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Abstract

Background: Switchgrass is a crop with many desirable traits for bioenergy production. Plant genomes have high
DNA methylation levels throughout genes and transposable elements and DNA methylation is known to play a role
in silencing transposable elements. Here we analyzed methylomes in two switchgrass genotypes AP13 and VS16.
AP13 is derived from a lowland ecotype and VS16, typically considered drought-tolerant, is derived from an upland
ecotype, both genotypes are tetraploid (2n = 4× = 36).

Results: Methylated DNA immunoprecipitation-sequencing (MeDIP-seq) and bisulfite-sequencing (BS-seq) were
used to profile DNA methylation in genomic features of AP13 and VS16. The methylation patterns in genes and
transposable elements were similar to other plants, however, overall CHH methylation levels were comparatively
low. Differentially methylated regions (DMRs) were assessed and a total of 1777 CG-DMRs, 573 CHG-DMRs, and 3
CHH-DMRs were detected between the two genotypes. TEs and their flanking regions were higher than that of
genic regions. Different types of TEs had different methylation patterns, but the two LTRs (Copia and Gypsy) were
similarly methylated, while LINEs and DNA transposons typically had different methylation patterns. MeDIP-seq data
was compared to BS-seq data and most of the peaks generated by MeDIP-seq were confirmed to be highly
methylated by BS-seq.

Conclusions: DNA methylation in switchgrass genotypes obtained from the two ecotypes were found similar.
Collinear gene pairs in two subgenomes (A and B) were not significantly differentially methylated. Both BS-seq and
MeDIP-seq methodologies were found effective. Methylation levels were highest at CG and least in CHH. Increased
DNA methylation was seen in TEs compared to genic regions. Exploitation of TE methylations can be a viable
option in future crop improvement.
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Background
As the demand for food and energy increases, the need
for renewable energy sources based on non-food crops is
becoming a necessity. Switchgrass is viewed as an
important crop in terms of biofuel-producing potential,
with minimal input [1, 2]. Work on bioenergy crops in
the late 1980s and 1990s revealed that switchgrass was

among the crops with the highest potential as a dedi-
cated next-generation feedstock [1]. Switchgrass has the
capacity to grow on marginal lands, which are not used
for food crops.
Switchgrass genotypes are categorized as either upland

or lowland ecotypes. Members of the upland ecotype are
usually tetraploid or octoploid, have more narrow stems,
and are better adapted to drought conditions in the
northern United States [3, 4]. The lowland ecotype is
usually tetraploid, with taller and wider stems, and are
better suited for wet conditions with periodic flooding in
southern parts of the U.S. [3, 4]. Improvement of both
ecotypes is important and necessary for use as a bioe-
nergy feedstock.
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DNA methylation is one of the primary mechanisms
affecting DNA structure and organization [5]. DNA
methylation plays a significant role in the regulation of
gene expression, including limiting expression of trans-
posons [6, 7]. While highly expressed genes can contain
relatively high levels of DNA methylation within the
gene body, methylation at transcription start sites (TSSs)
or promoters are typically linked to decreased gene
expression [8, 9].
Plants have three contexts that are frequently methylated

throughout their genomes, CG, CHG, and CHH [9, 10].
Recent research shows specific functions of non-CG DNA
methylation in mammals; however, the extent is typically
far less than what is found in plants and is highly tissue-
specific [11]. Plant-specific enzymes RNA Polymerase IV
and V are responsible for the introduction of new DNA
methylation via siRNAs and lncRNAs [10].
The effects of DNA methylation on gene expression

and chromosomal organization in plants and other
eukaryotes are well-known [5, 10]. Transposable ele-
ments (TEs) are ubiquitous throughout the genome and
usually under tight control by DNA methylation for
silencing [12]. There are several different methods that
are used for profiling genome-wide or targeted DNA
methylation. In this study, we examine two different
methylome sequencing technologies; methylated DNA
immunoprecipitation-sequencing (MeDIP-seq), which em-
ploys an anti-cytosine antibody, and bisulfite-sequencing
(BS-seq), a single-base resolution technique, on AP13 and
VS16 genotypes of switchgrass. Our goal is to determine
differentially methylated regions (DMRs), to distinguish
methylation patterns in TEs, and to compare the BS-seq
and MeDIP-seq methodologies.

