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ORIGINAL ARTICLE
Incorporating the single-step strategy into a random regression
model to enhance genomic prediction of longitudinal traits

H Kang1’3, L Zhou'3, R Mrode?, Q Zhang1 and J-F Liu!

In prediction of genomic values, the single-step method has been demonstrated to outperform multi-step methods. In statistical
analyses of longitudinal traits, the random regression test-day model (RR-TDM) has clear advantages over other models. Our goal
in this study was to evaluate the performance of a model that integrates both single-step and RR-TDM prediction methods,
called the single-step random regression test-day model (SS RR-TDM), in comparison with the pedigree-based RR-TDM and
genomic best linear unbiased prediction (GBLUP) model. We performed extensive simulations to exploit the potential advantages
of SS RR-TDM over the other two models under various scenarios with different levels of heritability, number of quantitative trait
loci, as well as selection scheme. SS RR-TDM was found to achieve the highest accuracy and unbiasedness under all scenarios,

exhibiting robust prediction ability in longitudinal trait analyses. Moreover, SS RR-TDM showed better persistency of accuracy
over generations than the GBLUP model. In addition, we also found that the SS RR-TDM had advantages over RR-TDM and
GBLUP in terms of its being a real data set of humans contributed by the Genetic Analysis Workshop 18. The findings of our
study demonstrated the feasibility and advantages of SS RR-TDM, thus enhancing the strategies for genomic prediction of

longitudinal traits in the future.
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INTRODUCTION

Complex traits with multiple phenotypic values changing over time
are called time-dependent or longitudinal traits. Knowledge of the
genetic effects influencing longitudinal patterns is important to predict
phenotypic progression in longitudinal analyses. Thus far, genetic
effect prediction for longitudinal data had been mainly based on the
traditional random regression test-day model (RR-TDM; Schaeffer
and Dekkers, 1994), which is a very sophisticated model based on
pedigree and is commonly used in genetic evaluation. RR-TDM was
originally developed for the statistical analyses of longitudinal data,
when observations were recorded at multiple time points.

Since the seminal work of Meuwissen et al. (2001), genomic data
coupled with corresponding statistical modeling approaches were
successfully implemented into genomic prediction. Currently, huge
progress has been achieved in genomic prediction in animal breeding
(for example, VanRaden et al., 2009; Koivula et al, 2015), plant
breeding (for example, Zhong et al, 2009) and human genetics (for
example, de los Campos ef al., 2013). Although we can enhance the
genomic prediction ability for traditional single-record traits by using
the strategy of genomic selection, genomic prediction for longitudinal
traits had not received extensive attention in practice so far.

In terms of different strategies of utilizing training data in the
analyses, methods for genomic prediction can be generally classified
into two categories: multi-step and single-step. The multi-step method
involves two steps for genomic evaluation: (1) constructing a response

variable obtained from regular genetic evaluation, and (2) genomic
prediction associating the response variable with marker information.
Although this could be applied easily with no major change to the
regular genetic evaluation system, the multi-step procedure resulted in
lower accuracies, bias and loss of information (Legarra et al., 2009).
Moreover, with multi-step approaches, genotyped individuals could
not contribute to the evaluation of their non-genotyped relatives in
pedigree. To overcome these shortcomings, Legarra et al. (2009) and
Christensen and Lund (2010) proposed the single-step method in
parallel, which utilized pedigree, genomic and phenotypic data
simultaneously in genomic evaluation. The single-step approach has
the advantages of predicting all genotyped and non-genotyped
individuals simultaneously and less prediction bias (Vitezica et al,
2011; Christensen et al., 2012). Application of the single-step method
in genomic evaluation of domestic animals has been explored in many
studies so far (for example, Christensen et al., 2012; Koivula et al.,
2015).

In addition to the better prediction performance in comparison
with the multi-step approach, the single-step method has the property
of straightforward extension to RR-TDM for genomic prediction
of longitudinal traits. Prior to the availability of a large amount of
genotypic data, RR-TDM has been widely used in the improvements
of longitudinal traits in livestock (for example, Schaeffer et al., 2000).
Considering the advantages of the single-step method and RR-TDM in
genetic prediction, it is expected that their combination should result
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in better performance of genomic prediction. This has preliminarily
been investigated by a recent study of Koivula et al. (2015). In their
study, the single-step (SS) RR-TDM model was implemented for the
genomic evaluation of Nordic Red Dairy cows for milking performance,
which showed higher accuracies and less bias in the prediction
compared to the traditional RR-TDM model. Although SS RR-TDM
has theoretical advantages over other methods in genomic evaluation, it
has not been clear whether it will outperform the commonly used multi-
step genomic prediction for longitudinal traits under various scenarios.

Accordingly, the goal of this study was to investigate the perfor-
mance of SS RR-TDM in genomic evaluation under various scenarios
through extensive simulations and real data validation. We also
explored its persistency of prediction accuracies over generations. By
incorporating the single-step strategy into a random regression model,
we offer for the first time a systematic evaluation of the feasibility and
effectiveness of SS RR-TDM methodology in longitudinal trait
genomic prediction, further broadening the scope of single-step
strategy application in the practice of genomic prediction.

