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A B S T R A C T

The amplitudes of spontaneous fluctuations in brain activity may be a significant source of within-subject and
between-subject variability, and this variability is likely to be carried through into functional connectivity (FC)
estimates (whether directly or indirectly). Therefore, improving our understanding of amplitude fluctuations over
the course of a resting state scan and variation in amplitude across individuals is of great relevance to the
interpretation of FC findings. We investigate resting state amplitudes in two large-scale studies (HCP and UK
Biobank), with the aim of determining between-subject and within-subject variability. Between-subject clustering
distinguished between two groups of brain networks whose amplitude variation across subjects were highly
correlated with each other, revealing a clear distinction between primary sensory and motor regions (‘primary
sensory/motor cluster’) and cognitive networks. Within subjects, all networks in the primary sensory/motor
cluster showed a consistent increase in amplitudes from the start to the end of the scan. In addition to the strong
increases in primary sensory/motor amplitude, a large number of changes in FC were found when comparing the
two scans acquired on the same day (HCP data). Additive signal change analysis confirmed that all of the observed
FC changes could be fully explained by changes in amplitude. Between-subject correlations in UK Biobank data
showed a negative correlation between primary sensory/motor amplitude and average sleep duration, suggesting
a role of arousal. Our findings additionally reveal complex relationships between amplitude and head motion.
These results suggest that network amplitude is a source of significant variability both across subjects, and within
subjects on a within-session timescale. Future rfMRI studies may benefit from obtaining arousal-related (self
report) measures, and may wish to consider the influence of amplitude changes on measures of (dynamic)
functional connectivity.
1. Introduction

The Human Connectome Project (HCP) is a unique neuroimaging
research resource, consisting of an extensive set of high quality imaging
data from a large number of healthy subjects (Van Essen et al., 2013). For
the first time, we have access to four repeat resting-state fMRI (rfMRI)
scans per subject (a total of 60 min), from a very large group of study
participants, alongside extensive demographic and behavioural subject
measures. The combined availability of multiple long scans per subject,
and a high number of subjects, offers a valuable opportunity to investi-
gate and differentiate between within-subject and between-subject
variability. Gaining a better understanding of the types of variability
that we observe in rfMRI data across subjects, and whether or not we see
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the same types of variability within subjects over time, is important in
relation to the biomarker potential of rfMRI. If the aim is to develop
rfMRI to the point where it can be used on a single case basis for diag-
nosis, prognosis or individualised treatment, it is essential to differentiate
between artifactual variability, within-subject (state) variability and
between-subject (trait) variability.

Several studies have been published that use the wealth of between-
subject information available in the HCP data. These studies have, for
example, identified brain correlates of a positive-negative behavioural
mode of population variation (Smith et al., 2015), and have showed that
connectivity profiles can be used to predict fluid intelligence (Finn et al.,
2015). However, analysing and interpreting such between-subject cor-
relations is challenging, partly because many of the demographic
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measures of interest (including IQ and BMI) are also correlated with
motion (Siegel et al., 2016). A recent study has revealed that the within-
subject patterns of associations between functional connectivity and
motion are very similar to the between-subject patterns of associations
between functional connectivity and motion (Siegel et al., 2016). This
suggests that subject head motion forms an important potential confound
for correlational studies.

In addition to these types of between-subject correlational research,
several studies have also investigated within-subject changes in rfMRI.
Data acquired from the same individual subject over approximately 18
months has shown that within-subject variability of functional connec-
tivity over time is especially high in visual and sensorimotor cortices,
whereas the same is not true for between-subject variability (Laumann
et al., 2015; Poldrack et al., 2015). The same dataset was also used to
identify two different functional connectivity patterns (meta-states) that
occurred repeatedly over time and were associated with significant dif-
ferences in self reported levels of attention and tiredness (Shine et al.,
2016). These findings point to the presence of significant variability
within subjects over time. This type of within-subject variability is
currently poorly characterized and understood, and may add a further
confound to both between-subject correlational studies and to dynamic
functional connectivity studies, that is commonly overlooked.

In this work, we focus primarily on the amplitudes of resting state
BOLD signal fluctuations (i.e., the standard deviation of time series),
because the amplitudes provide a localised summary measure for each
resting state network that is relatively easy to estimate and interpret, and
also has a direct, albeit complex impact on correlations between different
regions’ timeseries (i.e., apparent functional connectivity) (Cole et al.,
2016). The primary index of amplitude used in this paper is a measure of
the relative size of BOLD fluctuations. This timeseries amplitude measure
is closely related to the (fractional) amplitude of low frequency fluctua-
tion (ALFF), which is a measure of low frequency power rather than of
time series variance (Kannurpatti and Biswal, 2008; Zang et al., 2007;
Zou et al., 2008). Previous work has linked between-subject variability in
regional (f)ALFF to inter-individual difference in various aspects of
behaviour, such as working memory, executive control and response
inhibition (Mennes et al., 2011; Xu et al., 2014; Zou et al., 2013). Here,
we extend this work by estimating associations between regional
amplitude and a comprehensive set of measures including behaviour and
lifestyle factors, subject head motion, and functional connectivity. We
explicitly do not assume that the timeseries amplitude measure adopted
in this work is driven exclusively by neuronal signal fluctuations (an
assumption that is often made in the fALFF literature). In fact, we
extensively test the influence of subject head motion on within and be-
tween subject variability in amplitude, as well as the indirect influence of
head motion on functional connectivity estimates.

Changes in signal amplitude in either (or both) of two regions’
resting-state timeseries can result in changes in correlation (functional
connectivity) between the two time series (Friston, 2011). For example, a
change in correlation between two regions can be observed when a
shared signal is added to both time series (leading to increased amplitude
of both time series and increased correlation between them), or when an
unshared signal is added to one of the time series (leading to increased
amplitude in one of the time series and decreased correlation between
the two time series). Therefore, many differences in functional connec-
tivity that are observed between subject groups or within a subject across
multiple scans may be explained by the existence of shared or unshared
additive signals (Cole et al., 2016; Duff et al., 2017). Such additive signals
can result from a variety of different sources, including: changes in neural
processing, changes in non-neural noise sources, and changes in the local
signal to noise ratio. For example, previous work has shown that differ-
ences in preprocessing strategies can significantly alter functional con-
nectivity estimates (Gavrilescu et al., 2008; Weissenbacher et al., 2009).
Therefore, understanding the variability in the amplitude of resting state
networks plays an important role in functional connectivity
more generally.
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The aim of this work was to characterise between-subject and within-
subject variability in resting state network amplitudes. We hypothesised
that some aspects of variability are common both across subjects and
within subjects (i.e., variability caused by state differences), whereas
other types of variability may only be present across subjects, and not
within subjects (i.e., variability caused by trait differences). We show
that differences in the subjects’ arousal state can drive amplitude vari-
ability both across subjects and within subjects, particularly in visual,
somatosensory, and motor networks. Additionally, we reveal a complex
relationship between network amplitudes, behaviour and subject
head motion.

