithm was used for the estimations. In the first stage, the fpca.mle function 

of the FPCA package in R was used to obtain an estimate of the variance of the 

measurement error term,  (Peng et al., 2011). Then, we used quadratic splines with four 

basis functions to fit the nonlinear component of the mean function. In the application data, 

we used BIC to select the number of basis functions, with the number of basis ranging from 

3 to 9. The BIC values were compared, and they ranged from 204.18 for four basis functions 

to 880.94 for nine basis functions. Therefore, the model with four basis functions was 

selected. By choosing the number of knots/basis functions through criteria such as the BIC, 

spline regression models can be used without penalties (Carroll and Ruppert, 2006; Xue and 

Yang, 2006). In the current manuscript, we use unpenalized spline regression while the 

number of basis functions were chosen using BIC.

The second stage involves using the EM algorithm to obtain maximum likelihood estimates 

of Ω following estimation  as  from stage 1. Parametric bootstrap based on the EM 

parameters estimates was used to estimate uncertainties associated with each estimated 

parameter.

Recall that since , the estimated value for  is obtained by subtracting 

 from the sample variance of the Wi.

4.4. Results

The plots of each outcome against the times of observation in Figure 2 illustrate the 

nonlinearity of the data. Additionally, we see that the use of quadratic splines with four basis 

functions adequately captures the curvilinear pattern observed for the outcomes over time. 

To verify if models that allow the modeling of time trends are needed, we first fit least 

squares based fixed effects approaches that solely adjust for error free covariates. The least 
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squares based residuals were subsequently plotted against time for each outcome. The 

diagnostic plots also indicated that the use of least squares based methods does not account 

for time trends for all the outcome models (see Web Figure S1 of Web Appendix A). Thus, 

confirming that using fixed effects models do not provide adequate model fit to the data.

Table 1 provides a summary of the results from the model application. Based on our 

analyses, no statistical differences were found between the low dose IFNT treatment group 

when compared to the control group for VO2 based on a 95% confidence interval (−0.22, 

0.52). However, a marginal significance was observed between the high dose IFNT group 

when compared to the control (−0.60, 0.03). The body weight of the animals had a 

statistically significant impact on VO2, while their energy intakes per kg body weight did 

not. Energy expenditure was not found to be statistically significant on the volume of 

oxygen consumption after adjusting for the error free covariates and metabolic rate. This 

finding can be potentially due to the limited number of animals included in the study, see 

Table 1 for details.

Body weight was also found to have a significant impact on the production of carbon 

dioxide, VCO2 (−0.44, −0.02), while no other statistically significance was observed for the 

error free covariates. Metabolic rate was also found to have a statistically significant impact 

on VCO2 (0.24, 0.55).

Similarly, for RQ, most of the error free covariates were not statistically significant. 

However, a significant difference was observed between the low dose IFNT treatment group 

when compared to the control treatment (p = 0.004). RQ was also not found to be an 

indicator of energy expenditure based on this data (−0.10, −0.17). However, metabolic rate 

was found to have a statistically significant impact on RQ after adjusting for the error free 

covariates (0.18, 0.53).

Plots of the sample variance functions and model-based variance functions of the residuals 

from the FMIMIC ME application are provided in Web Figure S2. These plots show the 

heteroscedasticity of the variance functions over time. There appears to be more variability 

at the beginning as well as towards the ends of the periods of observations for VCO2 and 

VO2, while a mild increasing variability is observed for RQ based on the sample variance. 

Observed patterns of the model-based variance functions for both VCO2 and VO2 are also 

similar, while the variability associated with RQ is over a smaller range. Heat maps for the 

correlation matrices were also obtained for the residuals. The matrices of the residuals from 

the FMIMIC ME application indicate that the residuals are not independent over time and 

observations closest in time are more correlated (plot not shown).

Plots of residuals from least squares fit to the data illustrate that the least squares fits do not 

account for the time trends in the data. On the other hand, plots of the residuals from the 

application show the adequacy of the FMIMIC ME model in accounting for the time trends 

(see Web Figures S3 and S4). The plots confirm the dramatically improved fit of the 

FMIMIC ME application when compared to least squares based methods.
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4.5. Impact of Measurement Error in Model Application

In our application, , and . The reliability ratio in this 

example was λ = 0.75, indicating that the presence of measurement error, attenuates the 

impact of the imprecisely measured causal variable, metabolic rate by 25%. Thus, failure to 

account for measurement error in this setting underestimates the impact of the imprecisely 

measured covariate. This under-estimation is also indicated in Table 1. In the table, βûn 

represents the unadjusted parameter estimates. We find that the unadjusted coefficients on 

metabolic rate were all under-estimated for the three outcomes considered.