Results
Data collection and preprocessing
Deep sequencing of two bisulfite-seq libraries in AP13
and VS16 switchgrass resulted in a total of 707,684,647-
50 bp paired-end Illumina reads (Table 1). MeDIP-seq:
A total of 462,293,537-50 bp single-end reads were gen-
erated from an input library and three MeDIP-seq librar-
ies for each genotype, (4 + 4 = eight separate libraries).
The raw reads were trimmed, filtered, and high quality
reads collected were aligned to the unpublished refer-
ence genome Panicum virgatum V2.1 accessed January
2016 (Schmutz et al., unpublished). Of these, only
uniquely mapped reads with ≤2 mis-matches were
further used in analysis.

Genome-wide DNA methylation patterns
Methylation profiles for each chromosome are shown in
heat maps separated by genotype, methylation pattern
(for bisulfite-seq), and MeDIP-seq replicate (Fig. 1).

Repeat-rich regions were more highly methylated than
gene-rich regions. The CG context was the most methyl-
ated sequence, followed by CHG, and CHH, as deter-
mined by whole genome bisulfite-sequencing (BS-seq).
Genome-wide weighted DNA methylation levels were cal-
culated (0.0 indicating no methylation and 1.0 indicating
full methylation), and revealed 0.38 and 0.36 methylation
in the CG context for AP13 and VS16, respectively. CHG
methylation was 0.25 and 0.24 and CHH methylation was
0.05 and 0.04, for AP13 and VS16, respectively (Fig. 2a).
Global methylation level distributions showed that

around 40% of CG sites had low methylation levels
(<0.2) and 48% showed high methylation levels (>0.6).
About 51% of CHG sites had low and 25% had high
methylation levels. CHH site levels were overall very
low, with about 82% in the low methylation level cat-
egory and only 1% had high methylation levels (Fig. 2b).
Methylation levels for genomic features were analyzed

by dividing the genome into the following categories:
transposable elements (TE), promoter, coding sequence
(CDS), untranslated region (UTR), and introns. TEs
were found to be the most methylated in the CG con-
text, followed by introns, CDS, promoters, and UTRs.
Only TEs showed high CHG methylation levels and
CHH levels were low across all regions (Fig. 2c).

DNA methylation patterns across genic and TE regions
DNA methylation in the upstream and downstream
regions of genes in all three contexts were either higher
or about the same as the highest genic methylation
levels, while a sharp drop was observed at the TSS and
TTS (Fig. 3). When the methylation levels of genes
without intronic TEs were profiled, overall gene body
methylation was seen to decrease, especially in the CHG

