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Genome-wide identification of inter-individually variable

DNA methylation sites improves the efficacy of epigenetic
association studies

Tsuyoshi Hachiya™?, Ryohei Furukawa @', Yuh Shiwa'?, Hideki Ohmomo @', Kanako Ono', Fumiki Katsuoka®, Masao Nagasaki®,
Jun Yasuda®, Nobuo Fuse®, Kengo Kinoshita®*, Masayuki Yamamoto®>, Kozo Tanno®’, Mamoru Satoh'>%°, Ryujin Endo®'%"",
Makoto Sasaki'?'3, Kiyomi Sakata®’, Seiichiro Kobayashi'?, Kuniaki Ogasawara'>'%, Jiro Hitomi'>'*, Kenji Sobue'? and

Atsushi Shimizu'

Epigenome-wide association studies, which searches for blood-based DNA methylation signatures associated with environmental
exposures and/or disease susceptibilities, is a promising approach to a better understanding of the molecular aetiology of common
diseases. To carry out large-scale epigenome-wide association studies while avoiding false negative detection, an efficient strategy
to determine target CpG sites for microarray-based or sequencing-based DNA methylation profiling is essentially needed. Here, we
propose and validate a hypothesis that a strategy focusing on CpG sites with high DNA methylation level variability may attain an
improved efficacy. Through whole-genome bisulfite sequencing of purified blood cells collected from > 100 apparently healthy
subjects, we identified ~2.0 million inter-individually variable CpG sites as potential targets. The efficacy of our strategy was
estimated to be 3.7-fold higher than that of the most frequently used strategy. Our catalogue of inter-individually variable CpG sites
will accelerate the discovery of clinically relevant DNA methylation biomarkers in future epigenome-wide association studies.
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Emerging evidence shows that epigenetic signatures in blood cells
are influenced by genetic variants, are altered by environmental
exposures, and are linked to diseases susceptibilities.'™ Accord-
ingly, searching for epigenetic signatures associated with expo-
sures and diseases is a promising approach to a better
understanding of the molecular aetiology of common diseases,
which are attributable to both genetic and environmental
factors.> © From this perspective, locus-specific DNA methylation
(DNAm) signatures in blood cells have been intensively associated
with various exposures, intermediate phenotypes, and diseases,
including tobacco smoking,”” ® arsenic exposure,” blood pressure,*
body mass index (BMI),'>"'? immunoglobulin E'® type 2
diabetes,'*'® rheumatoid arthritis,? lung cancer'” and schizo-
phrenia,'® through epigenome-wide association studies (EWASs).

Prospective studies revealed that DNAm signatures of pre-disease
subjects are distinguishable from those of healthy subjects and
therefore, are useful for identifying persons at high risk.'” '* 7 In
addition, we and others have proven DNAm to have desirable
biomarker features, i.e, high measurement accuracy,'' high
chemical stability during sample transportation,”> and high
biological stability against frequent immunological stimuli?®
Hence, locus-specific DNAm signatures are becoming a new
fascinating tool for biomarker discovery." > 24

Currently, in the discovery step of almost all EWASs, the lllumina
HumanMethylation27%> or HumanMethylation450 (HM450)'® 2¢
microarray is used to profile DNAm levels of 27 thousand or 480
thousand CpG sites, respectively.””'® As the human reference
genome (hg19) harbours 26.8 million autosomal CpGs, only ~2%
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or less of human autosomal CpG sites are probed by these
microarrays. Recently, the MethylationEPIC microarray?® (lllumina)
has become available, which allows measuring the DNAm levels of
850 thousand CpGs (~3%). For higher CpG coverage, sequencing-
based profiling methods are available. In reduced representation
bisulfite sequencing (RRBS),>” genomic DNA is digested with the
methylation-insensitive restriction enzyme Mspl followed by
fragment size selection, adaptor ligation, bisulfite treatment, and
massively parallel sequencing. Typically, ~10% of the CpGs in the
human genome are interrogated by RRBS.?® Methyl-capture
sequencing systems, such as SureSelect Human Methyl-Seq®
(Agilent Technologies) and SeqCap Epi CpGiant®° (Roche Nimble-
Gen), use oligonucleotide probes designed to hybridise target
regions of interest. The SureSelect panel covers ~3.7 million CpG
sites (~13%)?® while CpGiant measures ~5.5 million CpGs
(~20%).°® With ~90% coverage of human CpGs, whole-genome
bisulfite sequencing (WGBS) provides the highest coverage
among the currently available DNAm profiling technologies.®' 3
However, because of its high cost, it is presently infeasible to apply
WGBS to large-scale EWASs, which require DNAm profiling of
hundreds or thousands of subjects.”” & 1012 14716, 34 Tharefore,
microarrays and targeted bisulfite sequencing are currently
practicable for large-scale EWASs and thus, effective strategies
to select target regions are essentially needed to improve the
efficacy of epigenetic association studies.

Microarray and methyl-capture sequencing probes have been
designed for multiple purposes, including studies on cancer
tissues,®> studies on the cell-type specificity of epigenetic
signatures,®® and blood-based EWASs.”™'® All probe designs
targeted CpG island (CGl) and promoter regions'® ?° as these
regions are involved in epigenetic regulation of gene expres-
sion.3” 3% RRBS is also likely to measure CpGs in CGls and
promoters because the Mspl cleavage site (CCGG) is over-
represented in those regions.?” As previous studies have shown
that DNAm levels in CGl shores vary among tumour tissue types,”
CGl shores have been included as probe-set targets. Furthermore,
functional DNA elements, such as DNase I|-hypersensitive sites
(DHSs), transcription factor binding sites (TFBSs), and active
histone modifications, have been genome widely mapped.?”" 4°
Accordingly, CpG sites located at those functional DNA elements
have been included in probe sets for DNAm profiling.'® ¢ It is
noteworthy that evidence for target CpG sites was derived mainly
from studies on the cell-type specificity of epigenetic signatures
and studies on cancer tissues rather than from studies on inter-
individual differences in epigenetic signatures of blood cells. Thus,
the multipurpose designs of the probe sets for DNAm profiling
may not be optimal for blood-based EWASs. Indeed, previous
epigenetic association studies have revealed that DNAm levels
measured with microarrays are invariable for most CpG sites in the
study populations.*’” #? As invariable DNAm signatures cannot be
associated with exposures, intermediate phenotypes, or diseases,
current designs of probe sets are inefficient for blood-based
EWASs.