MATERIALS AND METHODS

Statistical model

We constructed a SS RR-TDM with a longitudinal phenotypic variable decom-
posed as follows:

ny Ma p
Vi = bi+ Z By (t) + Z agpi(t) + Zijwk(t) + €ijes (1)
k=1 k=1 k=1
where y;j; is the phenotypic record of individual j at time point ¢ within the ith
level of fixed effect b; f is the kth fixed regression coefficient; aj and pj; are the
kth random regression coefficient for additive genetic and permanent environ-
mental effects, respectively, for individual j; ¢(t) is the kth covariate for the
observation of individual j made at time point # ng, 1, and 1, are the numbers
of fixed, random additive and random permanent environmental covariates;
and e is the time-independent random residual error for each observation.
Specifically, permanent environmental effects are the permanent and non-
transmissible effects, such as dominance effects, epistatic effects and permanent
stunting when young (Lush, 1943). They were different between individuals,
and therefore were assumed to be random effects. In model (1), fixed and
random regressions can be defined as covariance functions with different
expressions, for example, Wilmink function (Wilmink, 1987) and Legendre
polynomials (Kirkpatrick et al., 1990).
The matrix representation of the model is accordingly denoted as

y =Xib; +Xob, + Qa+Zp +e, (2)
where y is the vector of phenotypes; by is the vector of fixed effects; b, is the
vector of fixed regression coefficients; a and p are vectors of random regressions
for additive genetic effect and permanent environmental effect; X, X,, Q and Z
are design matrices of by, by, a and p, respectively; e is the vector of residuals.
X contains indicator variables for time-independent fixed effects (ones and
zeroes), and X, Q and Z contain time-dependent covariates.

It was assumed that

a H®C 0 0
var|p | = 0 I®P 0 (3)
e 0 0 R

where I is an identity matrix with dimensions equal to the number of effect
levels, ® is the Kronecker product, C and P are (co)variance matrices of
additive genetic and permanent environmental regression coefficients, R = Io?
with ag standing for residual variance, and H is the combined relationship
matrix. According to Legarra ef al. (2009), H was defined as

_ [An+ ApRA (Gy — An)AS AL ApASYG, (4)
GwAgzlAlz Gy ’

where A}y, Aj; and A, are partitions of A, the numerator relationship matrix

based on pedigree, and subscripts 1 and 2 refer to ungenotyped and genotyped

individuals, respectively. Gy is derived from an adjusted kinship matrix G*, and

H
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is constructed using both pedigree and genotype information. It is expressed as

GW = (1 - W)G* + WAzz, (5)
with
G =fG+o, (6)

where w reflects the fraction of genetic variance not being captured by single-
nucleotide polymorphism (SNP) markers (Christensen et al., 2012) and can
also be used to avoid singular problems of the G matrix (VanRaden, 2008), and
G is genomic relationship matrix constructed by the first method of VanRaden
(2008):

(M —P)(M —P)

23 p(1—p)

J=1

G= (7)

where M is a matrix of SNP genotypes for each individual, P is a matrix of 2
times the observed allele frequency of the second allele p at locus j (p;). Ideally,
allele frequencies in the base population should be used in the construction
of G; however, they were not available in most practical situations. In
consideration of simplicity in implementation, we used observed allele
frequencies of genotyped individuals in our study, which was also a good
reference and was commonly used in other studies (for example, Wolc et al,
2011; Christensen et al, 2012). In principle, the additive genetic variance using
G is identical to that using A (Habier et al., 2007).

In Equation (6), G* was considered as the adjusted G matrix for avoiding
potential incompatibility in scale between G* and A,, involved in the H matrix
(Chen et al., 2011; Vitezica et al., 2011). G* was computed based on the
approach of Christensen et al. (2012).

The corresponding mixed model equations (MME) for equation (2) are

XR'X XR'Z

XR'Q b
QR X QR 'Q+H!'®C! QR 'z a
ZR'X ZR'Q ZR'Z+IQP!|LP
X Ry
= |QRy (8)
Z‘R’ly

In the solutions of this MME, each individual has n, regression coefficients as
predictions for additive genetic effects. Predicted genetic value (PGV) of
individual j for any particular time point ¢ of interest, for example, systolic
and diastolic blood pressure at a particular age, could be simply achieved as
follows:

Na
PGV =Y aijy(t), 9)
k=1
where (1) and n, are as described in equation (1), and ay; is the solution
for the kth regression coefficient of individual j. If the accumulated PGV for a
period of time is of interest, for example, 305 days’ milk yield in dairy cattle or
egg production during the first 22 weeks of production in layer chicken, it could
be calculated by adding up the PGVs at different time points over a specific
period.

To exploit the potential advantages of SS RR-TDM over its conventional
counterparts, we also performed genetic/genomic prediction with the two
widely used models, that is, the regular pedigree-based RR-TDM evaluation
approach and the multiple-step method of genomic best linear unbiased
prediction (GBLUP).

The GBLUP model (VanRaden, 2008) is defined as follows:

y=ul, +2g+e, (10)
where y is a nX 1 vector of the response variable; u is the overall mean; 1,, is a
vector of n ones; g is the nx 1 vector of additive genomic effects with the
distribution N {0, G(;‘; ; Z is the corresponding incidence matrix; and e is the
vector of random residuals with the distribution N (0, Dg?). G is the previously
mentioned genomic relationship matrix with 0.02 added to its diagonal
elements to avoid singular problems, and D is the diagonal matrix.



It is notable that, in the GBLUP model, both PGV and its de-regressed proof
(DRP) were used as response variables in the simulation analyses. Reliabilities
of PGV were obtained following the procedure proposed by Jamrozik et al.
(2000). DRP derivation and the corresponding reliability were calculated
according to Garrick et al. (2009). D was treated as the identity matrix when
PGV was considered the response variable, while D with elements dj; = 1/w; was
used as the diagonal matrix when DRP was considered the response variable,
where the weighting factor was defined as w; = b,/ (1 — rigp), with rhp,
being the reliability of DRP.

