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. When encoding visual targets using various lagged versions of a pseudorandom binary sequence of

. luminance changes, the EEG signal recorded over the viewer’s occipital pole exhibits so-called code-
modulated visual evoked potentials (cVEPs), the phase lags of which can be tied to these targets. The
cVEP paradigm has enjoyed interest in the brain-computer interfacing (BCl) community for the reported
high information transfer rates (ITR, in bits/min). In this study, we introduce a novel decoding algorithm
based on spatiotemporal beamforming, and show that this algorithm is able to accurately identify the
gazed target. Especially for a small number of repetitions of the coding sequence, our beamforming
approach significantly outperforms an optimised support vector machine (SVM)-based classifier, which is
considered state-of-the-art in cVEP-based BCI. In addition to the traditional 60 Hz stimulus presentation
rate for the coding sequence, we also explore the 120 Hz rate, and show that the latter enables faster
communication, with a maximal median ITR of 172.87 bits/min. Finally, we also report on a transition
effect in the EEG signal following the onset of the stimulus sequence, and recommend to exclude the first
150 ms of the trials from decoding when relying on a single presentation of the stimulus sequence.

. Among the gamut of brain-computer interfacing (BCI) paradigms!, the code-modulated visual evoked potential
: (cVEP) has been reported to the yield one of the highest information transfer rates (ITRs)?. The cVEP paradigm
defines a binary sequence of high and low stimulus intensities with unequal duty cycles, called the ‘code, and
uses for each selectable target a unique lagged version of this code?™*. As coding sequence, the m-sequence® is
often chosen because of its favourable autocorrelation properties?, amongst other properties®. M-sequences have
also been applied in other fields such as fMRI” and sensor technology®. Albeit rarely adopted, as an alternative to
m-sequences, a periodic pseudorandom binary code has been described for cVEP?.
: As far as we are aware, only one group previously investigated the application of a faster stimulus presenta-
: tion for cVEP (i.e., higher than the traditional 60 Hz)'*'%. The encoding sequence was presented to the subject
. by LEDs at a carrier frequency of 40 Hz controlled by an Arduino micro-controller, which would compare to a
80 Hz screen refresh rate. The authors investigated the effect of stimulation colour!®", classifier kernels!! and
filter bands'?, but could not achieve a higher decoding performance for the faster stimulus rate. In one of their
studies!!, they report on the decoding performance with an increasing number of m-sequence repetitions, but did
not consider the implication on the performance in terms of ITR.
Although cVEP has achieved among the highest ITR, the paradigm is considerably less studied compared to
. other visual BCI paradigms such as the P300 event-related potential (ERP) and the steady-state visual evoked
. potential (SSVEP) (see the review of Gao and coworkers' for reference). Traditionally, cVEPs are decoded from
. electroencephalography (EEG) using a template matching algorithm?, canonical correlation analysis (CCA)"
or a combination!>!¢. BCIs adopting these algorithms have been proven successful in online settings, includ-
ing EEG-based spelling applications'” and robot control'®!?, and have also been applied in an intracranial EEG
(iEEG) setting®. In recent research, the support vector machine (SVM) has been shown to identify targets more
accurately than the traditional decoding algorithms'®, with a linear kernel achieving in the highest accuracy'’.
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Figure 1. Time-course of one trial during the experiment.

Stimulation Analysis
Session stimulus presentation rate | m-sequence repetitions per trial | trial duration | dow pling ples per segment
Seo 60Hz 5 5255 100Hz 105
Sixo 120Hz 10 5.25s 200Hz 105

Table 1. Stimulation and analysis details of both sessions. For the faster stimulation rate, the downsampling
rate is doubled, leading to an equal number of samples in the segments of both sessions. Note that a segment
corresponds to the EEG response elicited by one full presentation of the m-sequence.

Recently, a spatiotemporal extension of the beamforming algorithm has been introduced in EEG-BCI and
shown to yield promising results with EEG signals that have consistent spatial and temporal characteristics,
such as the N400-2! and P300* ERPs. With SSVEP, the combination of the spatiotemporal beamformer with a
time-domain analysis?>** proved successful in both offline” and online? settings.

The goal of this study is to assess the performance of the spatiotemporal beamforming algorithm for target
identification when using cVEP-based encoding, and to compare the performance for both traditional (60 Hz)
and high-speed (120 Hz) stimulus presentations.