We considered that a strategy focusing on inter-individually
variable CpG sites may improve the efficacy of epigenetic
association studies. Hence, we hypothesised that common DNAm
variations (CDMV) are more likely to be associated with environ-
mental exposures or biomedical traits than rare DNAm variations.
To test this hypothesis, which we referred to as ‘CDMV hypothesis’,
we genome widely identified inter-individually variable CpG sites
and evaluated the efficacy of a strategy to select target CpG sites
based on the CDMV hypothesis (referred to as ‘CDMV strategy’).
Through large-scale sequencing, comprehensive DNAm profiling,
and statistical data analyses, we showed the validity of the CDMV
hypothesis and provided proof-of-concept of the improved
efficacy of the CDMV strategy.
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RESULTS

Study design

We aimed to genome widely identify inter-individually variable
CpG sites, validate the CDMV hypothesis, and evaluate the efficacy
of the CDMV strategy. To these ends, we designed our study in
terms of study population, target blood cells, DNAm profiling
method and statistical analyses, as follows.

Study population. To minimise potential selection bias, we used a
population-based design, enrolling apparently healthy adults from
residents of the lwate prefecture, Japan.

Target blood cells. DNAm variations include differences between
distinct cell types, inter-individual variations within a cell type, and
cell-to-cell variations within a cell type and individual (Fig. 1a).
Because we aimed to identify inter-individually variable CpG sites,
we focused on inter-individual DNAm variations within a cell type.
Therefore, we analysed purified blood cells rather than whole
blood or peripheral blood mononuclear cells (PBMCs). Concretely,
we selected classical CD147*/CD16~ monocytes and CD4" T cells.
Human monocytes consist of three subsets, which can be
distinguished by surface expression of CD14 and CD16.** Classical
monocytes, the major subset constituting 5-10% of leucocytes,*
are a homogeneous and therefore desirable population for
analysing inter-individual DNAm variation within a cell type. In
addition, monocytes play a key role in the innate immune system
including pathogen surveillance, phagocytosis, and antigen
presentation.** Monocyte-specific DNAm signatures have been
associated with type 1 diabetes*® and smoking exposure.*® CD4*
T cells make up a large fraction of lymphocytes (27-58%)*” and
play a central role in the adaptive immune system, namely in
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Fig. 1 DNAm variations in purified blood cells. a Schematic

representation of sources of DNAm variation in blood cells. b
Definition of reference interval as an indicator of inter-individual
DNAm variability. The reference interval for a CpG site was defined
as the difference between the 95th and 5th percentiles of DNAm
levels across individuals
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antigen recognition, activation of other immune cells, and
immune response regulation.*® Contrary to classical monocytes,
they are composed of several subsets, including naive CD4* T
(ThO), T helper 1, T helper 2 (Th2) and regulatory T cells.*
Accordingly, inter-individual DNAm variation observed in CD4*
T cells includes subset-specific DNAm variation. Regardless of the
heterogeneity, we included CD4* T cells in our study because they
were used in a number of EWASs that reported locus-specific

DNAm signatures in these cells associated with BMI,'? waist
circumstance,’? and blood lipid level.>°
DNAm profiling method. To genome-widely identify inter-

individually variable CpG sites, we carried out WGBS for
comprehensive DNAm profiling. In addition to WGBS, we used
whole-genome sequencing (WGS) and RNA sequencing (RNA-Seq)
for the profiling of genomic variants and gene expressions,
respectively.

Statistical analyses. We estimated the DNAm variability for each
CpG site by means of the reference interval, which is here defined
as the difference between the 95th and 5th percentiles of the
DNAm levels across individuals (Fig. 1b). To test the CDMV
hypothesis and evaluate the efficacy of the CDMV strategy, we
defined the biomarker likelihood for a group of CpG sites as the
number of CpGs in the group that were associated with any
environmental exposures and/or biomedical traits in previous
EWASs divided by the number of total CpGs in the group. To test
the CDMV hypothesis, we compared the biomarker likelihood
between narrow and broad reference interval groups. To evaluate
the efficacy of the CDMV strategy, we selected CpG sites
exhibiting broad reference intervals and estimated the degree of
improvement in efficacy by comparing the biomarker likelihood
for CpGs selected by the CDMV strategy with that for CpGs
targeted by existing probe sets.

Comprehensive DNAm profiling by WGBS

In total, 109 apparently healthy subjects between the ages of 34
and 74 years from residents of the lwate prefecture, Japan, were
enrolled (Table 1; Supplementary Table 1). Classical CD14**/CD16~
monocytes and CD4" T cells were isolated by fluorescence-
activated cell sorting (FACS) with high purities (Supplementary
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Table 2). We subjected 102 samples to WGBS-based profiling of
monocytes and CD4™ T cells. Both cell types were obtained from
the same individual in 95 instances. The mean age of the subjects
donating monocytes was 58.5 years and that of CD4* T donors
was 58.0 years. The number of males among monocyte and CD4*
T donors was 48 (47.1%) and 49 (48.0%), respectively.

In total, 159.1 billion reads and 19.9 tera base pairs of sequences
were generated by WGBS (Table 1; Supplementary Tables 3 and 4).
The average raw read depth was 31.1 for monocytes and 31.0 for
CD4* T cells, satisfying read depth recommendations for WGBS
analysis.”" Bioinformatics processing and quality-control filtering
resulted in DNAm profiles consisting of 23.9 million autosomal
CpGs for monocytes and 24.0 million autosomal CpGs for
CD4" T cells. We only included CpGs that occurred in the human
reference sequence. To minimise the effects of genetic variants on
reference interval estimates, for each CpG site in the reference,
when genetic variants altered the CpG sequence for part of the
subjects, the DNAm level for the subjects was considered a
missing value. The DNAm profiles comprehensively covered ~90%
of autosomal CpGs in the human genome. Summary statistics for
WGS and RNA-Seq data are presented in Supplementary Tables 5
and 6. WGS data were available for 105 out of the 109 participants.

Based on the DNAm profiles of ~24 million CpGs, the average
DNAm level was 80.4% for monocytes and 79.0% for CD4™ T cells.
Principal component (PC) analysis using the DNAm profiles of the
~24 million CpGs showed that monocytes and CD4" T cells were
evidently segregated by PC1 (Fig. 2). Compared to CD4" T cells,
monocytes were densely clustered, both in PC1 and PC2. The
wider distribution of CD4* T cells was attributable to the variation
in the composition of T cell subsets (Fig. 2). These results
suggested that DNAm variation between the two cell types and
that attributable to T cell subsets was larger than inter-individual
DNAm variation within a cell type, consistent with a previous
study.> This finding highlighted the importance of using purified
blood cells for distinguishing inter-individual DNAm variation from
cell type-specific DNAm differences.