Table 1 Reads and Mapping Summary of BS-Seq and MeDIP-Seq
Data

Sample Total reads Mapping rate

VS16 BS-Seq 346,153,526 pairs 41%

AP13 BS-Seq 361,531,121 pairs 45%

VS16 MeDIP Input 32,697,930 75%

VS16 MeDIP_1 52,396,117 72%

VS16 MeDIP_2 72,502,774 63%

VS16 MeDIP_3 62,601,002 63%

AP13 MeDIP Input 51,348,721 71%

AP13 MeDIP_1 69,288,317 66%

AP13 MeDIP_2 64,084,865 74%

AP13 MeDIP_3 57,373,811 79%

VS16 MeDIP Combined 187,499,893 66%

AP13 MeDIP Combined 190,746,993 73%
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context (Additional file 1: Figure S1). Meta-plots of
DNA methylation levels across genes and TEs show
there were comparatively higher CG and CHG methyla-
tion levels upstream and downstream of TEs than genes,
TEs themselves were more highly methylated than up-
stream and downstream regions (Fig. 3). Methylation
levels across different types of TEs were examined for:
LTR-Copia, LTR-Gypsy, LINEs, and DNA transposons.
Methylation levels in the four classes of TEs are shown
for CG, CHG, and CHH in AP13 (Fig. 4a-c), and VS16
(Fig. 4d-f ). The two LTR types (Copia and Gypsy) had
similar methylation patterns in all three contexts
within TE bodies. However, in the 2 kb upstream and
downstream regions, Gypsy CG and CHG methylation
levels were higher than Copia (Fig. 4). Overall CG
and CHG methylation levels were lowest in LINEs,
higher in DNA transposons, and highest in the LTRs.
DNA transposons showed highest CHH methylation
in the body regions (Fig. 4c and f ), although CHH
methylation levels were low.

Comparison of AP13 and VS16 DNA methylation and
identification of differentially methylated regions (DMRs)
Differentially methylated cytosines (DMCs) were de-
tected for each context between AP13 and VS16. There
were 116,600 CGs, 37,243 CHGs, and 840 CHHs identi-
fied to be differentially methylated. Since DNA methyla-
tion typically does not occur randomly, DMCs that were
in close proximity (within 100 bp) were merged into
differentially methylated regions (DMRs). Hyperme-
thylation indicates higher methylation in VS16 and hy-
pomethylation indicates higher methylation in AP13. A
total of 1777 CG-DMRs (876 hyper- and 901 hypo-
methylations), 573 CHG-DMRs (439 hyper- and 134
hypo-methylations), and 3 hypo CHH-DMRs were iden-
tified (Table 2).
We further found that hypermethylated CG-DMRs

coincided with hypermethylation at CHG and CHH
regions (Fig. 5). Hypermethylated CHG-DMRs also
showed higher CG methylation in VS16 (Fig. 5c and g).
Similar patterns were seen in hypomethylated CG-

Fig. 1 Circos plot of gene density, TE density, and methylation levels of CG, CHG and CHH context across each chromosome of switchgrass
genome. Each MeDIP-seq replicate and BS-seq sample, by context, are displayed. The color key for MeDIP-seq rings indicates the density of
peak numbers in each sample, not the methylation levels. The methylation signals detected by MeDIP are combinations of CG, CHG and CHH
methylation. In BS-Seq each context is represented separately
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DMRs (Fig. 5b and f) and CHG-DMRs (Fig. 5d and h).
The association between CHH and CG- and CHG-
DMRs is not strong, but is still visible.
Since DMRs were typically seen to have differences

in all three contexts, DMRs were merged for down-
stream analysis. A total of 1159 hypermethylated
DMRs and 947 hypomethylated DMRs were found.
DMRs were overrepresented in CDS, upstream and
downstream regions of genes, 5′ UTR and intergenic
regions (Fig. 6, Additional file 2: Table S1; hypergeo-
metric test). TEs that were found closest to DMRs
were LTRs, DNA transposons, LINEs, SINEs, and RC/
Helitron (Fig. 7). The average length of these TEs is
shorter than that of all TEs across the genome
(Additional file 3: Figure S2).

Genes located within 2 kb of DMRs were extracted.
A total of 805 genes were extracted from near
hypermethylated-DMRs and 624 genes were extracted
from near hypomethylated-DMRs. Analysis of gene
ontology (GO) terms did not yield enrichment among
these genes (Additional file 4: Table S2). The genes
within 2 kb of hyper-DMRs were related to various
biological processes, including cellular amino acid and
derivative metabolic process, cellular amino acid
metabolic process, DNA repair and response to DNA
damage stimulus, etc. Also they had various molecu-
lar functions, including transferase activity, transfer-
ring alkyl or aryl (other than methyl) groups,
nucleotidyltransferase activity, RNA polymerase activ-
ity, nucleotide binding, etc. For cellular component,