In the regular RR-TDM approach, decomposition of phenotypic value was
the same as that in SS RR-TDM except that the additive genetic relationship
between individual pairs was described by the A matrix. Solutions of random
regression coefficients of additive genetic effects from both the regular RR-
TDM approach and the SS RR-TDM approach were converted to the total or
average PGV over the particular time period, which was consistent with those
estimated in the GBLUP model.

The (co)variance components involved in the regular RR-TDM and GBLUP
model were estimated using average information restricted maximum like-
lihood (AI-REML; Gilmour et al., 1995). The (co)variance components used in
the SS RR-TDM approach were those estimated with the regular RR-TDM
model. We employed DMU package (Madsen and Jensen, 2010) to estimate the
(co)variance components and solve the MME. The H and H~! matrices were
also computed by DMU.

Simulation study

To evaluate the performance of different prediction models that were
investigated in this study, longitudinal traits were simulated under various
scenarios. Population and genomic data simulation was done using the QMSim
software (Sargolzaei and Schenkel, 2009), and the longitudinal phenotypes were
simulated by our own program. Simulated phenotypes were further used by
QMSim for selection in the recent generations.

Genomic data simulation. Both historical and recent population structures
were simulated by QMSim. The simulation was initiated with a base population
of 50 males and 50 females, denoted as generation — 1000, followed by 999
discrete historical generations (generation —999 to —1) with the same
population size and an equal sex ratio. After 1000 historical generations, the
recent population was generated from generation —1 to generation 0 with
population size expanded from 100 to 4000 (2000 males and 2000 females),
where each female had 80 offspring. Then, this recent population size was kept
for 10 generations with a random mating of 50 randomly selected males and all
females from the same generation.

The simulated genome consisted of 10 chromosomes with the same length
of 1 Morgan. On each chromosome, 30 000 evenly distributed SNP markers
were simulated in generation — 1000. Initially, all loci were set to be bi-allelic
with allele frequencies of 0.5. Recurrent mutations were simulated at a rate of
2.5% 1073 per locus per meiosis for markers in the subsequent generations of
the historical population. The number of recombinations per chromosome was
sampled from a Poisson distribution, P(A=1). In the last generation of the
historical population (generation —1) the whole genome was equally parti-
tioned into 20 010 bins. In each bin, the marker with the maximum minor
allele frequency (MAF) among all markers was used for further statistical
analyses. Thus, the total number of markers was 20 010.

Longitudinal phenotypic data simulation. We simulated phenotypic observa-
tions involving time-dependent effects, that is, the mean of the population, the
effects of quantitative trait loci (QTL) and permanent environmental effect, and
the time-independent random residual error. The three time-dependent effects
for an individual were simulated according to the Wilmink function:

y(t) = wo + wit + w; exp (—0.05¢) (11)

where wy, w; and w, are regression parameters regarding the time point t.
Using the estimates of regression parameters from the study of Cobuci et al.
(2005), the mean curve of the population was modeled as y(t) =45 —0.05¢— 28
exp (—0.05¢). Estimates of (co)variance components in their study were used in
our following simulations of additive and permanent environmental effects.
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Here we described the simulation of the longitudinal phenotypic data in
detail under scenario 1, and it was similar for other scenarios. We randomly
selected 100 SNP markers with MAF>0.1 in generation 0 as the true QTL.
Each QTL had effects on all three regression parameters and allele
substitute effects were drawn from a multivariate normal distribution

6.61 0.11x 107! —6.70
MVN [0, | 0.11x 107" 0.12x107>  0.96x 1072 (Cobuci et al,, 2005).
—6.70 0.96x 1072 15.59

Additive genetic (co)variances for w; and w; were determined as

N
Z 2(1 = p)piokBre (12)
k=1

where py is the MAF of the kth QTL in generation 0, ay and f3 are effects of the
kth QTL on w; and wj, and N is the total number of QTL. Random regression
parameters oy were then scaled to ensure the additive genetic variances were
equal to the diagonal elements in the covariance matrix of the multivariate
normal distribution mentioned above. The additive genetic value of each

N
regression coefficient for individual i was calculated as > xjcok, where x;;. is the
k=1

genotype of individual i at the kth QTL, and ay is the aforementioned allele
substitute effect of QTL on the specific regression coefficient. Genotype was
coded as 0 and 2 for two homozygotes, and as 1 for heterozygote. Thus, based
on the genetic values of the three regression coefficients, the true additive
genetic values of an individual over time can be generated using the
aforementioned Wilmink function.

The permanent environmental effect for each individual can be modeled
using the Wilmink function, which is the linear function of the
three regression coefficients (wy, wy; and w,) drawn from the multivariate

22.76 0.66x 107" —19.79
normal distribution MVN |0, | 0.66x 107" 0.38x10~* 0.57x 107!
—19.79  0.57x 107! 54.26

(Cobuci et al., 2005). The sampled permanent environmental effects were
further scaled to achieve the heritability of 0.3 for the cumulated longitudinal
observations, which was defined as the cumulated value of observations from
consecutive time points of 5 to 305. The heritability was calculated as

where q; and p, are vectors of covariates at time point ¢ for the additive genetic
and permanent environmental effects, C and P are (co)variance matrices of the
additive genetic and permanent environmental regression coefficients, and ¢? is
the residual variance.