Validity of the CDMV hypothesis: inter-individually variable CpG
sites tended to have been associated in previous EWASs

We estimated reference intervals for each of the ~24 million CpG
sites that passed our quality filter. The distributions of the

Number of reads after quality-control filtering®
Number of bases after quality-control filtering®

Table 1. Statistics for WGBS-based DNAm profiles
Monocytes (N=102) CD4" T cells (N=102)
Subjects Males, N (%) 48 (47.1) 49 (48.0)
Age, year® 585+ 11.0 580+ 114
Sequencing statistics Number of raw reads® 780,709,034 + 45,934,514 779,212,752 + 40,833,955
Number of raw bases® 97,588,629,235 + 5,741,814,291 97,401,593,968 =+ 5,104,244,342
Raw depth? 31.1+1.8 31.0+1.6

Depth after quality-control filtering® 151 +1.1 16.7 £0.8

CpG statistics Number of autosomal CpGs in the human genome 26,752,702 26,752,702
Number of autosomal CpGs covered by at least 1 read 24,932,694 + 163,384 24,939,224 + 121,488
Percentage of autosomal CpGs covered by at least 1 read 93.2+0.6 93.2+05
Number of autosomal CpGs after depth filtering 23,404,723 + 362,243 23,584,230 + 238,187
Percentage of autosomal CpGs after depth filtering 875+14 88.2+09
Number of autosomal CpGs with a call rate of >50% 23,941,843 24,037,541
Percentage of autosomal CpGs with a call rate of >50%  89.5 89.9

624,432,868 + 38,766,158 667,934,331 + 33,002,407
47,245,324,384 + 3,327,997,912  52,472,000,722 + 2,376,329,508

@ Average + standard deviation
WGBS whole-genome bisulfite sequencing
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Fig. 2 PC analysis of comprehensive DNAm profiles. The x-axis and
y-axis represent the first and second PC, respectively. Monocytes are
indicated in red, while CD4" T cells are indicated with a colour
gradient according to the median DNAm level of GATA3 binding
sites, ranging from low (purple) to high (green). GATA3 is involved in
the specification of naive CD4" T cells to Th2 cells and therefore, the
median DNAm level of GATA3 binding sites is expectedly negatively
correlated with the proportion of Th2 cells

reference intervals were unimodal, peaking at ~11% for both
monocytes and CD4* T cells (Fig. 3a, c).

To validate the CDMV hypothesis, we systematically surveyed
published EWASs that used the HM450 microarray in the discovery
step and validated candidate CpG sites in independent samples. In
total, 269 CpG sites were reported from 11 EWASs on tobacco
smoking,” & obesity,'®"? type 2 diabetes,'*'® lipid levels,>® >3 and
schizophrenia'® (Supplementary Tables 7 and 8). Almost all
(99.3%) previously reported CpG sites had been identified from
whole blood samples and others had been derived from purified
CD4™ T cells. A majority (83.6%) of CpG sites had been associated
in case-control studies and others had been identified in
population-based studies. Almost all (99.3%) CpG sites had been
discovered in EWASs of Caucasians or African Americans and
others had been derived from EWASs of Indian Asians.

In monocytes, compared to the background reference interval
distributions for the CpG sites probed by HM450, the CpG sites
associated in previous EWASs clearly exhibited larger reference
intervals (Fig. 3a). The median reference interval for the back-
ground CpG sites was 11.1%, whereas the median reference
interval for the associated CpG sites was 26.5%. The biomarker
likelihood increased with broadening of the reference interval of
the CpG site (Fig. 3b). Compared to the average likelihood, the
CpGs in the narrowest reference interval decile had a 9.1-fold
lower likelihood. The CpGs in the broadest reference interval
decile had a 2.8-fold higher likelihood. The odds ratio (OR)
exceeded 2.0 at the 2 broadest deciles.

In CD4" T cells too, the CpG sites having broad reference
intervals tended to have been associated in previous EWASs
(Fig. 3c). The OR for the narrowest decile was 0.15 and that for the
broadest decile was 1.7. Compared to monocytes, the OR for the
broadest decile in CD4* T cells was relatively small. As the
distribution of the reference intervals for associated CpG sites was
narrower in CD4" T cells (median, 21.0%) than in monocytes
(median, 26.5%) (Fig. 3¢, d), the difference in OR between the two
cell types may arise from cell-specificity of epigenetic signals
associated with environmental exposures or biomedical traits. In
addition, the background distribution of reference intervals in
CD4* T cells (median, 12.5%) was slightly broader than that
in monocytes (median, 11.1%). Variations in T cell-subset
composition may have inflated the background reference interval
levels. Thus, the difference in cell homogeneity between the two
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cell types may contribute to the difference in OR for the broadest
decile.

These results clearly demonstrated the validity of the CDMV
hypothesis. Invariable CpG sites were unlikely to have been
associated in previous EWASs, whereas inter-individually variable
CpG sites tended to have been previously associated.

Regional analyses of DNAm variability surrounding established
DNAm biomarkers

To observe reference intervals surrounding established DNAm
biomarkers, we focused on 2 loci harbouring well-established
DNAm biomarkers for tobacco smoking: cg05575921” & within
the aryl-hydrocarbon receptor repressor (AHRR) gene and
€g03636183” & within the thrombin receptor-like 3 (F2RL3) gene.
These two biomarkers are evidently demethylated in current
smokers when compared with never smokers.”” & A prospective
study reported that they were associated with lung cancer risk
even after adjustment for smoking status,'”” implying that
epigenetic regulation at these sites may mediate the causal
relationship between tobacco smoking and lung cancer. In our
DNAm profiles, the associations between the DNAm biomarkers
and smoking status were cell type-specific. The associations were
significant in monocytes but not in CD4" T cells (Supplementary
Table 9). Accordingly, we focused on monocytes for subsequent
analyses.

In the AHRR locus, the cg05575921 biomarker was located in a
CGl shore (Fig. 4a). Two lineage-commitment transcription factors
(TFs), PU.1 and PAX5, were found to bind to the CGl. In the binding
site, all CpG sites were nearly perfectly demethylated in both
current and never smokers, and the reference intervals for the
CpG sites were narrow (<20%). The cg05575921 biomarker was
located at an intermediately methylated region flanking the TFBS.
The biomarker and its surrounding CpG sites exhibited broad
reference intervals (>30%) and were associated with both the
AHRR expression level and smoking status (Fig. 4a; Supplementary
Table 9). Genetic variants in this locus were neither associated
with the ¢g05575921 DNAm level nor with smoking status
(Supplementary Table 10).