Methods

Subjects. Seventeen subjects with normal or corrected-to-normal vision participated in the experiment (14
female, 13 right handed, aged 22.35 £ 2.9, ranging from 18 to 30 years old). Prior to the experiment, the subjects
read and, when they agreed, signed an informed consent form approved by the ethical committee of our univer-
sity hospital UZ Leuven. All subjects received a monetary reward for their participation. This study was carried
out in accordance with the relevant guidelines and regulations.

Experimental design. The interface consisted of 32 circular white targets (4 cm diameter, 2 cm vertical and
horizontal inter-target distance) that follow an m-sequence stimulation paradigm (see further) and that were
overlaid with static (i.e., non-flickering) grey letters or numbers arranged in a matrix (Fig. 1). The interface was
presented on a ViewPixx-EEG monitor (24 inch, native 120 Hz refresh rate, resolution of 1920 x 1080, VPixx
Technologies, Canada). The subjects were seated approximately 60 cm from the monitor. At this distance, the
circular targets spanned a visual angle of approximately 3.8°, with an inter-target angle of 1.9°. The experiment
was implemented in Matlab, using the Psychophysics Toolbox extensions?’~%’.
The following m-sequence of length of 63 was used to encode the targets:

000100001011001010100100111100.000110111001100011101011111101101

where targets were lagged by integer multiples of two frames. We adopted the equivalent-neighbours strategy
used in other studies'>'?, but decided not to implement the additional outer border in order to reduce visual
demand.

Figure 1 visualises the experimental interface during one trial. A trial started with the presentation of a cue
(i.e., one target shown in red). Subjects were asked to redirect their gaze to the cued target and to press a button to
start the stimulation. After that, all targets were hidden (with the characters still shown in grey) for one second,
followed by the stimulation phase during which all targets adopted their unique lagged m-sequence and repeated
this sequence either 5 or 10 times (depending on the session, see further). To avoid visual fatigue and boredom,
subjects were allowed to take breaks between trials.

Unlike traditional 60 Hz monitors, the monitor used in our experiment had a refresh rate of 120 Hz, which
allowed us to experiment with high-speed presentations of the coding sequence. The full experiment consisted
of two sessions. In one session, S,,, the stimulus presentation followed the screen refresh rate. In the other ses-
sion, S¢), we simulated the stimulation as it would be presented on a 60 Hz screen by presenting each entry of
the m-sequence for two frames before moving to the next entry. In each trial of S, and Sg, the m-sequence was
repeated 10 and 5 times, respectively. In both sessions, the stimulation duration per trial was 5.25 seconds, and all
targets were cued 5 times in pseudorandom order, leading to a total of 160 (=32 x 5)trials per session.

The two sessions were counterbalanced across subjects: 9 of the 17 subjects started with Sy, while the other 8
performed S, first. Table 1 summarises the details of the two sessions.
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Figure 2. Locations of the 32 electrodes used during the experiment.

Recording. EEG was recorded continuously using a SynampsRT device (Compumedics Neuroscan,
Australia) operating at a sampling rate of 2000 Hz with 32 active Ag/AgCl electrodes covering the parietal and
occipital poles, where consistent activations in response to cVEP stimulation are expected'®!>. The ground (GND)
and reference (REF) electrodes were located at AFz and FCz, respectively (Fig. 2). Conductive gel was applied at
each electrode site and impedances were kept below 2 k().

Preprocessing. The raw signal was re-referenced offline to the average of both mastoids signals (TP9 and
TP10) and filtered between 4 and 31 Hz using a 4th order Butterworth filter, in order to attenuate the presence
of artefacts such as slow drifts due to electrode gel expiration and sweat, low frequency oscillations due to elec-
trode movements, high-frequency extraphysiologic noise, and powerline interference. The EEG was then cut into
5.25-second epochs starting from the onset of the stimulation, and labeled with the corresponding cued target.
Finally, the epochs of S¢, and S),, were downsampled to 100 Hz and 200 Hz, respectively, and stored for further
analysis. The difference in downsampling rate was included to obtain a fair comparison between the classification
results (each repetition of the m-sequence at both the traditional and faster stimulus rate has an equal number of
samples, see Table 1). For each subject and session, 160 labeled epochs were extracted and saved.