2. Material and methods

2.1. Data

This study primarily uses data from the Human Connectome Project
S900 release of resting state fMRI data from 819 subjects (452 male,
mean age 28.8 ± 3.7 years old) (Van Essen et al., 2013). Each subject
underwent a total of 4 resting state scans of 15 min duration over 2 days.
Multiband echo planar imaging was used with an acceleration factor of 8
to achieve whole brain imaging at 2 mm isotropic resolution with a TR of
0.73 s (Moeller et al., 2010; Ugurbil et al., 2013).

In addition to HCP data, data from UK Biobank was used in order to
replicate findings, and to perform between-subject correlations between
BOLD signal amplitude and between-subject measures relating to
arousal. Resting state scans (one per subject) were acquired using similar
parameters to HCP for a duration of 6.10 min (2.4 mm spatial resolution,
TR ¼ 0.735 s, multiband acceleration factor of 8) (Miller et al., 2016).
Data from 5847 UK Biobank subjects were used (2774 male, mean age
62.3 ± 7.5 years old).
2.2. Data pre-processing

The HCP data were preprocessed following HCP minimal pre-
processing pipelines, containing tools from FSL, Freesurfer and HCP
workbench (Fischl et al., 1999; Glasser et al., 2013; Jenkinson et al.,
2012; Marcus et al., 2013; Smith et al., 2013a). ICA was performed for
each run independently, and FIX (FMRIB's ICA-based X-noiseifier) was
used to identify and regress out spatially structured noise components
(Griffanti et al., 2014; Salimi-Khorshidi et al., 2014). Following spatial
and temporal preprocessing, the data were in a grayordinate coordinate
system that combines surface-based cortical regions and volumetrically
represented subcortical regions (Glasser et al., 2013).

Biobank data preprocessing included correction for motion and dis-
tortions, high pass filtering, and FIX cleaning (Miller et al., 2016). The
biobank data were analysed in volumetric space, as cortical modelling
has not yet been applied to this huge dataset.
2.3. Group ICA and dual regression

For both HCP and UK Biobank data, temporal concatenation group
ICA was performed to extract maps for 25 group-level ICA networks (and
separately for 200 group-level ICA components in HCP data). The pri-
mary analyses presented in this work are based on the 25-dimensional
group ICA results, because this dimensionality is commonly adopted in
the literature and the resulting network structure closely matches
commonly studied resting state networks (and can be easily matched
between HCP and UK Biobank data by qualitative inspection). Multiple
regression of these group ICA maps onto the rfMRI data from each run
was performed to obtain time series for each resting state network for
each run (1200 timepoints per run, 4800 timepoints in total per subject
for the HCP data; 490 timepoints per subject for the Biobank data). Note
that the post-processed HCP900 Parcellation þ Timeseries þ Netmats
(PTN) data are publicly available (https://db.humanconnectome.org).

https://db.humanconnectome.org/
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2.4. Amplitude estimation

In order to estimate the amplitude for each run (or for sub-blocks of
each run), the temporal standard deviation across the run was calculated
separately for each network (using the timeseries obtained from a mul-
tiple regression of the group ICA maps on the rfMRI data from each
subject). Therefore, the standard deviation calculated based on the
extracted timeseries reflects the voxel-wise standard deviation in spatial
regions that contribute strongly to the group ICA maps. No variance
normalisation was applied before calculating the amplitudes, as we were
interested in the signal amplitudes and the within- and between-subject
variability in this.

2.5. Canonical Correlation Analysis

For the CCA, we adopted an identical approach as described previ-
ously (Smith et al., 2015). Briefly, behavioural data were normalised and
demeaned and confound variables (listed below) were regressed out.
Implicit imputation was used to account for missing data in the behav-
ioural variables. Similarly, the same set of confound variables was
removed from the [subjects x ICA-networks] matrix of amplitudes. To
avoid overfitting in the CCA, PCA was used as a dimension reduction step
to reduce the behavioural measures matrix to size subjects x 100 (that is,
keeping the top 100 subject-weight eigenvectors to feed into the CCA).

Confound variables that were removed from both the behavioural and
amplitude data before performing the CCA included: acquisition recon-
struction software version, subject motion, height, weight, systolic blood
pressure, diastolic blood pressure, blood hemoglobin A1C, cube-root of
total brain volume (including ventricles), cube-root of intracranial vol-
ume, and the squares of these (except for the acquisition reconstruction
software), leading to a total of 17 confound variables.

CCA was performed (using canoncorr in Matlab) following:
Y*A ¼ U � X*B ¼ V; where X is the set behavioural measures, Y is the
network amplitudes, and A and B are optimised such that the correlation
between U and V is maximal (Hotelling, 1936). The correlation between
the resulting pairs of subject weight vectors (one pair of U and V per CCA
mode) indicates how strongly the mode of population covariation is
represented in both the behavioural measures and the amplitudes. Sig-
nificance of this correlation was estimated using permutation testing
(n ¼ 100,000), where the permutations kept the family (twin) structure
in the data intact (Winkler et al., 2015).

In order to relate the CCA mode of population covariation to ampli-
tude and behaviour, we performed post-hoc correlations between U and
the amplitude matrix, and between V and the behavioural measures
matrix. The CCA loadings for amplitudes can be found in Fig. 2 (red and
magenta lines), and loadings for the behavioural measures are presented
in Supplementary Fig. S2. The first significant CCA mode of population
covariation explained at most 16.8% of variance in the behavioural
measures (correct responses on the variable short Penn line test of spatial
orientation), and at most 9.3% of variance in the amplitudes (IC 2; DMN).
The second significant CCA mode explained at most 9.8% of variance in
the behavioural measures (frequency of consuming 5 þ alcoholic bev-
erages in the heaviest 12-month period), and at most 36.9% of variance
in the amplitudes (IC 18; cerebellum).