Fig. 2 Global methylation levels, distribution, and across genomic features for CG, CHG and CHH contexts. a Methylation levels are shown for
AP13 and VS16, derived from BS-seq data. b Percentages are shown for AP13 and VS16, derived from BS-seq data. c Violin plot of methylation
level in different features
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these genes were involved in ribonucleoprotein com-
plex, intracellular nonmembrane-bounded organelle,
intracellular part, etc. The genes with 2 kb of hypo-
DMRs were involved in biological processes including
RNA biosynthetic process, regulation of metabolic
process, phosphorylation, and regulation of cellular

metabolic process, etc. For molecular functions, these
genes were involved in nucleotide binding transferase ac-
tivity, transferase activity, transferring one-carbon groups,
transferase activity, transferring acyl groups, etc. For cellu-
lar component, these genes were involved in integral to
membrane, membrane, intracellular membrane-bounded

a b

Fig. 3 Meta-plots of DNA methylation level across genes and TEs. AP13 and VS16 methylation levels are shown for 2 kb upstream and downstream
regions, as well as a) in the gene body and b) in the TE body

a b c

d e f

Fig. 4 Methylation patterns of different types of TEs for AP13 (a-c) and VS16 (d-f). a and d show CG methylation levels, b and e show CHG
methylation levels, and c and f show CHH methylation levels in Copia, Gypsy, LINE, and DNA TEs
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organelle, intracellular part, etc. (Additional file 5:
Table S3).
AP13 and VS16 are tetraploid with 2n = 4× = 36 chro-

mosomes. In order to compare the A and B subge-
nomes, collinear gene pairs were identified. A total of
27,144 pairs were found. There was no statistical
difference in DNA methylation levels found between
subgenomes A and (Additional file 6: Figure S3).

Methylated DNA Immunoprecipitation-sequencing
(MeDIP-Seq)
MeDIP-seq was performed in triplicate on leaves from
three clonal ramets, for both VS16 and AP13. In AP13,
there were 200,791 peaks in replicate one, 186,152 peaks

in replicate two, and 163,754 peaks in replicate three
were identified. In VS16, there were 168,623 peaks in
replicate one, 209,611 peaks in replicate two, and
216,755 peaks in replicate three were identified. These
peaks were enriched in TEs (Fig. 8). There were 18,289
common peaks between AP13 and VS16. AP13 had
1219 regions with significantly higher methylation, while
VS16 was found to have 63 regions with higher methyla-
tion. The remaining peaks were not statistically enriched
in either genotype. Total MeDIP-seq peaks in localized
regions from combining replicates in each genotype are
summarized in Table 3. Peaks per Mb were determined
in total peaks found in both genotypes, showing gener-
ally which chromosomes are more or less methylated

Table 2 Derivation of differentially methylated cytosines (DMCs) and differentially methylated regions (DMRs) from BS-Seq Data

CG CHG CHH

Cytosine sites with depth > =5 43,645,671 40,463,671 116,652,010

Cytosine sites with P < 0.05 2,476,686 2,058,714 1,611,070

DMC (Adjusted P < 0.05) 116,600 37,243 840

DMC cluster (> = 4 DMC & > =50 bps) 2832 615 4

DMR 1777 573 3

Fig. 5 Heat maps (a-d) and Violin-boxplots (e-h) of DNA methylation levels of CG- and CHG-DMRs
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than average. Based on this method, Chr09b is the high-
est methylated chromosome, followed by Chr05b and
Chr08b has the least peaks per Mb of DNA, followed by
Chr08a (Table 3).
Overall, more peaks were found in AP13 (144,462

excluding scaffold) than in VS16 (102,676) when
replicate samples were combined (Table 3). Despite the
difference in the number of peaks, the peak density

across chromosomes was similar between VS16 and
AP13. Approximately 14% of the total MeDIP-seq peaks
were located within annotated regions (promoter or
genic) in both genotypes (Table 3).