Classification. Target identification was achieved using a classifier based on the linearly-constrained
minimum-variance (LCMV) spatiotemporal beamformer?'. This recent extension of the original spatial beam-
former estimates the contribution of an a-priori specified activation pattern (i.e., a template, a signal of inter-
est) to the current input. It has been shown that LCMV beamforming is a special case of Minimum Variance
Distortionless Response (MVDR) beamforming®, introduced to improve the robustness of the latter®'. The EEG
responses to the stimuli of interest are not only confluenced by ongoing brain activity but can also be modulated
by the subject’s attention level, motivation and fatigue. The LCMV beamformer in an EEG context has shown to
be effective as spatial filter for ERP detection®” and source localisation for studying source connectivity**=>, and
its spatiotemporal extension has shown effective for ERP analysis®! and as target identification algorithm in BCI
settings?>?>%6,

Since each target elicits a different brain response (cf. unique lags of the m-sequence), each target evokes an
unique EEG activation pattern, and training the classifier thus involves the estimation of 32 activation patterns,
each used to construct a beamformer tailored to a specific target. The training and classification procedures for
both the beamformer- and SVM-based classifiers are depicted in Fig. 3.

Beamforming. The activation patterns and the beamformers (one for each target) were calculated from the
training data T,,,,,,;,, € R™” <1 where m is the number of channels, t is the number of samples and [ is the num-
ber of epochs, as follows. For each epochin T, ;... ., a maximal number of c-second consecutive non-overlapping
segments were extracted, where c represents the time needed to display one complete m-sequence. Let
§ € R™ ™ beall r segments extracted and §; € R™"*¥ be the segments from § in response to the cued target
i € [1..32], with n the number of samples per segment and k the total number of segments extracted for target i.
Note that, while the m-sequences of S,,, only span half the time (c = 0.525s) compared to S, (c = 1.05), their
sampling rate is doubled so that the segments obtained from epochs of both Sy, and S,,, have the same number of
samples.
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Figure 3. Visual representation of the training and classification procedure for the beamformer- and SVM-
based classifier.

The spatiotemporal activation pattern A; € R™*" for target i was then obtained as the average of all k seg-
ments from S;. The spatiotemporal beamformer w, € R ! for target i was calculated as an LCMV beamformer
as follows: let E € R™ ™" be the matrix where each row is obtained by concatenating the rows of a corresponding
sequence §[*, *, r], X € RO X (mm) b o covariance matrix of E, and aiT € RV 4 vector containing the concat-
enated rows of A;. The LCMV beamformer under constraint a;w; = 1 can be calculated using the method of
Langrage multipliers®:

a;x a, (1)

R jn dicates the concatenated rows of

and applied to the data as a simple weighted sum: y, = sw,, wheres €
an input segment S, € R™*".

In our study; the covariance matrix 3 was estimated using Matlab’s (2015a) cov function and was inverted using
the pinv function, which calculates the Moore-Penrose pseudoinverse, to account for possible singularity of .

In some studies, a single activation pattern A, was calculated based on the EEG response to target 1, and the activa-
tion pattern A, of target i was constructed as a circular-shifted version of A, (following the phase difference between the
m-sequences of targets 1 and i)>'°>. However, given the availability of training data for each target, we opted to calculate
the activation patterns for each target independently. In this way, discontinuities introduced by the circular shift were
avoided and minor variations between templates were taken into account, leading to more accurate beamformers.
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Classifier. In addition to building a beamformer for each target, a threshold was determined for each target in
order to classify segments (in a one-vs-all fashion) into target-(positive class) and non-target (negative class).
The threshold for each target was optimised via a Receiver Operating Characteristic (ROC) analysis*”*, using an
additional 4-fold cross-validation on the training data (3 folds were used to train the beamformer, the remaining
fold to test its performance). The ROC curve plots binary classification performance as a function of threshold
value. Since the maximum classification performance could be reached for multiple thresholds (equal ROC points
or points on the maximal iso-performance line), we selected the median of these.

Classification of a new epoch involved the extraction of the segments S,,,, using an identical procedure as for
the training epochs. The segments were averaged and concatenated and then independently filtered by each
beamformer to obtain a score y; for each target i. Among the scores that exceeded the corresponding threshold,
the one with the highest score was taken as winner. In case of none of the scores exceeded their threshold, the
winner was determined by the highest (sub-threshold) score.