In the F2RL3 locus, the cg03636183 biomarker was also located
in a CGI shore and was flanked by PU.1 and PAX5 binding sites
(Fig. 4b). The cg03636183 biomarker and its surrounding CpG sites
were intermediately methylated and exhibited broad reference
intervals (>30%). DNAm levels at cg03636183 and its surrounding
CpG sites were associated with smoking status (Fig. 4b; Supple-
mentary Table 9). Consistent with a previous study,'” they were
not associated with the F2RL3 expression level, as this gene is not
expressed in blood cells (Supplementary Table 9). Genetic variants
in this locus were not associated with the cg03636183 DNAm level
or smoking status (Supplementary Table 11).

The fact that the reference intervals surrounding two estab-
lished DNAm biomarkers were broad (>30%) confirmed the CDMV
hypothesis. In addition, these findings suggested that intermedi-
ately methylated regions tend to exhibit broad reference intervals
and that the presence of regulatory features, such as CGl shores
and TFBS flanking regions, relates to the broadness of reference
intervals.

DNAm levels of intermediately methylated CpG sites show inter-
individual variability

To test whether intermediately methylated regions indeed
associate with broad reference intervals, we stratified the CpG
sites by their median DNAm level. Median DNAm levels of <20%
and >80% were categorized as hypomethyalation and hyper-
methylation, respectively, while levels of 20-80% were considered
intermediate methylation. Then, the relationship between DNAm
status and reference intervals was investigated based on our
comprehensive DNAm profiles covering ~24 million CpG sites.

Published in partnership with the Center of Excellence in Genomic Medicine Research
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In monocytes, 80.1% of CpG sites were hypermethylated, 11.3%
were hypomethylated, and 8.6% were intermediately methylated
(Fig. 5a). Large proportions of hypermethylated and hypomethy-
lated CpG sites exhibited narrow reference intervals. The median
reference interval for hypomethylated CpGs was 7.1% and that for
hypermethylated CpGs was 14.3% (Fig. 5b). Conversely, inter-
mediately methylated CpG sites showed broader reference
intervals, with a median of 42.0%. By defining commonly variable
CpG sites as those with reference intervals >30%, 15.4% of CpG
sites were commonly variable in monocytes (Fig. 5¢). A majority
(88.8%) of intermediately methylated CpG sites were commonly
variable, whereas only 7.0% of hypomethylated and 8.7% of
hypermethylated CpG sites were commonly variable (Fig. 5d).
Compared to hypomethylated sites, intermediately methylated
CpG sites showed a 105.0-fold larger fraction of commonly
variable CpG sites (Fig. 5e).

In CD4" T cells, similar results were obtained (Fig. 5f-j).
Reference intervals for intermediately methylated CpG sites
(median, 42.7%) were much broader than those for hypomethy-
lated (7.7%) and hypermethylated (15.0%) CpG sites. Intermedi-
ately methylated CpG sites had 119.9 times larger probability to
be commonly variable than hypomethylated CpG sites.

These results strongly suggested that intermediately methy-
lated CpG sites exhibit broad reference intervals. No remarkable
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differences in this regard were observed between the two cell
types.

DNAm signatures at regulatory elements do not show inter-
individual variability

We investigated the relationship between genomic regulatory
annotations and the broadness of reference intervals. Genomic
annotations for promoters, exons and introns were retrieved from
the Human GENCODE Gene Set (release 19).°* Annotations for CGI
and repetitive regions were obtained from the UCSC genome
browser.>> Genomic intervals for binding sites of 161 TFs, DHSs
and 3 types of histone marks—histone H3 acetyl Lys27 (H3K27ac),

H3 trimethyl Lys4 (H3K4me3) and H3 monomethyl Lys4
(H3K4me1)—were downloaded from the UCSC ENCODE web-
site 37 3°

In monocytes, regulatory elements, such as promoters (median
reference interval, 10.5%), CGls (6.4%), CGI shores (12.8%), TFBSs
(12.5%), DHSs (13.0%), histone marks for active enhancers
(H3K27ac; 6.9%), and histone marks for active promoters
(H3K4me3; 6.2%), exhibited narrower reference intervals than
the background reference interval distribution of ~24 million
CpGs (14.8%) (Fig. 6a-e). Distributions of reference intervals for
introns (13.9%), TFBS-flanking regions (14.5%) and repetitive
regions (14.8%) were similar to the background distribution

npj Genomic Medicine (2017) 11
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6
(Fig. 6a, ¢, e). Histone marks for (active and inactive) enhancers These results revealed that DNAm levels at regulatory elements
(H3K4me1; 15.6%) showed similar or slightly broader reference were inter-individually invariable. The generally low DNAm levels
intervals (Fig. 6e). In CD4" T cells, similar tendencies were in regulatory elements (Supplementary Fig. 1) might explain the
observed (Fig. 6g—k). restricted DNAm variability. The notably narrow levels of reference
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Fig. 4 Regional analyses of DNAm variability surrounding established DNAm biomarkers. The x-axis indicates the position relative to the
DNAm biomarkers cg05575921 in the AHRR locus a and cg03636183 in the F2RL3 locus b. The y-axis represents —logo(P), where P is the P-value
for associations between DNAm levels and smoking status (i.e., current smokers vs. never smokers) (First panel). CpGs included in the HM450
probe set are represented by diamonds, and other CpGs are represented by circles. Colours indicate the correlation (R%) of the DNAm levels with
the biomarker CpGs. The solid grey line represents P-values for associations between DNAm and gene-expression levels. The dotted grey line
indicates P = 0.05. The y-axis reflects the DNAm level(Second panel). The solid red and blue lines indicate the average DNAm levels observed in
current and never smokers, respectively. Standard deviations of the DNAm levels are shown as shaded areas. The y-axis reflects reference
intervals (Third panel). The dotted grey line indicates y = 30%. Genomic locations of binding sites for lineage-determining TFs, CGls, CGI shores
and DHSs are shown (Fourth panel). CGI CpG island, DNAm DNA methylation, DHS DNase I-hypersensitive site, HM450 HumanMehylation450,

TFBS transcription factor binding site

<

intervals observed at active enhancers (marked by H3K27ac) and
active promoters (marked by H3K4me3) suggested a strong
constraint on DNAm variability in those regions. The low level of
DNAm variability at the H3K27ac mark versus the relatively high
variability at H3K4mel indicated that active enhancers are
specifically subject to DNAm variability constraint.

Although regional analyses of established DNAm biomarkers
suggested that reference intervals for CGI shores or TFBS-flanking
regions may be broad, such tendencies were not observed in the
genome-wide analysis. Even for lineage-commitment TFs, such as
PU.1 and PAX5, the TFBS-flanking regions did not evidently exhibit
broad reference intervals (Supplementary Fig. 2).

Repetitive regions showed distributions similar to that of the
background, indicating that our bioinformatics approach did not
enrich for repetitive regions in a set of commonly variable CpG
sites.