5. Simulation Study

In this section, we assess the performance of the FMIMIC ME model and its sensitivity to 

misspecification of . We generated 100 independent data sets with n = 30 subjects each 

with three treatment groups. We allowed the time for all subjects to be equidistant and also 

allowed all subjects to have the same number of measurements, that is, 23. The generated 

data were based on the model fit parameters described in Section 4. The error-free covariates 

Zi were also generated from their sampling distributions based on the motivating example.

The impact of adjusting for  on the error free covariates depends on the error-free 

covariate and the outcome model. Since metabolic rate (X) is the imprecisely measured true 

covariate, our interest lies in assessing the failure of accounting for measurement error on its 

relationship with the three outcomes. In general, we found that failing to account for the 

measurement error associated with metabolic rate tended to under-estimate its coefficients in 

all the three outcome models (see estimated  on X in Web Table S1). Therefore, the 

impact of measurement error on the coefficients on metabolic rate is to attenuate the 

estimated coefficients towards the null. On the other hand, we found that the coefficients on 

energy expenditure (η) were generally over-estimated when we failed to account for 

measurement error.

The simulated data were based on . Sensitivity studies were performed based on the 

simulated data with choices of . Based on the sensitivity 

analyses (see Web Table S1 of Web Appendix C), we found that in general, the impact of 

misspecifying the variance of the classical measurement error on error-free covariates 

depended on the outcome model as well as the error-free covariate. However, assuming 

values of  lesser than its true value tended to under-estimate the coefficients on the 

imprecisely measured covariates; while it led to over-estimating the coefficient on η. On the 

other hand, assuming higher values for  tended to over-estimate the coefficient on X 
(metabolic rate), while under-estimating the coefficient on η = energy expenditure.

5.1. Performance Assessment: Estimating 

In addition to the sensitivity analysis, we also conducted a simulation study to assess the 

ability of our proposed method to accurately estimate the variance of the measurement error. 

Rather than performing the estimation in two stages, where  is first estimated and assumed 
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to be fixed in the second stage, we estimated the variance as part of the EM estimation steps. 

To achieve this, we generated 200 data sets using the estimated parameters from the reduced 

form model (see Table 1) as the true parameters with . The simulation results 

indicated that the methods performed adequately well in estimating the measurement error 

variance closer to the truth and the coefficients on both β2 and κ1 in all the outcome models. 

Specifically, the estimated measurement error variance was 0.27 with a 95% confidence 

interval of (0.24, 0.30). The estimated values and 95% confidence intervals for β2, the 

coefficient on η, in the outcome models were −0.16(−0.25, −0.04), −0.11(−0.23, −0.002), 

0.07(−0.04, 0.17), respectively. Finally, values for  and their corresponding 95% 

confidence intervals were 0.33(0.19, 0.46), 0.53(0.36, 0.69), 0.43(0.29, 0.57), respectively. 

All the confidence intervals contained the true values. Simulation results for the error-free 

coefficients also indicated that the proposed methods performed adequately well in their 

estimations.

6. Conclusion

We extended the linear MIMIC ME model to allow for sparse functional outcomes, defining 

the FMIMIC ME model. A novel approach for using heat production as a proxy measure for 

true metabolic rate through the use of B-splines was also provided. EM algorithm was used 

for estimation. The FMIMIC ME model can be used to assess impacts of both error free and 

imprecisely measured true function-valued covariates on sparse function-valued physical 

indicators of a latent construct. The model is motivated by an obesity study assessing the 

impact of IFNT on three indicators of energy expenditure, namely VO2, VCO2, and RQ. We 

found statistically significant relationships between metabolic rate and the multiple 

indicators for activity energy expenditure. Overall, there was not enough evidence to 

indicate that the use of IFNT modifies the predictors of energy expenditure. In this 

manuscript, we successfully applied the proposed model to determine if metabolic rate is a 

predictor of the indicators of energy expenditure. However, we did not have enough 

evidence to conclude that INFT treatment influenced the indicators of energy expenditure 

among the animals due to the small sample size of the motivating data. Additionally, we 

found that failure to account for measurement error associated with the imprecisely 

measured true covariate attenuated its effects towards the null while inflating the effects of 

the latent construct on its multiple outcomes.

The novelty of our current model is the extension of the classical MIMIC model to allow 

sparsely observed functional outcomes. Additionally, the use of methods from functional 

data analysis to estimate the variance of the classical measurement error in the structural 

equation setting is also novel.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
The model when J = 3. Given Z = vector of error free covariates, X = the covariate measured 

with error, and L = the underlying latent construct, the outcomes Yj(t) are independent.
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Figure 2. 
Plots of the outcome models against time illustrating the nonlinear nature of the data as well 

as the trends across time.
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