3. Results

3.1. Between-subject clustering analyses of BOLD amplitude

In order to obtain a better understanding of the way in which am-
plitudes of different resting state networks covary across subjects, we
performed a clustering analysis. A correlation matrix (ICA components *
ICA components) was calculated from the amplitude matrix (subjects *
ICA components, obtained from concatenated timeseries across four
runs), and Ward's clustering (using FSLnets, https://fsl.fmrib.ox.ac.uk/
fsl/fslwiki/FSLNets) was performed to identify which resting state
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networks' amplitudes covaried across subjects in a similar way (Smith
et al., 2013b). Note that this amplitude correlation matrix is estimated
across subjects, as opposed to a functional connectivity matrix, which is
calculated within a subject over time.

Fig. 1 shows two clearly distinct clusters of RSNs (ICA components;
optimal k¼ 2 out of k¼ 1–10 as determined using the Calinski-Harabasz
criterion). Strong positive correlation is observed within each cluster
(average z-transformed correlation within primary sensory/motor cluster
1 z ¼ 0.84 ± 0.21; average z-transformed correlation within cognitive
cluster 2 z ¼ 0.67 ± 0.13), and lower correlation between the clusters
(off-diagonal average z-transformed correlation between the clusters
z ¼ 0.28 ± 0.18). The first cluster contained 14 of the 25 networks,
including visual networks (IC 3, 12, 9, 20, 1, 4), motor networks (IC 14,
24, 23), cerebellar and subcortical networks (IC 28, 25, 16, 22), and the
language network (IC 19). The second cluster contained 11 of the 25
networks, including the DMN (IC 2), the dorsal attention network (IC 11),
fronto-parietal network (IC 10), and salience network (IC 15). Given this
general organisation, we will refer to the RSNs in cluster one collectively
as ‘primary sensory/motor networks’, and the RSNs in cluster two as
‘cognitive networks’ in the remainder of this work.

In the results described above and in Fig. 1, the language network was
part of the group of “primary sensory/motor” networks. However, this
finding may be related to the dimensionality of the ICA decomposition
that groups together language and auditory regions into the same
network. When looking at a higher dimensionality (ICA 200), auditory
and language components were separated. It is noteworthy that the main
split at the higher dimensionality occurs between cortical and subcortical
components (Supplementary Fig. S1). Nevertheless, the clustering results
among cognitive regions replicated the 25-dimensionality results
described above, showing a clear separation into primary sensory and
motor versus cognitive networks. At the higher dimensionality, the three
auditory components were grouped with the primary sensory/motor
cluster, while the language component was grouped with the cogni-
tive cluster.

Note that the cross-subject correlation between timeseries amplitude
and fALFF (calculated as the ratio of low frequency power 0.01–0.1 Hz to
power across the full frequency range) was on average z ¼ 0.96 (range
z ¼ 0.55–1.43), and the correlation between amplitude and ALFF
(calculated as the power in the frequency range 0.01–0.1 Hz) was on
average z ¼ 2.50 (range z ¼ 1.99–3.19). This shows that all amplitude
measures represent highly comparable aspects of the BOLD data.

3.2. Behavioural correlates of BOLD amplitude

To establish whether the temporal amplitudes of ICA-derived resting
state networks contain behaviourally relevant between-subject infor-
mation, we used Canonical Correlation Analysis (CCA) to reveal two
significant modes of covariation (permuted Pcorrected<0.05). CCA is an
approach that finds independent linear transformations for two sets of
variables, such that the correlation between variables after trans-
formation is maximised (for further details on the CCA please see the
Material and Methods). In this instance, each significant mode of
covariation represents a combination of behavioural measures that is
maximally correlated with a combination of network amplitudes
(Hotelling, 1936). Therefore, CCA results represent multivariate associ-
ations between lifestyle measures and amplitude measures. In essence,
this analysis identifies a latent variable from a combination of amplitude
measures that is most strongly associated with a latent behavioural
variable (which represents a combination of different behaviour and
lifestyle measures). The CCA weights (reported in Fig. 2 for amplitude
measures and in Supplementary Fig. S2 for behavioural measures)
represent how much each measured variable contributes to the latent
variables identified by the CCA. CCA results can therefore be interpreted
as significant correlations between brain and behaviour based on
multivariate combinations of individual measurements. CCA has previ-
ously been used on HCP data to identify a positive-negative mode of

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLNets
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Fig. 1. Between subject clustering of network amplitude correlation matrix. The cluster tree at the top (A) clearly separates the networks into two distinct clusters. For display here in B and
C, each grayordinate was assigned to one of the 25 networks determined by the maximum value for the grayordinate across the group ICA maps. These “find-the-biggest” maps were then
separated into two maps based on the cluster tree, to show the 14 primary sensory/motor networks on the left and the 11 cognitive networks on the right. The network x network between
subject correlation matrix (r) is shown at the bottom (D) and reveals positive correlations within each of the two cluster groups (i.e., between networks in the primary sensory/motor
cluster and between networks in the cognitive cluster).
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population covariation (Smith et al., 2015).
Our CCA analysis identified two significant modes of covariation. The

first was strongly negatively associated with items from the Achenbach
Adult Self-Report Syndrome Scales (ASR), which assesses aspects of
adaptive functioning (such as thought problems, withdrawal and
aggression). This first CCAmode was positively linked to life satisfaction,
conscientiousness and agreeableness (Fig. S2). The second mode of
covariation was similar to the positive-negative mode previously re-
ported from a smaller number (461) of HCP subjects (Smith et al., 2015)
(correlation r ¼ 0.56), and was positively linked to intelligence, and
negative associated with smoking and drug use (Fig. S2).