Thus,

305 305

305 305 <Z q |c Zq;> 305 305
<Z pﬁ>Pa2 (Z pr) =L (E qi>C<Z qr> - 30107,

=5 =5 =5 =5
where « is a scalar > 0. Herein, C was calculated according to (13); P and ag
were the true values used in the simulation. To obtain the heritability of 0.3, the
true permanent environmental effects chosen were products of the sampled
permanent environmental effects and the solution of a. Thus, permanent
environmental effects on an individual at a specific time could be obtained
based on the Wilmink function.

Finally, the simulated observation at a specific time point was the
summation of the time-dependent effects, including the mean of the popula-
tion, additive genetic value, permanent environmental effect, and time-
independent residual effect. The residual effect for each observation was
sampled from the normal distribution N(0, 16).

The simulated trait was measured at several time points (f). The first time point
of measurement was sampled from the discrete uniform distribution DU (7, 37),
and subsequent time points were generated by adding intervals sampled from
DU (15, 36). The last time point was set to be not greater than 305. Longitudinal
phenotypes were simulated for both males and females.
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Table 1 Summary of heritability (h?), number of QTL (nQTL),
selection design, training? and testing populations for each scenario

Scenarios h? nQTL Selection designs® Testing populations®
1 0.3 100 Random g=4,5,6,7,8,9, 10
2 0.3 100 PGV g=4,5,6,7,8,9, 10
3 0.1 100 Random g=4

4 0.5 100 Random g=4

5 0.3 10 Random g=4

6 0.3 500 Random g=4

2Individuals in the training population (n=1000) were all sires (n=100) and other randomly
selected individuals (n=900) from generations 1 and 2 for all scenarios.

b all scenarios, sires were either selected based on predicted genetic value (PGV) from the pedigree-
based random regression model or selected randomly (Random) from each of generations 1-10.
Individuals in the testing population were randomly selected from each particular generation (g).
The size of the testing population was 1000.

Table 2 The prediction accuracies, biases (11-bl) and mean squared
errors (MSE) of different models under the default scenario across 20
replicates?

Models® Accuracies+ s.e. |1-bl +s.e. MSE + s.e. (x10 000)
Regular RR-TDM 0.50+0.01A 0.08+0.01A 37.77+1.32A
GBLUP (DRP) 0.65+0.018 0.25+0.038 30.12+1.258
GBLUP (PGV) 0.65+0.018 0.24+0.018 31.47+1.25C
SS RR-TDM 0.71+0.01¢ 0.06+0.017 25.02+1.00°

Abbreviations: DRP, de-regressed proof; GBLUP, genomic best linear unbiased prediction; PGV,
predicted genetic value; SS RR-TDM, single-step random regression test-day model.

Common capital letters within columns donate no significant difference at the 0.01 level by
paired t-test.

2Bias was measured as the deviation of regression coefficients (true additive genetic value on
predicted genetic value) from 1. The results were from the default scenario with a heritability of
0.3, 100 QTL and random selection of sires in each generation.

bModels applied were pedigree-based random regression test-day model (Regular RR-TDM),
genomic best linear unbiased prediction (GBLUP) with response variables of predicted genetic
value (GBLUP (PGV)) and de-regressed proof (GBLUP(DRP)), and single-step RR-TDM.

We further perturbed each single simulation parameter in the default
scenario at a time to allow different data scenarios (Table 1) for model
comparison. The perturbed parameters were heritability (0.1, 0.3 and 0.5),
number of QTL (10, 100 and 500) and selection design in the recent generations
(random selection vs selection based on PGV estimated from regular RR-
TDM). All the scenarios were repeated 20 times to reduce sampling error.

Simulation data analyses. For genomic prediction of each replicate of each
scenario, we used a training population (n=1000) with all 100 sires and other
randomly selected 900 individuals from generations 1 and 2, which had both
genotypic and phenotypic data. The testing population consisted of 1000
individuals from each testing generation 4-10, which had only genotypic data
(Table 1). Meanwhile, phenotypes of all individuals in generation 3 were used in
the analyses. The pedigree of all related individuals was used for construction of
the A and H matrices for the regular RR-TDM and SS RR-TDM models.

In the analyses with regular RR-TDM and SS RR-TDM, fixed regression
coefficients represented the mean curve of the population, and covariates in X,
Q and Z were the parameters in the Wilmink function (10) fitted on time point
t. In the construction of the H matrix in SS RR-TDM, we set w as 0.05. For the
GBLUP model, both cumulated PGV and corresponding DRP were used as

305
response variables. The cumulated PGV was computed as PGV = Y PGV,
i=5

where PGV, is the predicted genetic value at time point ¢ with the regular RR-
TDM. As PGV was a regressed variable, predictions from GBLUP with PGV as
the response variable were divided by the average reliability of PGV in the
training set (Guo et al, 2010).

In comparison of the performance of different models, the assessment was
based on prediction accuracy, bias and mean squared error (MSE). Accuracy
was computed as the correlation between true genetic values and PGV; bias was
measured as the deviation of regression coefficient (true genetic values on PGV)

Heredity

from 1; and MSE was computed as the average square of the difference between
true genetic values and PGV centered on 0.

Real data analyses on GAW18 data set

To further validate the prediction performance of the SS RR-TDM, we
performed our analyses with a real data set of systolic blood pressure (SBP),
which can be characterized as a longitudinal trait changing with age. The data
were provided by Genetic Analysis Workshop 18 (GAWI18) (http://www.
gaworkshop.org), and included SBP measurements of 932 participants from 20
large pedigrees and genotypic data of 959 individuals. The genotypes of 464
individuals were generated via sequencing and those of the remaining individuals
were genotyped via imputation. Only genotypes on odd-numbered autosomes
were available for both sequenced and imputed individuals. The illustration on
the real data was detailed elsewhere (Almasy et al., 2014).