Improved efficacy of the CDMV strategy

For evaluating the efficacy of the CDMV strategy, we delineated
two sets of target CpG sites. The first set, CDMV-Mono, included
2.0 million CpG sites that were not located in repetitive regions
and exhibited broad reference intervals (>30%) in monocytes.
Similarly, the second set, CDMV-CDAT, included 3.0 million CpG
sites not located in repetitive regions and having broad reference
intervals (>30%) in CD4" T cells. We excluded repetitive regions
because we intended to measure the DNAm levels of those target
CpG sites by microarray or methyl-capture sequencing technolo-
gies, which are unreliable for repetitive regions because of
cross-hybridisation or inaccurate alignment with paralogous
sequences.'” 3° We compared the biomarker likelihoods for
CDMV-Mono and CDMV-CDAT with those for existing sets of target
CpG sites. Two sets for microarrays (HM450 and EPIC), two sets for
methyl-capture sequencing (SureSelect and CpGiant), and two
sets profiled by RRBS experiments were considered. The number
of CpG sites determined with each method is shown in
Supplementary Table 12. The efficacy of epigenetic association
studies was estimated by comparing the biomarker likelihood for
each set of target CpG sites with the likelihood of target sites
probed in the HM450 microarray, as this was the most frequently
used platform in previous EWASs. Among the existing sets of
target CpG sites, no set was significantly more efficient than the
HM450-derived set (Fig. 7a). In contrast, as expected by the CDMV
hypothesis, the two CDMV sets showed significantly improved
efficacy. The OR for CDMV-Mono was 3.7 (95% confidence interval
[CI]: 3.0-4.7; P=1.9 x 10_*°) and that for CDMV-CDA4T was 2.1 (95%
Cl: 1.6-2.7; P=52x107").

The two CDMV sets were derived from a population of
apparently healthy subjects. We further tested whether the
improved efficacy of the CDMV strategy is specific to
population-based EWASs, or extendable to case-control EWASs.
To evaluate the efficacy for each of case-control and population-
based EWASs, we stratified the previously identified CpG sites
according to study designs. Of the 269 previously identified CpG
sites, 47 (17.5%) and 225 (83.6%) had been derived from
population-based and case-control EWASs, respectively.

Published in partnership with the Center of Excellence in Genomic Medicine Research

Three sites had been identified in both population-based and
case-control EWASs. For both study types, none of the existing
sets showed a significantly improved efficacy compared to the
HM450-derived set. Significantly improved efficacies of the two
CDMV sets were observed for both study designs (Fig. 7b, c). The
CDMV-Mono set achieved 4.5-fold (95% Cl: 2.6-7.5; P=1.4x107)
and 3.7-fold (95% CI: 2.9-4.8; P=1.5x 10"%") improved efficacies
for population-based and case-control EWASs, respectively. The
efficacy of the CDMV-CDAT set for population-based EWASs (OR =
3.3 [95% Cl: 1.9-5.7]; P=3.7 x 107°) was higher than that for case-
control EWASs (OR=1.9 [95% ClI: 1.4-2.5]; P=9.9x 107).

The existing sets of target CpG sites were enriched for
regulatory elements, including promoters, CGls, CGI shores, DHSs,
TFBSs and H3K27ac and H3K4me3 marks (Fig. 8). As these
regulatory elements tend to exhibit narrow reference intervals in
our datasets (Fig. 6), we expected reference intervals for the CpG
sites included in the existing sets to be narrow. Indeed, DNAm
variability of the CpG sites targeted by the existing methods
tended to be small as compared to that of the background
distribution of ~24 million CpGs (Fig. 9).

These results clearly provided proof-of-concept of the improved
efficacy of the CDMV strategy. Especially, CDMV-Mono achieved
substantial (3.7-fold) improvement. Significantly improved efficacy
was shown for case-control EWASs as well as population-based
EWASs, while the efficacy for population-based EWASs was higher
than that for case-control EWASs. Existing sets of target CpG sites
were designed for multiple purposes; we showed that the CDMV
strategy was more efficient than multipurpose designs for blood-
based EWASs.

DISCUSSION

In this study, we tested the working hypothesis that the efficacy of
epigenetic association studies may be improved by targeting
inter-individually variable CpG sites. To this end, we genome
widely identified commonly variable CpG sites by analysing
purified monocytes and CD4" T cells collected from a Japanese
population of apparently healthy subjects. To estimate the efficacy
of the CDMV strategy, we collected CpG sites reported by previous
EWASs. Almost all previously reported CpG sites were identified
from whole blood samples. Accordingly, our results implied that
our catalogues of commonly variable CpG sites would improve the
efficacy of future EWASs analysing whole blood samples. In
addition, our results demonstrated that application of the CDMV
strategy would improve the efficacy of both population-based and
case-control studies. Furthermore, almost all previously reported
CpG sites were identified from EWASs of Caucasians or African
Americans. Therefore, the improved efficacy of our catalogues
would not be restricted to EWASs of Japanese but can be
extrapolated to EWASs of other ethnicities.

Our findings implicate that commonly variable CpG sites are
likely to be associated with environmental exposures and/or
disease susceptibilities. By taking into account the signal-to-noise
ratio, CpG sites exhibiting high variability in a control group
require relatively large mean differences between case and
control groups to satisfy a certain P-value criterion as compared
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Fig. 5 Intermediately methylated CpG sites exhibit large DNAm variability. a Distribution of median DNAm levels in monocytes. b
Distributions of reference intervals in monocytes for hypomethylated (red), hypermethylated (blue), and intermediately methylated (green)
CpG sites. ¢ CpG-density plot in monocytes. The x-axis represents reference intervals, and the y-axis indicates median DNAm levels. Density is
indicated with a colour gradient, ranging from low (blue) to high (red). d Proportions of commonly variable CpG sites in monocytes. e OR in
monocytes. The OR was estimated by comparing the proportion of commonly variable CpG sites in hypomethylated, hypermethylated and
intermediately methylated CpG sites. The proportion of commonly variable CpG sites in hypomethylated CpG sites is used as the reference.
The 95% reference intervals are represented as black lines. f Density plot of median DNAm level in CD4" T cells. g Distribution of reference
intervals in CD4" T cells. h CpG-density plot in CD4™ T cells. i Proportions of commonly variable CpG sites in CD4* T cells. j OR in CD4+T cells.
Hyper hypermethylated CpG sites, Hypo hypomethylated, CpG sites Inter intermediately methylated CpG sites, M million
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to CpG sites having low variability. Indeed, among 168 CpG sites
associated with schizophrenia,'® 58 sites with broad reference
intervals (>30%) exhibited greater mean differences between case
and control groups than other sites with narrow reference
intervals (<30%) (Supplementary Fig. 3; P<0.01, Wilcoxon rank-
sum test). Meanwhile, consideration of the signal-to-noise ratio
raises the possibility that CpG sites that exhibit too large a
variability might not be efficient targets for future EWASs.
However, the efficacy was not changed by filtering out CpG sites
with reference interals of >70% from the CDMV-Mono and CDMV-
CDAT catalogues (Supplementary Fig. 4). The number of CpG sites
having reference intervals of >70% was only moderate (0.18
million CpGs [8.7%] in CDMV-Mono and 0.20 million CpGs [6.7%]
in CDMV-CDAT), and therefore, the filtering of those CpG sites
might have had little impact on the efficacy estimates.