We compared our classifier based on spatiotemporal beamforming (stBF) with a SVM-based classifier. Similar
to before, segments are extracted from the training epochs and concatenated to form feature vectors (cfr. E).
Then, for each target, a one-vs-all linear SVM* was trained, whose regularisation parameter A was optimised
using a line-search strategy and 4-fold cross validation®. All SVMs were trained using the modified finite Newton
method*!. This procedure was successfully applied before to detect the P300 event-related potential (ERP) in
patients with incomplete locked-in syndrome (LIS)*, to detect error-related potentials (ErrPs) in healthy sub-
jects®, and served as a comparison for the spatiotemporal beamformer for P300 detection??. SVMs have been
shown to outperform the traditional CCA classifier for cVEP detection!®!!, and we opted for an optimised version
of the SVMs in order to maximise accuracy. Prediction of a given (concatenated) input segment (cfr. s) was given
by the SVM returning the highest (i.e., most positive) score.

Channel selection. For each subject, the channels included in the analysis were obtained using a greedy
approach, in which we iteratively added the channel that improved the accuracy the most until it did no longer
improve or until 100% accuracy was reached. As optimisation criterion, we used the classification accuracy
obtained with the beamformer-based classifier when averaging two repetitions of the m-sequence (i.e., signal
length of 2.10 and 1.05 sec for Sy and S},, respectively).

Transition effect. It has been shown that the brain exhibits a latency of 100 to 150 ms in response to SSVEP
stimulation***. During this time, the SSVEP is not stable, and in SSVEP-BCI research, the initial 100 to 150 ms
of the epochs (time-locked to the onset of the flickering stimulation) is often excluded from analysis as it leads to
increased accuracies®*. Similar to SSVEP, cVEP is a visual paradigm adopting flickering stimulation (albeit not
periodic), and we tested whether performance could be improved by excluding the initial 150 ms of each epoch.
Note that, when excluding the first 150 ms of each epoch, an additional 150 ms is required at the end of the epoch
to obtain the same number of complete m-sequences. For example, when excluding the initial signal, the first full
m-sequence requires 0.150 + 1.05 = 1.2 seconds, compared to just 1.05 second without the exclusion.
In this study, we ran the analysis both with and without the exclusion of the initial 150 ms of each epoch.

Performance evaluation. The performance of the classifiers was estimated offline using a stratified 5-fold
cross-validation strategy. Since each target was cued 5 times, each fold contained one 5.25-second epoch for each
target. We obtained the target identification accuracy for different signal lengths, corresponding to multiples of
the time needed to present one repetition of the m-sequence.

As the two stimulus presentation rates as well as the possible exclusion of the initial signal lead to differences
in stimulation time, one should be careful in interpreting the accuracies obtained by the different conditions. The
ITR, however, takes into account the stimulation length and therefore provides a fair comparison between the
conditions. Hence, next to target identification accuracy, we also measure ITR (in bits/min) as follows*"*%;

log, N + pog p + (1 — p).log (~—£
ITR = —2 z Z(N“),
t/60 )

where N is the number of selectable targets, p is the accuracy of target identification, and ¢ is the time needed
to make a selection (in seconds). In our study, N was equal to 32 and ¢ was set to the stimulation length plus an
additional 500 ms to account for the time the subject would need to switch their gaze to the next target. In the
literature, studies investigating BCI spelling interfaces often adopt a gaze-switching interval in the range from 300
to 1000 ms'7#*4-5! and a 500 ms interval has been shown feasible in an online setting™, albeit with the SSVEP
paradigm.

In addition to accuracy and ITR, we also measured the time needed to train the spatiotemporal beamformer-
and SVM-based classifiers on all data for each subject. Timings were collected on a quad-core 2.3 GHz Intel i7
machine.

Statistics. Since the distributions do not consistently follow a gaussian distribution, we adopted the
non-parametric (two-tailed) Wilcoxon signed rank test. We used this test to compare the accuracy of both clas-
sifiers and to compare the influence of excluding the first 150 ms of each epoch. The significance threshold was
set to 0.05.

Data Availability. The (anonymised and pre-processed) data that support the findings of this study, as well
as the implementation of the classifiers and the analysis, are made available at https://kuleuven.box.com/v/CVEP.
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Results
All results of S¢y and S},, are summarised in Figs 4 and 5, respectively.