Following the criteria of Yao et al. (2014), the markers were pruned using
PLINK 1.07 (Purcell et al., 2007) to maintain the linkage disequilibrium (%)
between each other less than 0.9, and a total of 690 551 common SNPs
(MAF > 0.05) were finally determined for the follow-up analyses.

Similar to simulation studies, we compared three different prediction
models, including SS RR-TDM, regular RR-TDM and GBLUP, in the analyses
of the GAW18 data set. Before implementing predictions with different models,
we performed pedigree-based RR-TDM using the whole data set to obtain
PGVs and their reliabilities. These PGVs were assumed as true genetic values
for model comparisons. In both SS RR-TDM and regular RR-TDM analyses,
gender, year of examination, medication usage and current tobacco smoking
were considered as fixed effects, while permanent environmental and additive
genetic effects were treated as random effects in the time-dependent model. We
adopted Legendre polynomials of order 3 for fixed factor (gender) regressions
and Legendre polynomials of order 2 for additive genetic regression in the
model. To investigate the effect of w on prediction quality, the value of w was
set to 0 and 0.8 in generating the weighted genomic relationship matrix Gy, in
SS RR-TDM. In the analyses with the GBLUP model, the response variable was
PGV of average SBP from the age of 10 to 100 years, which was obtained from
predictions of pedigree-based RR-TDM.

For prediction quality evaluation, we conducted 5-fold cross-validation for each
of the three prediction models. Specifically, 20 families were randomly partitioned
into five subsets, each with four families and at least a total of 180 genotyped
individuals. Each of four subsets was in turn used as the training set, and the
remaining set served as the testing set. Phenotypes of individuals in the testing set
were assumed to be unknown. In order to maintain relationships between the
training and testing sets, especially for RR-TDM, which only used pedigree, we
moved one individual from each family in the testing set to the training set. In
selection of these individuals, we tried to choose from later generations and avoid
genotyped individuals. If there were no individuals meeting the conditions, we
selected one individual from the last generation and assumed their genotypic data as
unknown in cross-validation. Then, PGVs were predicted for individuals in the
testing set. For each replicate, we calculated the accuracy, bias and MSE as
mentioned above in the analyses of simulated data, using genotyped individuals in
the testing set. Individuals in the testing set were selected to have reliabilities of PGV
> 0.3 from the pedigree-based RR-TDM analysis using all individuals (averaging
130 individuals in the testing set). The whole procedure of 5-fold cross-validation
was repeated 20 times to determine the average accuracy, bias and MSE.

RESULTS
Simulation study
Prediction quality of different models. Table 2 lists the accuracies,
biases and MSE of the three models in prediction of individuals in the
validation set of generation 4 under the default scenario. The results
clearly demonstrate that marker-based genomic prediction models
(GBLUP and SS RR-TDM) achieve higher accuracies than the
pedigree-based method (regular RR-TDM). For the two marker-
based methods, SS RR-TDM clearly further outperformed the GBLUP
model in prediction accuracy.

There was no significant difference in prediction bias between the SS
RR-TDM and the regular RR-TDM, and these two models had lesser
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Figure 1 Quality of prediction (average over 20 replicates) for different statistical models with alternative heritabilities (number of QTL=100, random
selection). The training set consisted of all the sires (n=100) and other randomly selected individuals (n=900) from generations 1 and 2. Phenotypic
information was available for all individuals in generations 1-3. The testing set consisted of 1000 individuals from generation 4. (a) Accuracies;
(b) prediction biases: deviation of the regression coefficient (true genetic values on predicted genetic values) from 1; (c) mean squared errors (MSE).
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Figure 2 Quality of prediction (average over 20 replicates) for different statistical models with alternative numbers of QTL (heritability=0.3, random
selection). The training set consisted of all the sires (n=100) and other randomly selected individuals (n=900) from generations 1 and 2. Phenotypic
information was available for all individuals in generations 1-3. The testing set consisted of 1000 individuals from generation 4. (a) Accuracies; (b)
prediction biases: deviation of the regression coefficient (true genetic values on predicted genetic values) from 1; (c) mean squared errors (MSE).

bias than the GBLUP model. MSE is another commonly used measure
of prediction quality, which assesses the overall quality of the model.
Significant differences existed in MSE among different models, and SS
RR-TDM fitted the data best. For the GBLUP model, the performance
of analyses with PGV and DRP as response variables was very similar in
terms of accuracy, bias and MSE (Table 2). Similar rankings of different
models in prediction quality were also observed in other scenarios.

Prediction quality under different heritabilities and numbers of QTL. ~ As
shown in Figure 1, SS RR-TDM outperformed other models in all the
three measures of prediction quality. For all the three models,
significantly higher accuracy and less bias were achieved with higher
heritability (based on paired t-test). In particular, the prediction biases
of SS RR-TDM and regular RR-TDM were lower than those of the
GBLUP models for the low-heritability (h>=0.1) trait (Figure 1b).
This indicated that the single-step approach had more appealing
advantages over the multi-step approaches with low-heritability traits.

Prediction quality for various numbers of QTL is presented in
Figure 2, which also shows that SS RR-TDM achieved a significant

advantage over the other models. For any of the methods, prediction
accuracy and bias did not fluctuate significantly with the change in
number of QTL.