Comparison of BS-Seq and MeDIP-Seq
Peaks obtained from MeDIP-seq and their corre-
sponding single-base methylation sites derived from
BS-seq, were compared. This allowed us to correlate
the peaks identified in likely methylated regions and
to compare the two methylome sequencing work
flows. In order to compare the techniques, there were
three assumptions: a) The regions of common peaks
derived from MeDIP-seq analysis also exhibit high
methylation in BS-seq in both AP13 and VS16, b)
The 1219 regions that showed higher DNA methyla-
tion in AP13 based on MeDIP-seq results should have
higher DNA methylation levels in AP13 than VS16 in
BS-seq data, and c) The 63 regions that showed
higher DNA methylation in VS16 based on MeDIP-
seq results should have higher DNA methylation
levels in VS16 than AP13 in BS-seq data.
To confirm this, CG, CHG, and CHH methylation

levels were calculated for the common and differen-
tially methylated peaks based on the BS-seq data.
Heat maps confirmed that the common regions
showed similar patterns in each context in both AP13
and VS16 (Fig. 9a and d). The vast majority of CG
and CHG site methylation levels of the common
peaks derived from MeDIP-seq had methylation
levels over 0.50, as determined by BS-seq. This indi-
cated the regions detected by MeDIP-seq were much
more methylated than global DNA methylation levels
(Additional file 7: Figure S4) compared to Fig. 2b.
The 63 regions that were more highly methylated in
VS16 than AP13 based on MeDIP-seq, were also found
to be significantly more methylated in BS-seq (T-test;
P: 0.00016 for CG, 8.567e-06 for CHG and 0.035 for
CHH), although for some regions VS16 did not ex-
hibit higher DNA methylation levels (Fig. 9b and e).
In the 1219 regions showing higher DNA methylation
in AP13, obvious higher methylation was not seen in
all three contexts (Fig. 9c and f ). However, the CG
context had significantly higher methylation levels in
AP13 than in VS16 (P-value: 0.018).
The DMRs identified from BS-seq data were compared

back to MeDIP-seq with two possible assumptions: a)
Hypermethylated-DMRs should have higher MeDIP-seq
peak signals in VS16 than in AP13 and b)
Hypomethylated-DMRs should have higher MeDIP-seq
peak signals in AP13 than in VS16. In fact this is the
case and we found that MeDIP-seq signals in VS16
were higher than in AP13 for hyper-DMRs and hypo-
DMRs showed lower MeDIP-seq signals in VS16 than

Fig. 6 Distribution of DMRs based on genomic features. Asterisks
indicate genomic features with overrepresentation in DMRs
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in AP13 (Fig. 10). The overall differences in MeDIP-
seq signals in the two genotypes were not large. Examples
of a hypermethylated-DMR and hypomethylated-DMR
with corresponding MeDIP-seq signals are shown
(Additional file 8: Figure S5).

Discussion
Genome-wide DNA methylation patterns
DNA methylation was highest in the CG context,
followed by CHG, and CHH. This pattern is similar to
previously studied monocot and dicot species [9, 13].
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Table 3 Peaks obtained from MeDIP-Seq data combined across replicates and their distribution in switchgrass genome

AP13 VS16 Chr
length
(Mb)

AP13 VS16

Chr Total peaks Annotated Total peaks Annotated Total peaks/Mb Annotated peaks/Mb Total peaks/Mb Annotated peaks/Mb