For both sessions, the optimal channel set was obtained using a greedy approach. For S, all subjects reached
convergence with three or less channels (Fig. 4b), while between 3 and 6 channels were selected for S,,, (Fig. 5b)
before convergence was reached. The occipital channels Oz and O1 were selected most often (Figs 4a and 5a),
and several parietal channels were selected by a smaller number of subjects, indicating considerable inter-subject
variability.

Using the individually optimised channel sets, the target identification accuracy for both the spatiotemporal
beamformer- and the SVM-based classifier are shown in Fig. 4c for Sy, and Fig. 5¢ for S,,, both with and without
the exclusion of the initial 150 ms of the stimulation. As expected, longer stimulation times (i.e., more repetitions
of the m-sequence) increases performance. For the same stimulation lengths, the faster stimulus presentation
(S120) is able to present twice the amount of m-sequences compared to Sy, which results in a higher accuracy for
equal-length stimulation. Only the faster stimulus presentation in combination with the exclusion of the initial
signal is able to surpass the accuracy threshold of 70% with a single repetition of the m-sequence. All other con-
ditions require at least two repetitions to reach this threshold, which is deemed minimal for establishing reliable
communication*%3-%,

Using the full signal, the accuracies of both classifiers differ significantly when averaging up to four (S,
Fig. 4c,) (p=0.033; p=0.012; p=0.0017 and p=0.030) and two (S5, Fig. 5¢) (p=0.016 and p = 0.020) repeti-
tions of the m-sequence, respectively. With the exclusion of the initial 150 ms, the two classifiers are not signifi-
cantly different. However, within stBF, the accuracies with and without the exclusion of the initial signal
significantly differ for 2 to 4 repetitions (Sg) (p < 0.001, p=0.003 and p =0.004) and 1 repetition (S;,,)
(p < 0.001) of the m-sequence, respectively. Similarly, within the SVM-based classifier, the accuracies with and
without the exclusion of the initial signal significantly differ for one repetition (S,) (p <0.001) and 1 to 3 repeti-
tions (S15) (p <0.001, p <0.001 and p=0.008) of the m-sequence, respectively.

A detailed inspection of the accuracy increase with one repetition of the m-sequence (Fig. 4d for S¢, and
Fig. 5d for S},,) shows a negative relation between the increase in accuracy and the number of selected channels.
This effect is most prominent for stBF at the traditional 60 Hz stimulus rate (Fig. 4d). All subjects requiring three
channels have a reduction in accuracy by removing the first 150 ms of the epochs, while the other subjects have
an increased accuracy. The SVM is less influenced by the number of channels, and removing the initial 150 ms
signal only decreases its accuracy for two subjects. While this negative trend can also be detected for the faster
stimulation rate, all subjects have an increased accuracy compared to when the initial 150 ms signal is included
in the analysis.

For both sessions, the time needed to train stBF on all data of each subject is significantly lower compared to
SVM (Fig. 4e for Sy, and Fig. 5e for S),), and for both classifiers, the training time increases when more channels
are included in the analysis.

For both the traditional and faster stimulus presentation rates, the median ITR reaches its maximal value
of 100.46 and 172.87 bits/min, respectively, using the beamformer-based classifier, two repetitions of the
m-sequence and the full signal (stimulation time =2.1 and 1.05 seconds, respectively).

Discussion

In this study, we assessed the feasibility of spatiotemporal beamforming for resolving m-sequence encoded targets
in a cVEP setting, and investigated the influence of stimulus presentation rate on target identification accuracy
and ITR.

We showed that the proposed classifier is able to accurately discriminate targets, and that it is able to compete
with a classifier based on optimised linear SVMs. We additionally show that a faster stimulus presentation rate
is beneficial for the communication speed, as more iterations of the m-sequence can be presented in an equal
amount of time. Both stimulation rates have similar performance in terms of number of m-sequence repetitions,
and at least two repetitions are necessary to obtain a performance over 70%, which is deemed minimal for estab-
lishing reliable communication>**-%°. With two repetitions of the m-sequence, the median ITR is maximal and
reaches 100.46 bits/min for the traditional 60 Hz and 172.87 bits/min for the faster 120 Hz stimulus presentation,
respectively. As far as we are aware, no other cVEP study has reported a higher ITR. As commercial monitors
with high frame rates are becoming increasingly more accessible at affordable prices, they are recommended for
cVEP-BCI applications.