Persistency of accuracy and bias over generations. The persistency of
accuracy and bias for different models over six generations are
presented in Figure 3 (scenario 1 of random selection) and Figure 4
(scenario 2 of non-random selection). The results clearly indicate the
advantages of the SS RR-TDM over the other two prediction models.
Opverall, accuracies for all models decreased over generations in both
scenarios. Regular RR-TDM resulted in the greatest decline in
accuracies over generations under both scenarios. The accuracies of
marker-based models showed more obvious decreases over genera-
tions in scenario 2 than in scenario 1. SS RR-TDM maintained the
highest accuracies over generations under scenario 1. For scenario 2, SS
RR-TDM had the best accuracies over generations 4-6, and it achieved
similar accuracies with the GBLUP model in generations 7-10
(Figure 4a). Meanwhile, SS RR-TDM always had the lowest prediction
biases and MSE for both two scenarios, except that its prediction bias
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Figure 3 Quality of prediction (average over 20 replicates) for different statistical models in prediction of individuals from generation g (g=4-10) under the
default scenario (heritability=0.3, number of QTL =100, random selection). The training set consisted of all the sires (n=100) and other randomly selected
individuals (n=900) from generations 1 and 2. Phenotypic information was available for all individuals in generations 1-3. The testing set consisted of
1000 individuals from generation g. (a) Accuracies; (b) prediction biases: deviation of the regression coefficient (true genetic values on predicted genetic

values) from 1; (c) mean squared errors (MSE).
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Figure 4 Quality of prediction (average over 20 replicates) for different statistical models in prediction of individuals from generation g (g=4-10) under the
non-random selection design (selection based on predicted genetic value). The training set consisted of all the sires (n=100) and other randomly selected
individuals (n=900) from generations 1-2. Phenotypic information was available for all individuals in generations 1-3. The testing set consisted of 1000
individuals from generation g. (a) Accuracies; (b) prediction biases: deviation of the regression coefficient (true genetic values on predicted genetic values)

from 1; (c) mean squared errors (MSE).

was larger than that of the GBLUP model with DRP as response
variable in generation 10 of scenario 2 (Figure 4b). These results
indicate the potential advantages of SS RR-TDM, especially when the
population is under random selection.

Comparing the performance of all models under two scenarios
(1 and 2) in prediction of a specific generation, that is, generation 4,
we found that the accuracy of each model under the non-random
selection (scenario 2) was significantly lower than that under the
random selection (scenario 1). Accuracies of the non-random selec-
tion for all three models also decreased faster over generations than
those under random selection.

Study of real data from GAW18

Table 3 presents the accuracies, biases and MSE with different models
for the real data set of human blood pressure. SS RR-TDM with w=0
performed best in terms of all the three prediction quality measures,
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Table 3 The prediction accuracies, biases (I11-bl) and mean squared
errors (MSE) for the average systolic blood pressure (SBP) at ages of
10-100 for the GAW18 workshop data set?

Models Accuracies + s.e. |1-bl + s.e. MSE + s.e.

Regular RR-TDM 0.05+0.022 2.52+0.24° 90.62+2.157
GBLUPP 0.14+0.01P 0.65+0.05° 89.79 +2.122b
SS RR-TDM (w=0)° 0.16+0.01¢ 0.50+0.04¢ 89.52+2.15°
SS RR-TDM (w=0.8) 0.11+0.01° 1.73+0.18¢ 89.93+2.15°

Abbreviations: GAW18, Genetic Analysis Workshop 18; GBLUP, genomic best linear unbiased
prediction; SS RR-TDM, single-step random regression test-day model.

Significant test: Common lowercase letters within columns indicate no significant difference at
the 0.05 level by paired t-test.

2Results are means of 20 replicates of fivefold cross-validation.

PAverage of the predicted genetic values of SBP at ages of 10-100 estimated from the regular
RR-TDM was used as the response variable in the GBLUP model.

Cw is a parameter used in the construction of the combined relationship matrix in the single-
step method.



followed by GBLUP and SS RR-TDM with w=0.8. Pedigree-based
RR-TDM was the worst model in the cross-validation. The results also
indicate that the value of w had a significant effect on the prediction
quality of SS RR-TDM in analyses of this data set.

DISCUSSION

With the simulated longitudinal data and real data from GAW18, we
extensively investigated the performance of SS RR-TDM in genomic
prediction, in comparison with the regular RR-TDM and GBLUP
models. The results showed that SS RR-TDM outperformed other
models in most cases in terms of all the measures of prediction quality,
that is, accuracy, bias and MSE, and in all scenarios of different
heritabilities, numbers of QTL and selection designs.

Advantages of SS RR-TDM in prediction quality

From our simulation results, we found that marker-based models, the
GBLUP and SS RR-TDM models, outperformed the pedigree-based
model (RR-TDM). For the pedigree-based method, accuracy is only
contributed by the genetic relationship between individuals, which can
be explained by the pedigree-based numerator relationship matrix.
However, marker-based methods further exploited linkage disequili-
brium (LD) and cosegregation to capture the linkages of SNP markers
and QTL (Habier et al., 2013). Therefore, maker-based models could
achieve higher accuracies.

Among marker-based models, SS RR-TDM achieved higher accura-
cies than the GBLUP model, especially in the case of random selection
(Figure 3a). This is because, using the H matrix in the single-step
method was equivalent to imputing missing genotypes of individuals
with phenotypic but no genotypic data (Christensen and Lund, 2010),
and thus enlarged the training sets. The advantage in terms of accuracy
of the single-step method over the pedigree-based and multi-step
methods was also observed in other studies (for example, Christensen
et al, 2012; Koivula et al., 2015). We further enlarged the training
population to include 4000 individuals from the first 2 generations to
compare performance of different models under the default scenario.
The results showed that SS RR-TDM still outperformed the GBLUP
model (Supplementary Table SI). As we expected, with a larger
training set, prediction accuracy increased and bias decreased for
models using genomic information.