Fig. 2 shows post-hoc correlations between the two significant modes
of covariation and the original subject amplitudes across the ICA net-
works. This figure shows that the first mode of covariation was most
strongly positively linked to DMN amplitude (IC network 2), while the
second positive-negative mode was strongly negatively linked to primary
sensory/motor amplitudes, and was also positively associated with
DMN amplitude.
3.3. Within-subject amplitude changes across scans

Next, we used the 4 runs that are available per subject in the HCP data
in order to determine whether the same correlational pattern separating
primary sensory/motor and cognitive networks can be observed within
subjects. For each subject, ICA-derived resting state network amplitudes
were estimated separately for each of the 4 resting state scans, resulting
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in a (networks x 4) matrix of amplitudes per subject. Correlating this with
itself results in a (25*25 networks) correlation matrix estimated for each
subject, that indicates which networks have a similar pattern of between-
run amplitude variation to other networks. These subject correlation
matrices were entered (element-wise) into a one-group t-test in order to
combine correlation matrices across subjects. To directly compare the
similarity between the between-subject and within-subject correlation
matrices, networks were ordered according to the results of Ward's
clustering analysis performed on the cross-subject correlation matrix
shown in Fig. 1. Given that within-subject correlations were estimated
separately within each subject, this analysis removes the mean ampli-
tudes across subjects. Therefore, the results shows in Fig. 3 reveal state-
dependent within-subject changes that occur over and above the
between-subject findings reported in Fig. 1.

The results show that the pattern of correlations amongst network
amplitudes that was found across subjects (Fig. 1), was largely replicated
from this within-subjects amplitude correlations analysis (Fig. 3). How-
ever, the correlations between the amplitudes of cognitive networks
within the bottom right block now appear weaker than the correlations
between amplitudes of primary sensory/motor networks within the top
left block. A paired across-subject t-test on the within-subject correlations
averaged across primary sensory/motor networks vs. those averaged
across cognitive networks (after Fisher's r-to-z transformation) confirmed
that correlations between cognitive networks were significantly lower
than correlations within primary sensory/motor networks t(819)¼ 19.9,
p ¼ 2*10�72. These findings suggest that state influences (which vary



Fig. 2. Correlations between resting state network amplitude, between subject motion and behavioural modes. For between subject amplitude-vs-motion correlations, root mean square
relative (timepoint-to-timepoint) motion was averaged across each subject's 4 runs before calculating the between-subject correlation against network amplitude. For the between-subject
correlations with the CCA modes of covariation, the subject-weight variables for the first two modes obtained from the CCA analysis were correlated against amplitudes. Dotted lines
indicate the minimum correlation required to pass two-tailed significance testing (p < 0.05, Bonferroni corrected for multiple comparisons across 25 networks; jrj ¼ 0.11).
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within subjects over time) influence correlations between amplitudes of
primary sensory/motor networks. Note that state-dependent effects can
lead to either increases or decreases in connectivity. Therefore, one
possible explanation for the absence of state-dependent within-subject
correlations between cognitive network amplitudes is that different
cognitive mental states may engage different combinations of cogni-
tive networks.

To look in more detail at the within-subject variability of network
amplitudes, we considered amplitude difference across the four scans
(obtained over two separate days), as well as gradual changes within
each of the four 15-min scans. The results presented in Fig. 4A showed a
consistent increase in the amplitude of all primary sensory/motor
Fig. 3. Within-subject replication of correlation matrix of network amplitude. One correlation m
from a one group t-test performed across these subject correlation matrices. Similar results are o
original runs.
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networks during the second scan of each day, compared with the first
scan. Similarly, when looking at changes within each scan (over four 4-
min blocks), a gradual increase in primary sensory/motor network
amplitude can be observed over the course of the scans (Fig. 4B).
Amplitude changes in cognitive networks were generally smaller and less
consistent. Note that a similar pattern of within-run variability can be
seen using fALFF as a measure of amplitude (Fig. S3).

Given that all primary sensory/motor networks showed strikingly
similar patterns of amplitude change, we next performed statistical
comparisons of these effects using a repeated measures ANOVA with
within-subject factors for run (2 levels) and for day (2 levels). For the
analysis of between-run changes, the inputs to the ANOVA were the
atrix was estimated for each subject using the 4 different runs, this figure shows Z scores
btained when splitting the subject data into 8 or 16 (sub-run) blocks rather than into the 4
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amplitude calculated separately for each run, and averaged across the 14
networks in the primary sensory/motor cluster. As shown in Supple-
mentary Fig. S4, the results reveal significant main effects of both run
(F(1,818) ¼ 271.7, p ¼ 6.3*10�53) and day (F(1,818) ¼ 6.4, p ¼ 0.01),
and a significant interaction effect between day and run
(F(1,818) ¼ 12.1, p ¼ 0.001). The main effect of run represents a
significantly higher amplitude in run 2 (mean 59.4) compared with run 1
(mean 54.8), and the main effect of day is driven by an overall increased
amplitude on day 2 (mean 57.6) compared to day 1 (mean 56.6). Post-
hoc paired comparisons showed that there was a significant difference
between day 1 and 2 for run 1 (t(818) ¼ -4.2, p ¼ 3.0*10�5), but not for
run 2 (t(818) ¼ -0.5, p ¼ 0.62). One possible interpretation of these
findings is that subjects’ arousal levels may be higher at the start of day 1,
compared with the start of day 2, due to the novelty of the scanner
environment. For the analysis of within-run changes, we calculated the
amplitude of each network for each 300 timepoints, and subsequently
estimated the slope across the resulting 4 amplitude estimates per scan.
These slopes were averaged across the 14 networks in the primary sen-
sory/motor cluster and entered into an ANOVA with within-subject
factors for run and day. For the analysis of within-run changes, we
found significant main effects of both run (F(1,818) ¼ 58.5,
Fig. 4. Within-subject variability in network amplitude. Figure A on the top shows amplitude
networks were generally higher in the second scan compared with the first scan on both days.
supplementary results for more details). Figure B on the bottom shows amplitude changes with
increase in amplitude from the start of the run to the end, whereas a slight decrease in amplitud
significant different from zero for each of the 4 runs: t1(818) ¼ 10.0, p ¼ 2.1*10�22; t2(818) ¼
figure insets in the top right corner of A and B show changes in relative subject head motion b
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p ¼ 5.6*10�14) and day (F(1,818) ¼ 45.6, p ¼ 2.8*10�11), but the
interaction between day and run was not significant (F(1,818) ¼ 0.08,
p ¼ 0.78). The main effect of run was driven by an increased slope in run
1 (mean 3.7) compared with run 2 (mean 2.8), and the main effect of day
reflects a stronger slope on day 1 (mean 3.6) compared with day 2 (2.9),
as can be seen in Supplementary Fig. S4.