Compared to the SVM, the spatiotemporal beamformer can be trained considerably faster, as there are no
parameters to be optimised. This could be important to achieve fast, online retraining of the beamformer-based
classifier without causing the interface to be temporarily unavailable or to interfere with stimulation. The shorter
training time would also allow for other optimisation algorithms to be executed (eg., channel selection, down-
sampling rate, filtering range, etc.) that would otherwise not be able to complete within a reasonable time.

We present evidence that the cVEP response exhibits a transition effect following the onset of a stimula-
tion sequence. Previously, a response latency of 100 to 150 ms has been described for SSVEP*, and in recent
SSVEP-BCI research, the initial signal was excluded from the analysis to improve target identification®*. In this
study, excluding the initial 150 ms of each epoch improves classification accuracy of both classifiers when using
merely one repetition of the m-sequence. The performance increase is negatively correlated with the number
of selected channels and mostly affects the spatiotemporal beamformer, even causing a performance decrease
when adopting three channels at the traditional 60 Hz stimulus presentation rate. For the 120 Hz case, all accu-
racies increase despite larger channels sets. The discrepancy between these results could be due to the fact that,
when excluding the initial signal from each epoch, the last m-sequence of each epoch is not complete, and the
number of complete training segments is reduced by 20% for Sy, compared to only 10% for S,,,. In order to
maintain the same number of training segments, one could extend the stimulation of the training session by
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Figure 4. Results for the session adopting the traditional 60 Hz stimulus rate. (a) Scalp plot indicating how
many times each channel was selected by the greedy channel-selection algorithm across subjects. Note that
most of the frontal and temporal area was not recorded during the experiment. (b) Summary of the total
number of channels selected by the greedy channel-selection algorithm before convergence. (c) Target
identification accuracy for both classifiers with an increasing number of repetitions of the stimulation sequence
(1 m-sequence = 1.05 sec), with and without the initial 150 ms of each epoch. Black horizontal lines indicate
significant differences between the classifiers. Blue and red horizontal lines indicate significant differences when
excluding the first 150 ms. (d) Regression analysis of the increase in target identification accuracy based on one
repetition of the m-sequence when excluding the first 150 ms. (e) Time needed to train the classifiers on all data
of each subject. (f) Virtual ITR achieved when factoring in 0.5 seconds for gaze shifting.
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Figure 5. Results for the session adopting the 120 Hz stimulus rate. (a) Scalp plot indicating how many times
each channel was selected by the greedy channel-selection algorithm across subjects. Note that most of the
frontal and temporal area was not recorded during the experiment. (b) Summary of the total number of channels
selected by the greedy channel-selection algorithm before convergence. (c) Target identification accuracy for
both classifiers with an increasing number of repetitions of the stimulation m-sequence (1 sequence =0.525sec),
with and without the exclusion of the initial 150 ms of each epoch. Black horizontal lines indicate significant
differences between the classifiers. Blue and red horizontal lines indicate significant differences when excluding
the first 150 ms. (d) Regression analysis of the increase in target identification accuracy based on one repetition
of the m-sequence when excluding the first 150 ms. (e) Time needed to train the classifiers on all data of each
subject. (f) Virtual ITR achieved when factoring in 0.5 seconds for gaze shifting.
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150 ms. Additionally, the negative correlation between increase in accuracy and number of selected channels
can be explained by the fact that the dimensions of the spatiotemporal beamformer increase linearly with the
number of channels, thereby requiring more data to accurately estimate the covariance matrix®>* (cf., the curse
of dimensionality).

Conclusion

In this study, we have shown that a classifier based on spatiotemporal beamforming is able to accurately dis-
criminate targets encoded by an m-sequence, and could be employed in the context of cVEP BCI. We compared
the traditional 60 Hz and the faster 120 Hz stimulus presentation rates, and found that the latter yields more
accurate results for equal stimulation lengths, as the encoding sequence can be presented twice as many times
as with the 60 Hz case. The maximal median ITR for both stimulus presentation rates and for two iterations of
the m-sequence was 100.46 bits/min for the 60 Hz (stimulation time = 2.1 seconds) and 172.87 bits/min for the
120 Hz case rate (stimulation time = 1.05 seconds). We additionally described a transition effect following the
onset of the stimulation, similar to SSVEP, and showed that removing the initial 150 ms of the epochs significantly
improves classification accuracy when relying on only one repetition of the encoding sequence.
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