1a 9383 1298 6610 953 97.81 95.93 13.27 67.58 9.74

1b 8176 1230 5673 907 80.38 101.71 15.30 70.57 11.28

2a 10,727 1502 7608 1165 103.95 103.20 14.45 73.19 11.21

2b 9030 1296 6631 1035 93.55 96.52 13.85 70.88 11.06

3a 7695 1339 5610 1004 73.00 105.41 18.34 76.85 13.75

3b 5355 729 3697 533 57.82 92.62 12.61 63.94 9.22

4a 6214 949 4312 686 63.56 97.76 14.93 67.84 10.79

4b 5599 820 3813 584 56.30 99.44 14.56 67.72 10.37

5a 11,457 1836 8246 1406 116.48 98.36 15.76 70.79 12.07

5b 10,597 1575 7576 1200 100.40 105.55 15.69 75.46 11.95

6a 6429 957 4663 744 72.90 88.19 13.13 63.97 10.21

6b 7013 801 5118 626 80.13 87.53 10.00 63.87 7.81

7a 6179 953 4392 731 75.76 81.56 12.58 57.97 9.65

7b 6646 978 4721 738 70.77 93.91 13.82 66.71 10.40

8a 5524 720 3774 520 73.87 74.78 9.75 51.09 7.04

8b 5968 733 3762 517 77.82 76.69 9.42 48.34 6.64

9a 12,929 1845 9148 1397 122.78 105.30 15.03 74.51 11.38

9b 9541 1460 7322 1189 87.97 108.46 16.60 83.23 13.52
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Fig. 9 Heat map and Violin-boxplots representing DNA methylation levels for common (a and d), hypermethylated peaks and differential peaks
(b, c, e and f) in CG, CHG and CHH contexts

Fig. 10 Heat map of MeDIP-Seq signals for hypermethylated-DMRs (a) and hypomethylated-DMRs (b). The color key for indicates the density of
peak numbers in each sample, not the methylation levels

Dworkin et al. BMC Genomics  (2017) 18:851 Page 9 of 14



However, while the methylation levels in this study differ
from the recently published switchgrass Kanlow geno-
type [9], there are some reasons that may account for
this; including the switchgrass genome version that was
used for mapping (V2 in our study and V1 in the previ-
ous study), the reference genome resulted from sequen-
cing AP13, and/or the effect of clonal propagation.
Niederhuth et al. 2016 indicated a pattern in clonally
propagated species showed lower methylation levels in
the CHH genotype, perhaps it can affect global methyla-
tion levels. Gene and TE density are correlated with
DNA methylation levels (Fig. 1). In areas where TE
density is high and gene density is low, there are high
levels of DNA methylation, as detected by BS-seq and
MeDIP-seq. Overall methylation levels between AP13
and VS16 were similar in each context. VS16 methyla-
tion levels were consistently slightly lower than that of
AP13 (Fig. 2a). This could be partially attributed to the
fact that the reference genome used in this study was de-
rived from AP13. There may be some genotype-specific
SNPs or indels, which could affect alignment and proper
DNA methylation level analyses [14]. In addition, the
two genotypes represent the two switchgrass ecotypes,
which has distinct geographical niches and DNA poly-
morphisms throughout the genomes [15]. Spontaneous
deamination of methylated cytosines ultimately causes a
thymine substitution, which would be considered an
unmethylated CG site [14, 16]. The majority of spontan-
eous mutations found in an Arabidopsis study were
C:G → A:T transitions [16].
Most CGs had either low (<0.2) or high (>0.6) methy-

lation levels, and only 12% were methylated between
these ranges (Fig. 2b). CHG and CHH methylation is
more variable, with about half of CHGs having low
methylation levels and 25% of CHG sites exhibiting high
methylation. Methylation levels in different genomic fea-
tures were very different. TEs were highly methylated
relative to the other features examined (Fig. 2c). High
TE methylation was expected, as epigenetic silencing is
targeted to TEs to prevent their activity [11, 17]. CG
methylation was highest in TEs, followed by intron,
CDS, promoter, and UTR-a pattern consistent with
many other plant species [9, 18].