To investigate the changes in BOLD amplitude from the start to the
end of a scan at a whole-brain level, a temporally-resolved grayordinate-
wise analysis was performed. At each grayordinate and every time point
individually, a data vector was created by combining the normalised
values from the BOLD timeseries from every subject and every run,
resulting in a vector with 3280 datapoints (820 subjects*4 runs). The
BOLD data amplitude was estimated by taking the standard deviation
over this data vector (in effect, estimating the intensity standard devia-
tion, pooling across subjects). By collapsing over subjects and runs in this
manner, we can investigate fine-grained variance changes over the scan
in a spatio-temporally resolved fashion. To create a summary measure of
these variance changes, PCA was performed across the resulting
[grayordinates x time points] BOLD data amplitude matrix. Prior to this,
the first 12 timepoints were discarded because they were affected by
magnetisation effects, and the overall amplitude timeseries for each
changes across four runs, revealing that BOLD amplitudes in the primary sensory/motor
These finding cannot be explained by different phase encode directions for the runs (see
in runs (across four 4-min blocks). The primary sensory/motor networks show a general
e was observed in the DMN (IC 2; two-tailed t-tests showed that within-subject slopes were
�7.1, p ¼ 2.0*10�12; t3(818) ¼ �8.8, p ¼ 9.3*10�18; t4(818) ¼ �3.6, p ¼ 0.0003). The
etween runs and within runs respectively. Error bars represent standard error of mean.
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grayordinate was normalised.
The first component resulting from the PCA shows the pattern of

increased variance across the duration of the scan (Fig. 5b, similar
pattern to Fig. 4b). The resulting weight map (Fig. 5a) shows that the
increases in BOLD amplitude are relatively unique to the primary sen-
sory/motor cortices. Note that this map reveals very similar spatial
structure to the regions that show increased amplitude during sleep
relative to wakefulness (Fig. 3 in (Horovitz et al., 2008)). It is also
noticeable that the weights in the postcentral gyrus (i.e., the primary
somatosensory cortex), are higher than the weights in the precentral
gyrus (primary motor cortex).
3.4. Role of subject motion

There is a correlation (across each of the 4 runs: r > 0.2,
PBonferroni<10�8) between subject head motion and amplitude, consis-
tently seen across all primary sensory/motor networks (as shown in
Fig. 2). This is confirmed by the significant change in subject head mo-
tion across the four resting state runs, and also across four 4-min blocks
within a run (inserts at the top right side of Fig. 4). While the amount of
variance in network amplitude explained by motion was relatively low
(4%), these findings together suggest that changes in network amplitude
might be linked to motion artifacts. In order to examine this possibility
further, we performed three tests described below.

To determine whether the increase in amplitude was more likely to
reflect BOLD signal of neuronal origin, or artifacts present in the
measured dataset, we firstly looked at changes in the frequency spectra
within each 15-min scan. Specifically, the area under the curve for the
lowest (<0.08 Hz) and the highest (>0.1 Hz) frequencies were estimated
based on the Fourier spectra of each 300 TR section of each scan. The
results show an increase in low frequency power over the course of the
scans for all of the primary sensory/motor networks, compared with
smaller and more inconsistent changes in high frequency power (Fig. S5).
While the low-frequency nature of amplitude changes may suggest a
neuronal origin, artifacts such as gradual head motion, aliased physio-
logical pulsation, and slow variations in respiration or heart rate are also
known to influence the BOLD signal in the low frequency range. All data
Fig. 5. The first principal component of variance changes over time displays the characteristic in
B). The spatial weights for this principal component are shown in panel A, and demonstrate th
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used in this work underwent extensive cleanup designed to minimize the
potential influence of such sources of structured noise (including the
removal of ICA components labelled as noise and of extended motion
parameters). Nevertheless, to further exclude the possibility that changes
in primary sensory/motor network amplitudes were purely driven by
subject head motion, we perform two further tests described below.

To further determine whether the observed increase in primary sen-
sory/motor network amplitude occurs as a result of increased motion, we
selected a group of 164 subjects who most strongly displayed a pattern of
decreased motion from the start of the run to the end of the run (i.e., the
opposite pattern of the overall group average, which shows increased
motion). In order to identify this subgroup of subjects, root mean square
relative motion was calculated for each 4-min block, and the slope across
4 blocks was estimated separately for scan 1 and scan 2 obtained on day
one. The slopes were averaged for each subject across the two scans,
resulting in a single value that described the trend of within-run motion
changes observed for each subject. The 164 subjects with the smallest
slope were used for this analysis (mean slope�0.0039, range:�0.0133 to
�0.0015). The results of the amplitude changes within run in these 164
subjects show that the same pattern of increased amplitude over the
course of the scan was present in all primary sensory/motor regions in
this group of subjects, despite a decrease in head motion over the course
of the scans in this subject group (Fig. 6).

As a third and final test to determine the potential influence of motion
on the amplitude findings presented here, we applied volume censoring
to the data prior to calculating the amplitudes. Volume censoring was
performed using a threshold of framewise displacement>0.2 and
involved removing all of the supra-threshold volumes as well as one
volume immediately preceding and two volumes following each supra-
threshold motion spike (Power et al., 2013). Framewise displacement
was estimated as the root mean square relative motion, and scans with
fewer than 20% of volumes (<240) were excluded, leading to the
removal of 50 scans. Volume censoring was performed separately for
scans 1 and 2 on day one of the HCP data, and amplitudes were calculated
separately. On average, 1082 vol were retained for each scan (range:
240–1200). Volume censoring has previously been shown to dramati-
cally reduce motion-related effects observed in resting state fMRI data
crease in amplitude from the start to the end of the scan (temporal weights shown in panel
at this effect is mostly localised to the primary visual and primary sensorimotor regions.



J. Bijsterbosch et al. NeuroImage 159 (2017) 57–69
(Power et al., 2012a, 2015).
The results show that after performing volume censoring to further

remove effects of motion on the data, the increase in BOLD signal am-
plitudes in primary sensory/motor regions in the second scan compared
to the first scan is still just as evident (Fig. S6). Given that the findings do
not change as a result of volume censoring, and because amplitude es-
timates from censored data are potentially biased (i.e., estimates are less
accurate if more volumes were removed during censoring), this step was
not applied for the other results presented in this paper. This finding,
taken together with the results presented above, strongly suggests that
the observed increases in primary sensory/motor network amplitude do
not occur as a direct artifactual result of increased head motion.