Our catalogues of target CpG sites included 2.0 million sites in
the CDMV-Mono set and 3.0 million in the CDMV-CDAT set. These
numbers of CpG sites are 2 to 3 times larger than those
implemented in DNAm microarrays.'” 2% 2 Thus, to implement
our catalogues in microarrays, a further reduction of target CpG
sites will be needed. However, these numbers are comparable to
those targeted by methyl-capture sequencing.?® *° Accordingly,
implementation of the CDMV-Mono and CDMV-CD4T target CpG
sites is technically possible by customizing probe sequences for
methyl-capture sequencing.

Published in partnership with the Center of Excellence in Genomic Medicine Research

We found a tight statistical link between intermediately
methylated status and large inter-individual DNAm variability.
The inter-individual DNAm variability was evaluated using the
reference interval, which was defined in this paper as the
difference between the 95th and 5th percentiles of the DNAm
levels across individuals (Fig. 1b). Meanwhile, the classification of
the DNAm status (i.e, hypomethylated, hypermethylated, and
intermediately methylated) was determined according to the
median DNAm level across our population. By definition, an
intermediately methylated status does not necessarily imply a
large reference interval; if all persons have the same intermediate
DNAm level (i.e., 20-80%) at a CpG site, then the CpG site is
classified as intermediately methylated, while the reference
interval is calculated as 0%. Similarly, hypomethylated or
hypermethylated status does not necessarily imply a narrow
reference interval; if a CpG site is perfectly unmethylated in >50%
of subjects and perfectly methylated in >5% of persons, then
the CpG site is classified as unmethylated, while the reference
interval is calculated as 100%. Accordingly, the link between the
intermediately methylated status and large inter-individual DNAm
variability can be biologically interpreted and is not just a
statistical artifact.

Intermediate DNAm levels implied large cell-to-cell DNAm
variability within an individual and a cell type.>® Accordingly, our
results indicated that inter-individual DNAm variability is tightly
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Improved efficacy of the CDMV strategy. ORs for existing designs of target CpG sites are shown as well as ORs for the strategy. CDMV-

Mono and CDMV-CDAT are sets of target CpG sites determined by using the CDMV strategy from our comprehensive DNAm profiles of
monocytes and CD4™ T cells, respectively. CDMV-Mono includes 2.0 million CpG sites and CDMV-CDAT is composed of 3.0 million CpG sites.
The OR was estimated by comparing the biomarker likelihood of each set of target CpG sites with that of CpG sites probed by HM450. The
95% Cls are represented as solid lines. a ORs for population-based and case-control EWASs. The ORs were estimated based on 269 CpG sites
previously identified in population-based and/or case-control EWASs. b ORs for population-based EWASs. The ORs were estimated based on
47 CpG sites previously identified in population-based EWASs. ¢ ORs for case-control EWASs. The ORs were estimated based on 225 CpG sites
previously identified in case-control EWASs. CpGiant SeqCap Epi CpGiant, HM450 HumanMethylation450, Rep replication, RRBS reduced-
representation bisulfite sequencing, SureSelect SureSelect Human Methyl-Seq

linked to cell-to-cell DNAm variability. Further, we found that inter-
individual DNAm variability at regulatory elements was strongly
constrained. The constraints may act on both inter-individual and
cell-to-cell DNAm variability. Consequently, genomic regions
where the constraints are relaxed may show large inter-
individual as well as cell-to-cell DNAm variability. Our results
suggested that the molecular mechanisms behind the constraints
may include histone modifications and TF binding events.

Previous epigenetics studies have revealed that processes that
generate cell-to-cell DNAm variations include an imperfect DNAm
transmission from mother to daughter cells,”” locus-specific
recruitment of de novo methyltransferases (DNMT3A and
DNMT3B),*® and demethylation by ten eleven translocation
enzymes.®® In a recent model, locus-specific DNAm levels are
regulated by multifactorial kinetics, which are affected by
transmission fidelity, replication rates, de novo methyltransferase
activity and demethylase activity.°® Our results indicate that the
multifactorial kinetics would be inter-individually variable at
genomic regions with balanced kinetics and thus, with inter-
mediate DNAm levels. The kinetic balance may be shifted by in
utero, childhood and adult exposures” ”~° and may be associated
with intermediate phenotypes and diseases.> % 10718

Although studies on cell-type differences have identified
outstanding switches of DNAm statuses (i.e., from héypomethy—
lated to hypermethylated during cell differentiations),®’ previous
blood-based EWASs identified moderate shifts of DNAm levels
between cases and controls.®> * 7 8 1318 Even in EWASs analysing
purified blood cells, inter-individual differences in DNAm levels
were less dramatic than cell type-specific differences.> ' °° The
above-mentioned balanced kinetics model®® may explain these
observations. The kinetics may be dynamically changed during
cell-type differentiations involving lineage-commitment TFs and
subsequent epigenetic regulation.®® In contrast, within a cell type,
the balanced kinetics may be slightly modified in response to
various environmental stimuli, which differ from person to person,
while maintaining cell identity.3® ©2

Several limitations to this study should be mentioned. Firstly,
we estimated the efficacy of the CDMV strategy based on the
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results of previous HM450-based EWASs. This may introduce
biases into the efficacy estimation. Secondly, almost all the
previously reported DNAm markers were discovered from whole
blood samples. Therefore, although we showed the improved
efficacy of our CDMV-Mono and CDMV-CDAT catalogues for future
EWASs using whole blood, we cannot state which set of
commonly variable CpG sites is more effective for future EWASs
using purified blood cells. Based on our data, two out of four
DNAm markers previously discovered using CD4" T cells exhibited
broader reference intervals in CD4" T cells than in monocytes,
while the other two had narrower reference intervals in CD4*
T cells than in monocytes (Supplementary Fig. 5). In future, larger
numbers of DNAm markers will be discovered using purified cells,
which should allow answering the above question. Thirdly, we
analysed monocytes and CD4" T cells but not other blood cells,
including CD8™" T cells, natural killer cells, B cells, and neutrophils.
Fourthly, we identified commonly variable CpG sites based on a
Japanese population. Since the environment can influence DNAm
profiles, the geographically restricted design might cause an
unintended bias in catalogues of commonly variable CpG sites.
Accordingly, the efficacy of the CDMV strategy may be further
improved by incorporating DNAm profiles of multiple ethnicities
and of various cell types in future studies.