DNA methylation patterns across genic and TE regions
In all three contexts, a relatively higher methylation level
was seen 2 kb upstream of the transcription start site
(TSS) (Fig. 3a). A very sharp dip in methylation levels
just prior to and at the TSS was seen. Methylation levels
were seen to increase in the gene body with another dip
in methylation levels towards the TTS. This TSS and
TTS pattern is a common DNA methylation pattern
found in Arabidopsis [13, 19], soybean [20], cassava [21],
and maize [22] and many other plant species [9]. The

relatively high gene body CHG methylation is likely due
to pseudogenes and intronic TEs (Additional file 1:
Figure S1).
The higher methylation levels of TE than that of genes

is consistent with the generally repressive function of
DNA methylation (Fig. 3b). The relatively higher methy-
lation of regions flanking TEs than around genic regions
suggests that DNA methylation has spread outside of TE
bodies. It is well known that genome size is directly
related to TE content [23]. Transposable elements play a
key role in shaping genomes and largely contribute to
major evolutionary changes [12]. Classes of TEs behave
differently throughout the genome and the methylation
levels of two long terminal repeats (LTRs) were analyzed.
Methylation levels of retrotransposons and DNA trans-
posons were examined. The two LTR types, Copia and
Gypsy, were similarly methylated in TE bodies, but
Gypsy had higher methylation levels in the upstream
and downstream regions in both AP13 (Fig. 4a-c) and
VS16 (Fig. 4d-f ). Similar results were also observed in
cassava [21]. These results indicate that DNA methyla-
tion of LTR transposons is very important for repression
of TE activity and for genome integrity. Lower levels of
DNA methylation of GYPSY retro-transposons could
lead higher transposition activity and result in genome
expansion [24]. Taken together, these results of gene and
TEs are in general consistent with that of other plant
species [13, 19, 20, 22, 25].

Comparison of AP13 and VS16 DNA methylation
CG and CHG sites were highly overrepresented in the
differentially methylated cytosine (DMC) analysis. This
may be attributed to the higher statistical power in
detecting CG and CHG sites, due to the typically higher
methylation levels of CG and CHG sites compared to
CHH sites [26]. DMCs were merged into regions
(DMRs), since DNA methylation is known to occur
non-randomly and is often found in clusters [27].
Hypermethylated-DMRs refer to differentially methyl-
ated regions that had higher methylation in VS16
than in AP13, and hypomethylated-DMRs had higher
methylation in AP13 than in VS16. There were 1777
CG-DMRs (876 hypermethylated and 901 hypomethy-
lated), 573 CHG-DMRs (439 hypermethylated and
134 hypomethylated), and 3 CHH-DMRs (all hypo-
methylated). It is likely that deeper bisulfite sequen-
cing coverage may allow more DMCs in the CHH
context to be observed among switchgrass genotypes
(Fig. 5) [26]. The genotype AP13 was derived from a
lowland switchgrass cultivar “Alamo” and VS16 was de-
rived from the upland cultivar “Summer.” These geno-
types have been maintained in a Noble Foundation
greenhouse for the last 11 years through clonal ramets.
Clonal propagation is very common in switchgrass and

Dworkin et al. BMC Genomics  (2017) 18:851 Page 10 of 14



other plant species. A recent study shows that plants with
a history of clonal propagation have comparatively lower
CHH methylation levels, which may partially account for
the low number of CHH- DMRs [9].
The hypermethylated and hypomethylated DMRs in

each context were merged to form 1159 hypermethylated-
DMRs and 947 hypomethylated-DMRs (Fig. 6). These
regions were overrepresented in promoters, CDS, down-
stream regions of genes, TEs, and intergenic regions.
Promoter methylation in plants is typically negatively cor-
related with lower gene expression. Very low and high
levels of methylation in the gene body are also correlated
with lower gene expression [28]. Gene bodies may also
contain relatively higher DNA methylation levels due to
regulation of alternative and cryptic promoters in plants
and animals [28–30].
The genes located within 2 kb of DMRs (805

hypermethylated-DMRs and 624 hypomethylated-DMRs)
were extracted and analyzed for enrichment of gene ontol-
ogy (GO) terms. No terms were enriched in these genes,
suggesting that DNA methylation is broadly regulating
genes, as opposed to specific sets of genes.