One of the concerns regarding GBLUP is double counting. In our
study, DRP was calculated using the method proposed by Garrick et al.
(2009), which removed the parent average (PA) effect in PGV.
However, in the simulation study, similar accuracies were observed
for GBLUP with DRP and PGV as response variables, for example, in
Table 2. When only pedigree was used, prediction of PGV of an
individual used information from parents, own phenotypes and
progeny. In our simulation study, all individuals in the training set
had their own phenotypes and only about half of them had known
parents in pedigree. Compared with the situation where the predicted
individual had no phenotype, PGV herein contained less information
from parents. Therefore, the difference between PGV and DRP was
small and the degree of double counting in GBLUP was low in our
study. This may be the reason why GBLUP with PGV and DRP
achieved similar results.

However, removing the PA effect in PGV also means that less
information could be used in evaluation, even though including PA
may lead to double counting in GBLUP. Moreover, compared with the
PA computed using all the phenotypic data and pedigree, the DGV of
individuals in the testing set will contain less amount of phenotypic
information if none of the genotyped individual’s relatives have been
genotyped. The simple way to resolve this problem is calculating an
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index by combining DGV with PA (VanRaden et al., 2009). Under the
default scenario in our simulation study, the index of DGV with PA,
which was calculated as in Guo et al. (2010), increased the accuracies
from 0.65 to 0.67 and from 0.63 to 0.66 for GBLUP with PGV and
DRP as response variables, respectively. However, prediction accuracy
of the index was still lower than that of SS RR-TDM (0.71). This is
consistent with the findings in Lourenco et al. (2014), where the
single-step method performed better than the index. In practice, if the
DGV and PA have already been calculated, the index is a better choice
than each of them. But SS RR-TDM is the most simple, accurate and
suitable method for evaluation of longitudinal traits.

In our study, SS RR-TDM had less bias compared to the GBLUP
model. Other studies also reported that the single-step approach
achieved lesser biases than the GBLUP model (Vitezica et al., 2011;
Christensen et al., 2012). This may be because the single-step method
combined all individuals of different generations in the joint analysis,
and the multi-step approach mostly separated the training and
validation sets in different generations. In addition to higher accuracy
and less bias, SS RR-TDM has the advantages of being able to generate
the PGV curve over time and easily compute the PGV of a particular
time point or period.

Influence of heritability and number of QTL on prediction

For all the models used in our study, accuracy increased and bias
decreased with heritability (Figures 1a and b). Similar results were also
found for the multi-step method, including GBLUP, BayesB and a
mixture model approach in real data studies (for example, Luan ef al.,
2009). The simulation study of Guo et al. (2010) used both Bayesian
non-linear models and the GBLUP model, and also observed that high
heritability resulted in higher accuracy and lower bias compared to
low heritability. These results confirmed the theoretical expectation
that much more phenotypes were necessary to achieve certain
accuracies for low-heritability traits.

In our study, we observed that accuracy and bias for all the models
did not change obviously with the number of QTL (Figures 2a and b).
Daetwyler et al. (2010) investigated the effect of genetic architecture on
the prediction accuracy of marker-based genomic prediction models.
They also found that the GBLUP model presented a relatively constant
accuracy across different numbers of QTL. In another simulation
study, higher accuracy was achieved for smaller numbers of QTL with
the BayesB model, and also the GBLUP model resulted in similar
accuracies for different numbers of QTL (Clark et al., 2011). Based on
these results, we inferred that the marker-based models used in this
study, that is, SS RR-TDM and GBLUP, which simply assumed that all
markers had equivalent marker variances, were insensitive to the
number of QTL. The Bayesian type model with unequal marker
variances assumption for the single-step approach applied to
longitudinal data still needs more investigation.

Persistency of accuracy and bias over generations

According to our results, accuracies decreased over generations with
all models under scenario 1 (random selection) and scenario 2 (non-
random selection based on PGV). The decrease over generations was
most obvious for the regular RR-TDM, which was only based on the
pedigree. The marker-based models (GBLUP and SS RR-TDM)
showed more robust accuracies over generations (Figures 3a and 4a).
Similar results were observed for the GBLUP and Bayesian methods in
the real data analyses of Wolc et al. (2011), which can be attributed to
the facts that the regular RR-TDM only used pedigree information,
and the genetic relationship between the training and testing sets
became more and more distant when the testing generation increased.
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However, in our analyses, the accuracy of marker-based models was
mainly attributed to the additive genetic relationship between indivi-
duals and the population-wide linkage disequilibrium (LD) of the
marker and QTL (Habier ef al., 2013). When the generation between
the testing and training sets was apart, marker-based models still
utilized LD, which was more persistent over generations than the
genetic relationship.

When the testing generation was not very distant from that of the
training set, that is, generations 4 and 5, SS RR-TDM achieved better
accuracies than the GBLUP model (Figure 3a and Figure 4a). The
possible reason was that SS RR-TDM used genotypes of the training set
(generations 1 and 2) and also the imputed genotypes of generation 3,
but the GBLUP model could only use genotypes of the training set
(generations 1 and 2). Therefore, SS RR-TDM had a larger size of
training set (generations 1, 2 and 3) than that of the GBLUP model.
However, the advantage of SS RR-TDM over the GBLUP model
disappeared at testing generations 7-10 under the scenario of non-
random selection (Figure 4a). This could be because the relationship
between the testing and training sets became more apart for
generations 6-10 under non-random selection. Thus, the imputed
genotypes of generation 3, which used genotypes of both the training
and testing sets, were less accurate compared with those for the testing
generations 4 and 5.