In conclusion, we demonstrated that the efficacy of EWASs can
be improved by targeting commonly variable CpG sites. For the
implementation of this efficient strategy, we provided catalogues
of commonly variable CpG sites by performing WGBS-based
DNAm profiling. We provided summary data for ~24 million CpGs
in our web site (http://imethyliwate-megabank.org/downloads.
html) for data sharing and future researches. Our findings and
catalogues will accelerate the discovery of clinically relevant
DNAm biomarkers in future EWASs.

METHODS

Subjects
Apparently healthy subjects were enrolled from residents of the Iwate
prefecture, Japan, who participated in the Tohoku Medical Megabank

Published in partnership with the Center of Excellence in Genomic Medicine Research
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Fig. 8 Contents of regulatory elements in previous and proposed designs of target CpG sites. Enrichment for regulatory elements in each set
of target CpG sites is shown. The ORs was estimated by comparing the proportions of CpG sites that overlapped with regulatory annotations
in each set. The background proportion was calculated from all CpGs in the human reference genome (hg19). CGI CpG island, CpGiant SeqCap
Epi CpGiant, DHS DNase I-hypersensitive site, H3K27ac histone H3 acetyl Lys27, H3K4me1 histone H3 monomethyl Lys4, H3K4me3 histone H3
trimethyl Lys4, HM450 HumanMethylation450, Rep, replication, RRBS reduced-representation bisulfite sequencing, SureSelect SureSelect Human
Methyl-Seq, TFBS transcription factor binding site
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Fig. 9 DNAm variability for target CpG sites. a Distributions of reference intervals in monocytes. b Distributions of reference intervals in CD4*
T cells. CpGiant SeqCap Epi CpGiant, HM450 HumanMethylation450, Rep replication, RRBS reduced-representation bisulfite sequencing,
SureSelect SureSelect Human Methyl-Seq

Community-Based Cohort Study (TMM CommCohort Study),®®> which is individuals visiting the Yahaba Center in the Iwate prefecture from April
being conducted by the Iwate Medical University Iwate Tohoku Medical 2014 to June 2015 were enrolled in the present study. All participants gave
Megabank Organisation (IMM) and the Tohoku University ToMMo. written informed consent to participate in this study, which was approved
Details of the study design and recruitment method were reported by the Ethics Committee of Iwate Medical University (Approval ID:

previously.> Of the participants in the TMM CommCohort Study, HG H25-19).
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Blood collection, FACS and DNA/RNA extraction

Peripheral blood was collected in BD Vacutainer CPT tubes containing
sodium heparin (8 ml; Becton Dickinson and Company, Franklin Lakes, NJ,
USA). Within 2h after blood collection, PBMCs were collected by
centrifugation (Sorvall Legend XFR; Thermo Fisher Scientific, Waltham,
MA, USA) at 1,700 x g for 20 min at room temperature. The PBMCs were
washed in 30 ml phosphate-buffered saline (PBS) containing 2 mM EDTA
and then centrifuged at 250 X g for 10 min at room temperature to remove
any contaminating platelets and plasma.

The PBMCs were incubated with CD14-FITC (catalogue #: 2228020),
CD16-PE (catalogue #: 2110040), CD3-PE/Cy7 (catalogue #: 2102100) and
CD4-APC (catalogue #: 2323070) antibodies (5 pl antibody/500 ul of cell
suspension) (Sony Biotechnology Inc., Tokyo, Japan) for 20 min at 4°C. After
washing with 5ml of PBS, CD14**/CD16~ monocytes and CD3*/CD4*
T cells were immediately sorted using an SH800 Cell Sorter (Sony
Biotechnology) from the monocyte-containing or lymphocyte-containing
gate determined from light-scatter density plots (Supplementary Fig. 6).
The purity of all FACS-sorted populations was analysed by flow cytometry
using the SH800 Cell Sorter.

Genomic DNA and RNA were extracted from the sorted cells using the
AllPrep DNA/RNA Micro Kit (Qiagen, Venlo, The Netherlands), according to
the manufacturer’s instructions.

DNAm profiling by WGBS

We carried out bisulfite conversion with the EZ DNA Methylation-Gold Kit
(Zymo Research Corporation, Irvine, CA, USA) using 50 or 75 ng of genomic
DNA, followed by sequencing library preparation using the TruSeq DNA
Methylation Kit (lllumina Inc.,, San Diego, CA, USA). Fragment sizes were
determined by electrophoresis on an Agilent 2200 TapeStation with D1000
ScreenTape (Agilent Technologies) and the concentration of each library
was assessed by quantitative PCR with the Kapa Library Quantification Kit
(Kapa Biosystems, Woburn, MA, USA) on a StepOnePlus instrument (Life
Technologies, Carlsbad, CA, USA). The libraries were pooled at equimolar
concentrations and loaded into flow cells with the HiSeq PE Cluster Kit v4
cBot (lllumina). The WGBS libraries were sequenced on an lllumina HiSeq
2500 instrument with the HiSeq SBS Kit v4 (paired-end 125-bp reads). To
reduce the proportion of duplicated reads, we created five libraries per
sample (Supplementary Table 3).

For each library, adaptor sequences were removed from raw reads using
Trim Galore v0.4.0 (http://www.bioinformatics.babraham.ac.uk/projects/
trim_galore/), and reads <20bp were excluded from further analyses.
Then, the read sequences were mapped onto human reference genome
GRCh37d5 using NovoAlign v3.02.08 (http://www.novocraft.com/) after
setting the maximum alignment score acceptable for the best alignment
(“t' option) to 240, the strategy for reporting repeats (-r' option) to
‘Random’, the homopolymer and optional dinucleotide filter score (-h’
option) to 120, and the bisulfite alignment mode to align reads in the
forward direction using a C-to-T converted index and in the reverse
complement using a G-to-A converted index (-b’ option). Only read pairs
mapped in proper directions and within appropriate distances were
retained. Duplicated amplicons were removed using SAMtools®* v0.1.19.
The resultant bam files were merged into a single bam file for each subject.