3.5. Differences between within-subject and between-subject variability

In order to determine whether the within-subject associations be-
tween primary sensory/motor amplitude, DMN amplitude and motion
mirrored the between-subject associations, we performed a direct com-
parison. Summary measures of amplitude and motion were extracted
both within and between subjects as described below. Full and partial
correlations of the between-subject and within-subject summary mea-
sures were performed (Fig. 7).

A summary measure of primary sensory/motor amplitude for each
subject was calculated by averaging amplitudes across all 14 IC networks
that clustered together (Fig. 1). Instead of averaging across cognitive
networks, we used DMN amplitude (IC 2 only), because the correlations
between cognitive networks is less pronounced within subjects (Fig. 3),
and therefore averaging may not be as appropriate. Additionally, the
DMNwas the only network to showwithin-subject changes in amplitude,
and is therefore of interest for this direct comparison between within and
between subject associations. Averaged root mean square relative motion
was used as a single value summary measure per subject. Two further
between-subject summary measures were obtained from the behavioural
measures based on the CCA results. Given that motion was regressed out
of the input to the CCA (along with other nuisance variables), the
behavioural modes of covariation obtained directly from the CCA are
orthogonal to motion. To obtain summary behavioural variables that are
not orthogonal to motion, we took an approach analogous to dual
regression: the subject weights vector obtained from the CCA analysis for
each of the two modes of covariation was regressed into the behavioural
measures, and the resulting beta values were subsequently regressed into
the (non-adjusted) behavioural measures. This approach provided two
vectors for each of the significant behavioural modes of covariation.

For the within-subject comparison, the same measures described
Fig. 6. Increased primary sensory/motor amplitude is also observed in subjects tha
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above for primary sensory/motor and DMN amplitude and for motion
were calculated for four 4-min blocks of data within each scan. Subse-
quently, the slopes across the four blocks were calculated for each scan
and for each measure (i.e., primary sensory/motor amplitude, DMN
amplitude and RMS motion). These slopes were subsequently averaged
across the two scans performed on day one. For the within-subject
measures, these averaged slopes were correlated.

The results shown in Fig. 7 highlight a few key differences between
within and between subject variability.

Firstly, a negative correlation was found between primary sensory/
motor and DMN amplitude within subjects (r ¼ �0.25,
PBonferroni ¼ 3.4*10�13), but not between subjects (r ¼ �0.004, PBonfer-
roni>0.9). This is consistent with the result that between-subject primary
sensory/motor amplitude is highly correlated with within-subject slope
of primary sensory/motor amplitude (r ¼ 0.55, PBonferroni ¼ 1.7*10�66),
but the same association was not found between the slope of within-
subject DMN amplitude and between-subject DMN amplitude
(r ¼ 0.0021, PBonferroni>0.9). This suggests that subjects who show the
biggest increase in primary sensory/motor amplitude over the course of a
scan, are also subjects with the highest overall primary sensory/motor
amplitude, but no similar association holds for DMN amplitude.

Secondly, a negative correlation between between-subject DMN
amplitude and between-subject motion was observed (r ¼ �0.12,
PBonferroni ¼ 0.007), that was not present between within-subject slope of
the DMN amplitude and within-subject slope of motion (r ¼ �0.04,
PBonferroni>0.2). Primary sensory/motor amplitude was significantly
correlated with motion both within subjects (r ¼ 0.28,
PBonferroni ¼ 3.6*10�14), and between subjects (r ¼ 0.21,
PBonferroni ¼ 2.4*10�9).

3.6. Role of arousal

Given the length of the resting state scans in the HCP (i.e., two scans
of 15 min, back to back), it is highly likely that subjects are getting
drowsy or falling asleep towards the end of the scans (despite instructions
to stay awake and fixate). Previous research has shown that the proba-
bility of subjects still being awake drops to 0.5 after 10 min of scanning
(Tagliazucchi and Laufs, 2014), and earlier findings have shown a rela-
tionship between light sleep and BOLD amplitude in the sensorimotor
cortices (Horovitz et al., 2008; Laumann et al., 2015).

We used UK Biobank data to investigate if a relationship exists be-
tween sleep quality or quantity and primary sensory/motor network
amplitude. The UK Biobank data contains many more subjects and a
more comprehensive battery of self-report measures including a set of
t show decreases in head motion (as shown by figure insert at the top right).



Fig. 7. Associations between primary sensory/motor and default mode amplitude, motion and behavioural CCA modes of covariation. Within subject amplitudes and motion were
estimated by calculating the slope with each run across 4 blocks and averaging the slopes across runs. Below the diagonal the full correlations between measures are shown, and above the
diagonal the partial correlations. Six nuisance variables were regressed out of all elements first (height, weight, intracranial volume and the squares of these three).
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sleep-related items compared with the HCP data completed during the
imaging visit (see Supplementary Methods for further information).

Firstly, the clustering analysis was repeated independently on the UK
Biobank data (by performingWard's clustering on the network * network
correlation matrix that was calculated from the amplitude data for all
subjects). The results replicated the separation of two clusters seen in the
HCP data, where one of the clusters contains 11 primary sensory/motor
components and the other contains 14 cognitive networks (Fig. S7). It is
noticeable that the correlations between primary sensory/motor net-
works and cognitive networks (i.e., in the off-diagonal block on the
bottom left) were somewhat higher in the UK Biobank data than in the
HCP data. A potential reason for this may be the age of the participants
(as UK Biobank subjects are drawn from an older population in com-
parison to the HCP subjects).

Next, we performed a between-subject correlation analysis between
primary sensory/motor amplitude, DMN amplitude, subject head motion
and self-report measures linked to sleep. As described above, amplitudes
were averaged within the 11 primary sensory/motor networks based on
the clustering results to calculate mean primary sensory/motor ampli-
tude. Correlations were performed between averaged primary sensory/
motor amplitude, DMN amplitude, subject head motion and a small set of
7 specific sleep-related self-report measures (snoring, daytime napping,
daytime dozing, sleeplessness, sleep duration, sleep morning, and sleep
chronotype).

There was a significant negative correlation between primary sen-
sory/motor amplitude and sleep duration (r ¼ �0.11, p ¼ 8*10�16), but
not between DMN amplitude and sleep duration (r ¼ �0.03, p ¼ 0.07).
These findings are in line with the hypothesis that arousal may be linked
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to primary sensory/motor network amplitude, but not to DMN amplitude
(Horovitz et al., 2008; Tagliazucchi et al., 2013; Tagliazucchi and Laufs,
2014). Although, note that these results are based on associations with
self-report data regarding sleep patterns. It is possible that these self-
report data may not be an accurate measure of sleep, or that other fac-
tors could drive both the amplitude and the self-report measures. All of
the other correlations with sleep measures were below jrj ¼ 0.1.