For marker-based models, accuracies declined more rapidly under
scenario 2 of selection based on PGV (non-random selection). One
possible reason was that the relationship of the testing and training
sets became more distant at a certain generation in scenario 2 than in
scenario 1. This was contributed by the higher selection pressure of the
non-random selection. Meanwhile, higher selection pressure of non-
random selection could also accelerate the change in MAF of markers
and the reduction of genetic variance. This would increase the
breakdown of LD of markers and QTL. Akanno et al. (2014) also
reported higher accuracies of genomic prediction over generations
under random selection. Muir (2007) observed similar results in his
simulation study.

In our study, the MME of SS RR-TDM was solved by the best linear
unbiased prediction method (Henderson, 1975). In this method, the
MME has to be solved at every generation to obtain the prediction of
testing individuals, even without adding additional genotypic or
phenotypic information to the training set. Wang et al. (2012) showed
that SNP effects could be back-solved from PGVs using the main
single-step evaluation. Liu ef al. (2014) proposed an extended model of
the single-step method, namely, the single-step SNP model, which
could directly estimate marker effects to avoid re-estimation in a short
period of time. These would be helpful in practical applications.
Fernando et al. (2014) presented Bayesian methods for the single-step
approach. These methods allow the indirect prediction based on SNP
effects, which do not require the MME to be solved at each round
prediction of the testing set. However, it was suggested to re-train the
models at a specific interval of generations in genomic predictions
(Muir, 2007), which was also necessary for the single-step approach
according to our results (Figures 3 and 4). Wolc et al. (2011) also
suggested continuous phenotyping and genotyping for the single-step
approach if economic conditions permit. This is more warranted
when the population is under non-random selection.

Study of real data from GAW18

Apart from the simulation study, we also explored the performance of
different models in analyses of a real data set of human systolic blood
pressure provided by GAWI8. In this real data set, genotypic
information was only available for odd-numbered chromosomes,
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and this would have a negative effect on the performance of
marker-based methods. Even so, cross-validation results clearly
demonstrated that SS RR-TDM with a w of 0 was the best model in
analyses of longitudinal data (Table 3).

Furthermore, SS RR-TDM with w =0 performed significantly better
than with w=0.8. Besides avoiding the singularity of the G matrix, w
also reflects the fraction of genetic variance not described by markers
(Christensen et al., 2012). The smaller the value of w, the more the
genetic variance that is attributed to markers. Under the cross-
validation design we adopted, genomic information was more valuable
for prediction than pedigree. Therefore, it is reasonable that SS RR-
TDM with a smaller w achieved better performance.

As mentioned, the strategy we used in cross-validation would
reduce the contribution of PA in prediction. We adopted this strategy
because our study situation was closer to reality, where usually only a
limited number of family members could have longitudinal data.

With regard to the regular RR-TDM and SS RR-TDM models, as
246 of the 932 individuals had only one measurement, these data may
not fit the random regression test-day model efficiently. Moreover, as
there were only genotypes of half the chromosomes available, the
advantage of the SS RR-TDM could not be fully explored by this
GAWI18 data set. We expect that more benefits of the SS RR-TDM
model could be realized with a real data set with markers that spanned
all chromosomes.

Some issues about implementation of SS RR-TDM

In the single-step method, the construction of H matrix involves
several parameters and some of them were shown to have effects on
the accuracy and unbiasedness of prediction (Vitezica et al., 2011;
Christensen et al., 2012; Koivula et al., 2015). However, in the analyses
of simulated data, w was only set to 0.05 in each analysis. As the results
explicitly showed that SS RR-TDM with w=0.05 outperformed other
methods in all the three measures of prediction quality, we did not test
other values of w. In analyses of real data, we performed SS RR-TDM
with two values of w (0 and 0.8), with other parameters being set as
constant the results (Table 3). This analysis indicated that the choice of
w significantly affected the performance of the single-step method.
Previous studies in animal breeding have shown that w only has a
minor effect on prediction quality (VanRaden, 2008; Koivula et al,
2015). The difference in our study’s conclusion may be attributed to
the cross-validation design we employed. As mentioned above, the
cross-validation design proved that pedigrees was included, corre-
sponding to the smaller value of w would be much less useful than
marker information. Thus, SS RR-TDM would perform better when
more genotypic information was included, corresponding to the
smaller value of w. Therefore, it could be concluded that the effect
of parameters depends on data structure and the trait analyzed. In
implementation of single-step genomic evaluation, it is better to test
different combinations of these parameters to find out the optimal
parameters for prediction.

Our simulation study used relatively small data sets, but clearly
demonstrated the benefits of SS RR-TDM under various scenarios.
However, one main obstacle to applying this model in practice was the
computing time required for large data sets. More researches in the
computing efficiency of the single-step approach are necessary.

In general, the SS RR-TDM model described herein is a simple
extension of the single-step method to the genomic evaluation using
the random regression test-day model. Liu ef al. (2014) proposed the
single-step SNP model, where marker effects can be modeled with
different distributions than in Bayesian models. Meanwhile, Fernando
et al. (2014) presented a class of Bayesian methods for the single-step



approach. As proved in multi-step approaches, Bayesian methods
showed advantages when marker density increased (Meuwissen and
Goddard, 2010) and they captured more LD information than the
GBLUP method (Zhong et al., 2009). We believe that it is meaningful
to develop single-step genomic evaluation using the random regression
model based on Bayesian methods when marker density increases
explosively in the era of genome sequencing.
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