From the merged bam files, overlaps between paired-end reads were
clipped using the BamUtil package, v1.0.13 (http://genome.sph.umich.edu/
wiki/BamuUtil). The number of converted and unconverted cytosines in
mapped reads was counted for each CpG in the human genome using
NovoMethyl v3.02.08 (http://www.novocraft.com/). In this process, CpGs
harbouring genetic variants in either dinucleotide were excluded. The
DNAm levels were calculated for all CpGs by dividing the number of
unconverted cytosines in the mapped reads by the total number of
converted and unconverted cytosines in the mapped reads.

CpGs with low (<6x) and extremely high (>300x) read depths were
filtered out. Only CpGs that were retained in >50% of the subjects were
included in WGBS-based DNAm profiles for monocytes and CD4* T cells.

Gene-expression profiling by RNA-Seq

We converted 150 ng of total RNA to cDNA using Superscript Il reverse
transcriptase (Thermo Fisher Scientific, Waltham, MA, USA). Then,
sequencing libraries were prepared using the TruSeq RNA Sample
Preparation Kit v2 (lllumina). Library quality was assessed as previously
described.® For cluster generation with the HiSeq SR Cluster Kit v4 cBot
(Illumina), six libraries were mixed in equimolar concentrations and were
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loaded into flow cells. Sequencing was performed in the HiSeq 2500 system
(Illumina) with the HiSeq SBS Kit v4 (single-end 125-bp reads).

Read sequences were mapped onto the GRCh37 human reference
genome using TopHat®® v2.0.13 and a guide from the Human GENCODE
Gene Set (release 19).°* We removed reads mapped to transfer RNA and
ribosomal RNA regions. Multi-mapped reads and reads with mapping
quality <50 were excluded. Fragments per kb of exon per million mapped
fragments values were calculated and normalised across subjects using the
cuffquant and cuffnorm programs in the Cufflinks package® v2.2.1.

Genotyping by WGS

WGS was performed as previously described.®® Briefly, genomic DNA
samples from buffy coats were fragmented using a Covaris sonicator
(LE220) and subjected to library preparation with the TruSeq DNA PCR-Free
HT Sample Prep Kit (lllumina). The libraries were quantified using the
quantitative MiSeq method.®® A HiSeq 2500 system was used to generate
162-bp, paired-end reads in Rapid Run Mode with the TruSeq Rapid PE
Cluster Kit and the TruSeq Rapid SBS Kit (lllumina).

Genotype data sets were constructed with the same filtering instructions
used in the TKJPN Japanese population reference panel, including single-
nucleotide variant (SNV) filtering according to read coverage, software-
derived biases, departures from Hardy-Weinberg equilibrium, and com-
plexities of genomic regions around variants.® For 71 samples with
Japonica SNP array genotyping data,’® the minimum and maximum
thresholds of read depth for SNV filtering were determined so as to
maximise the genotype concordance between the WGS and SNP array
data.?® For the remaining 34 samples, the minimum and maximum depth
thresholds were set at 9 and 56, respectively.

Systematic surveys for previous EWASs

We systematically searched PubMed on May 23, 2016 for EWASs that used
HM450 in the discovery step and validated candidate CpG sites in
independent samples, using the terms (‘epigenome wide association’) and
(‘HumanMethylation450" and ‘association’). EWASs with sample sizes
smaller than 100 in the discovery step were excluded. All relevant articles
were reviewed by three scientists who jointly determined for each article
whether or not it satisfied our inclusion criteria.

Statistical power for the efficacy estimation using Fisher's exact
test

We defined the biomarker likelihood for a group of CpG sites as the
number of CpGs in the group that were associated with any environmental
exposure and/or biomedical trait in previous EWASs divided by the
number of total CpGs in the group. We estimated the efficacy of the
CDMV-Mono and CDMV-CDAT catalogues by comparing the biomarker
likelihoods for the two catalogues with that for the HM450 probe set using
Fisher's exact test.

The total number of autosomal CpG sites probed by the HM450
microarray was 473,814. Of these, 269 sites have been reported in previous
studies. Assuming the effect size of efficacy improvement (in terms of OR)
to be 2.0, 10% of the HM450 probes to be targeted, and significance level
to be 0.05, statistical power was estimated as 98.6%.

Genomic annotations for regulatory elements

Genomic coordinates for transcription start sites (TSSs), exons and introns
were defined according to the Human GENCODE Gene Set (release 19).54
Promoter regions were determined as the regions 2kb upstream to 500bp
downstream of the TSSs. Annotations for CGls were obtained from the
UCSC genome browser.>® CGl shores were defined as 2-kb upstream and
downstream regions flanking the CGls. Repetitive regions defined by the
RepeatMasker software were retrieved from the UCSC genome browser.
DHS and TFBS regions were downloaded from the UCSC ENCODE
website®” >° (http://genome.ucsc.edu/ENCODE/downloads.html). Annota-
tions for three types of histone modifications (H3K27ac, H3K4me1 and
H3K4me3) were retrieved from the UCSC genome browser. Annotations for
histone modifications used in this study were identified based on
chromatin immuno-precipitation with massively parallel sequencing of
the GM12878 (a lymphoblastoid cell line produced from the blood of a
female donor with northern and western European ancestry by
Epstein—Barr virus transformation) and K562 (an immortalised cell line
produced from a female patient with chronic myelogenous leukaemia)
cell lines.
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Analysis of the potential association between DNAm level and
smoking status

Smoking status (current, former or never smoker) was determined based on a
self-reported questionnaire®® Associations between DNAm level and
smoking status were analysed with a linear-regression model with
adjustments for age and sex. In this association analysis, former smokers
were excluded and DNAm level differences between current and never
smokers were tested. The equation for the association analysis was
Mij = Bio + BisSj + BiageAde; + BjexSeX;, where M;; represents DNAm level
for a CpG site i and an individual j, S; is smoking status for an individual j
(5;=0, never smoker; and S;= 1, current smoker), Age; is chronological age for
an individual j, Sex; is sex for an individual j, B;c is intercept for a CpG j, B;sis a
coefficient for smoking status variable (expected difference between current
and never smokers), Biagels a coefficient for age variable, and Bjs.. is a
coefficient for sex variable. DNAm level and age were regarded as continuous
variables, and smoking status and sex were set as discrete variables.

Target CpG sites in existing designs

Target CpG sites for HM450, EPIC, SureSelect and CpGiant were
downloaded from the manufacturers’ websites (http://support.illumina.
com/downloads.html; http://sequencing.roche.com/products/nimblegen-
seqcap-target-enrichmenthtml  and  https://earray.chem.agilent.com/
suredesign/, respectively). Target CpG sites for RRBS were defined
according to two replicates of RRBS experiments for the GM12878 cell
line. The mapping results of RRBS experiments were retrieved from the
UCSC genome browser.
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