The between-subject correlation between primary sensory/motor
network amplitude and motion was not replicated in the UK Biobank
dataset (r ¼ �0.02, p ¼ 0.19). This may be a result of the shorter scan
duration (15 min in HCP versus 6 min in Biobank), which may help
subjects avoid falling asleep in the UK Biobank dataset compared with
the HCP dataset. There was, however, a correlation between DMN
amplitude and head motion (r ¼ �0.13, p ¼ 2*10�22).
3.7. Effect of amplitude changes on functional connectivity analyses

A question that is relevant to many functional connectivity studies is
what effects the observed changes in BOLD signal amplitude have on
connectivity analyses. In order to address this question, paired t-tests
were performed to compare the network connectivity matrices between
scan 1 and scan 2 of the HCP data acquired on the same day. Given that
these scans are performed on the same subjects and in the same scanning
session, we might expect that only minimal changes in functional con-
nectivity would occur.

Using the dual regression time series from the 25 ICA networks, full
connectivity matrices were estimated for each subject and for each run,
and were z-transformed. Paired t-tests were performed separately for day
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1 and day 2, and changes in functional connectivity between pairs of
networks was determined significant if the paired t-test results passed
Bonferroni correction (p < 1.6667*10�4), and the t-statistic was higher
than 6. The results showmanywidespread and highly significant changes
in edge strength within subjects between the first and the second scan of
the day (Fig. 8).

The consistent increases in primary sensory/motor amplitude (Fig. 4)
suggest that the changes in functional connectivity may be produced by
simple changes in signal strength of certain regions. To assess this, we
performed an Additive Signal Change analysis (ASC). This approach
models the timeseries from each network as a linear combination of
separate baseline and additive signals, and determines whether observed
changes in functional connectivity between a pair of networks can be
explained simply by the introduction of additional signal in one of two
runs (Duff et al., 2017). Further details on the ASC analysis can be found
in the Supplementary Methods. The approach is related to the conjunc-
tion method of Cole et al. (2016), but directly tests whether observed
changes in amplitude are adequate to fully explain the changes in cor-
relation. Briefly, an ASC analysis is performed by testing all possible
signals that could be producing observed increased amplitude in one run.
These signals are defined by their correlation with existing signal, with
the constraint that these signals are not anti-correlated with this signal.
Each such signal has a specific effect on correlation, such that it can be
determined whether the observed signal fits into this range. These pu-
tative additive signals producing amplitude changes could reflect many
types of changes, including changes in the amplitude of measurement
noise, blood perfusion, or neural activity. In the present experiment, this
analysis was used to determine whether observed changes in correlations
might be wholly explained by differential changes in the amplitude of
Fig. 8. Changes in functional connectivity occurring as a result of amplitude changes. The colou
edges that pass Bonferroni correction and have a jtj>6 are shown). Results for day 1 are show
functional connectivity could be explained by changes in network amplitude. Cases where add
marked *.
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network signals, reflecting extensive changes in amplitude observed
across the two scans reported above.

The results of the ASC analysis showed that all changes in functional
connectivity could be explained by additive signals (i.e., changes in
network amplitude). Additive signal common to both networks explained
many of the changes in connectivity (as highlighted by * in Fig. 8),
particularly between pairs of primary sensory/motor regions. The other
significant changes in functional connectivity could all be explained by a
mixture of common and unshared additive signals. Note that the changes
in functional connectivity on day two are sparser than on day one. It is
possible that the significant difference in amplitude between run 1 on day
1 and run 1 on day 2 (Supplementary Fig. S4) may be related to this.
When comparing run 1 on days 1 and 2 directly in terms of functional
connectivity, a small number of significant differences were identified,
but only some of these differences could be explained by changes in
amplitude (see Supplementary Fig. S8). These findings highlight the
extent to which changes in amplitude can drive functional connectiv-
ity results.

4. Discussion

The amplitudes of spontaneous fluctuations in brain activity may be a
significant source of variability which is commonly overlooked, despite
its direct relevance to measures of functional connectivity. Here we
investigated resting state amplitudes in two large-scale studies (HCP and
UK Biobank), with the aim of determining between-subject and within-
subject variability. Gaining a better understanding of the types of vari-
ability that exists across subjects and across runs within subjects is
essential for successful normative and biomarker research in this age of
r scale reflects t statistics for the paired t-test between runs 1 and 2 on the same day (only
n below the diagonal, and results for day 2 above the diagonal. All of these changes in

itive signal common to both networks explained the change in functional connectivity are
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larger sample sizes and population-based research.
Our findings showed a between-subject clustering that separated

resting state networks into two clusters based on their amplitudes. The
first cluster (of brain regions/networks whose amplitude variation across
subjects were highly correlated with each other) grouped together visual,
auditory, motor and somatosensory cortices, in contrast to a second
cluster that contained cognitive networks such as the DMN, DAN, and
frontoparietal network. These clustering results suggest that, for
example, subjects with high BOLD amplitudes in the DMN would also
show higher amplitudes in other cognitive networks. This separation of
cognitive and primary sensory and motor regions based on BOLD am-
plitudes is consistent with previous work (Zhang et al., 2011). This
between-subject covariation pattern was behaviourally relevant; the
second mode of population covariation shown in Fig. 2 revealed that
subjects with lower BOLD amplitudes across all of the primary sensory/
motor networks (i.e., in the first cluster), scored more highly on positive
behavioural measures such as intelligence. Hence, between-subject
variability in resting state amplitude is of behavioural relevance, and
distinguishes between cognitive and primary sensory/motor regions.

A similar separation of primary sensory/motor versus cognitive net-
works was found when correlations among amplitudes were calculated
based on different runs within the same subject. Importantly, a within-
subject change in amplitudes over time was observed reflecting an in-
crease in amplitude from the start of the scan to the end of the scan (and
also an increase in average amplitude during scan 2 compared with scan
1 acquired on the same day). This pattern was consistently seen across all
primary sensory/motor networks, but was not present in any of the
cognitive networks (Fig. 4). The observed increase in primary sensory/
motor amplitudes towards the end of the scan was characterized by
increased power in the low frequency range, suggesting that these find-
ings cannot be explained by simple artifacts. Similar increases in low
frequency power have been observed within subjects in a single scanning
session previously (Duff et al., 2008). While there was a correlation be-
tween primary sensory/motor amplitude and subject head motion both
within and between subjects, the increase in amplitude from the start to
the end of the scan was still present after volume censoring the data, and
was also observed in subjects who showed a decrease in motion from the
start of the scan to the end of the scan. As such, the change in primary
sensory/motor amplitudes over time was not simply driven by artifactual
motion effects.

One possible reason for the increase in primary sensory/motor
network amplitudes over the course of the scans could be a decrease in
arousal as subjects become increasingly sleepy over the course of the
scans. We tested the relationship between primary sensory/motor
network amplitudes and arousal using between-subject sleep-related data
available in the UK Biobank, and found a negative relationship between
primary sensory/motor amplitude and sleep duration. This is consistent
with previous studies that identified increases in rfMRI BOLD signal
fluctuations during light sleep in visual and primary sensory/motor re-
gions (Horovitz et al., 2008; Tagliazucchi et al., 2013; Tagliazucchi and
Laufs, 2014), and with the finding that high within-subject variability in
scans obtained across 18 months was particularly localised to visual and
primary sensory and motor cortices (Laumann et al., 2015). Additionally,
it has also been shown that differences in vigilance are reflected in the
amplitude of the mean whole-brain signal (‘global signal’), which shows
a spatial distribution that is very similar to Fig. 5 (Wong et al., 2012,
2016, 2013). Previous work has shown that high self-reported ‘sleepi-
ness’, as measured directly after resting state fMRI scans, was signifi-
cantly associated with increased functional connectivity in visual and
sensorimotor networks (Stoffers et al., 2015), consistent with the
increased connectivity between primary sensory/motor regions reported
here (Fig. 8). These findings suggest that the subjects' arousal levels are a
source of significant variability both across subjects and within subjects
over time, and may be a confounding variable for group and session
comparison studies. This role of arousal has not been much considered in
rfMRI research, but future studies may wish to obtain a (self report)
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measure of arousal to be used as a covariate of no interest. For example, it
might be worth asking subjects how many hours they slept the night
before the scan, how tired they were feeling during the scan, andwhether
or not they got drowsy or fell asleep during the scan (Diaz et al., 2013).

It is possible that the changes in BOLD amplitude across subjects and
within subjects over the course of a resting state scan may be partly
linked to changes in physiological processes. Previous research has
shown significant associations between cerebrovascular reactivity (i.e.,
the BOLD response to CO2 modulations) and both BOLD amplitude and
ALLF (Golestani et al., 2016; Kannurpatti and Biswal, 2008). Light sleep
is associated with marked changes in physiological processes, including
changes in cardiac and breathing rates (Snyder et al., 1964). However,
the data used in this work has undergone extensive clean-up using FIX in
order to minimize the influence of structured noise associated with
physiology. Therefore, the core findings presented in this work are un-
likely to be purely driven by physiological fluctuations. Nevertheless,
future research into the exact influence of physiological fluctuations on
resting state amplitudes and on functional connectivity estimates would
be of great interest.

When comparing the two scans acquired back-to-back on the same
day, we found both increased amplitude of primary sensory/motor net-
works, as well as a large number of highly significant changes in func-
tional connectivity between networks (in particular between pairs of two
primary sensory/motor networks and for edges that included one pri-
mary sensory/motor and one cognitive network). Using an Additive
Signal Change analysis, we confirmed that all of the observed changes in
functional connectivity could be fully explained by the increased primary
sensory/motor network amplitudes. This finding highlights the fact that
changes in apparent functional connectivity can be observed in the
absence of any changes in the coupling strength between two brain re-
gions (e.g., changes in the relative timing of signal fluctuations, or in the
strength of the direct neural coupling), instead being driven by signal
amplitude and/or SNR changes (or by a shared connection to a third
region, suggesting indirect coupling). These results are particularly
pertinent to windowed connectivity measures, which are highly sensitive
to the types of temporally dynamic changes in connectivity that we found
in the HCP dataset. There is an important risk of misinterpreting such
dynamic results as changes in functional coupling between regions, un-
less a windowed version of the ASC analysis approach is used, or dynamic
changes in amplitude are explicitly investigated alongside changes in
connectivity.

As briefly mentioned above, our findings point to a complex rela-
tionship between subject head motion and amplitude of both primary
sensory/motor and default mode networks. Interestingly, correlations
were particularly high between the slope of motion estimated within-
subject, and the primary sensory/motor and DMN amplitude estimated
across subjects, suggesting that motion may serve as a trait that varies
across subjects in a potentially behaviourally relevant way. This is
consistent with previous results that have shown that subject head mo-
tion is highly heritable (Couvy-Duchesne et al., 2014). A previous study
has shown that between-subject differences in functional connectivity in
the DMN between high-motion and low motion groups were not repli-
cated when contrasting high-motion and low-motion scans within sub-
jects, further supporting the notion that head motion may reflect a true
between-subject trait instead of (or in addition to) being a simple
source of artifactual noise (Zeng et al., 2014). Taken together, these re-
sults suggest that correlations with motion may (to some degree) repre-
sent real and interesting links, rather than being a purely artifactual
influence; in light of this, further careful analysis that aims to disam-
biguate the former and the latter will be important.

In summary, the results presented in this work revealed previously
unknown structured variation in resting state network amplitudes both
across subjects and within subjects over time. The observed variability
clearly distinguished between cognitive networks and early sensory and
motor regions. This between-subject variability was replicated across
both high and low dimensional network structures and in two large-scale
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independent datasets, suggesting that the observed differentiation be-
tween cognitive and early sensory/motor networks is a general feature of
rfMRI data (although data with lower temporal resolution may result in
more noisy amplitude estimates). Significant amplitude increases in
sensory networks, possibly reflecting fluctuating arousal levels, were
observed within subjects over relatively short timescales, and were
shown to drive dynamic changes in functional connectivity. While these
effects may be particularly prominent in acquisition protocols that
include relatively long scan times (15 min in the HCP), significant
changes were already observed between the first and second part of the
first 7 min. Therefore, within-subject variability may be present in a large
number of rfMRI datasets. Future rfMRI studies may benefit from
obtaining arousal-related (self report) measures, and may wish to
consider the influence of amplitude changes on measures of (dynamic)
functional connectivity.
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