Methylated DNA Immunoprecipitation-sequencing
(MeDIP-Seq)
Consistent with BS-seq data, MeDIP-seq peaks were
enriched in TEs (Fig. 8).
The unlocalized portion of the genome (scaffold) has

the highest average peak density (MeDIP-seq peaks/Mb
of DNA). This may be due to the presence of sequences
that are difficult to localize and/or highly repetitive,
which are likely to have relatively higher levels of DNA
methylation throughout. There is the possibility of four
copies of each sequence, since there is an A and B
genome, each with two sets in the nucleus [31].
Peaks per chromosome, peak density, and peaks in an-

notated were determined in VS16 and AP13 (Table 3).
Overall, more peaks were found in AP13 than in VS16
when replicate samples were combined This difference
could be due to the reference sequence being derived
from AP13. Despite the difference in the number of
peaks, the peak density across chromosomes was similar
between VS16 and AP13.

Comparison of BS-Seq and MeDIP-Seq
The vast majority of methylation levels for CG and CHG
sites in areas that were detected by MeDIP-seq were
higher than global DNA methylation levels (Additional
file 7: Figure S4) compared to Fig. 3. There were 18,289
common peaks between AP13 and VS16 detected by
MeDIP-seq, which were compared to the BS-seq data to
confirm whether methylation levels were high in both
genotypes (Fig. 9a and d). This confirms that MeDIP-seq
detects broadly methylated regions in switchgrass. The

1219 enriched MeDIP-seq peaks in AP13 had only sig-
nificantly higher methylation levels in the CG context,
though the pattern was not visibly apparent (Fig. 9c and
f). The 63 enriched MeDIP-seq peaks that were also
found to be significantly more methylated in all three
contexts and some regions were not found to have
higher DNA methylation levels in VS16 (Fig. 9b and e) .
The DMRs from BS-seq were compared to peak en-

richment in the MeDIP-seq data. Hypermethylated-
DMRs were regions that were more highly methylated in
VS16 than AP13, while hypomethylated-DMRs were
more highly methylated in AP13 than VS16. This was
mostly in agreement with MeDIP-seq signals as well
(Fig. 10). However, in the 1159 hyper-DMRs, only 11 of
them were also identified as VS16 upregulated peaks in
MeDIP-seq data. In the 947 hypo-DMRs, only 8 of them
were identified as AP13 upregulated peaks. Together, the
result indicates that MeDIP-Seq detected methylated
regions well, but did not perform as well, in detecting
differential methylation between AP13 and VS16.

Future application of TEs in plant breeding
Epigenetic information is considered as one possible
source of missing heritability [32]. Epigenetic variations
caused by TE insertions can lead to phenotypic varia-
tions, such as natural variation in floral symmetry [33],
sex determination in melon by a transposon induced
epigenetic variation [34], and abortion of male sexual
organs because of DNA methylation variations caused
by insertion of the hAT transposon upstream of the
CmWIP1 gene [34]. In Arabidopsis, the ONSEN inser-
tion yielded an abscisic acid-insensitive phenotype,
thereby causing stress tolerance and epigenetic varia-
tions that could mask this phenotype [35]. Upregulation
of genes related to heat, salt, cold, and UV stress re-
sponse have been observed in rice due to TE insertions
[36]. An insertion of a retrotransposon in soybean led to
photoperiod-insensitivity [37]. Thousands of DMRs were
identified in this study. Some of the DMRs were found
to overlap with TEs. Knowing the biological functions of
these DMRs are very important. Only then we can tell,
which of these thousands can play important role in de-
veloping improved switchgrass. DMRs can potentially
affect nearby gene expression and lead to phenotypic
variations between AP13 and VS16. Given the benefits
of epigenetic variations from some TE polymorphisms,
ultimately controlling TE insertion can lead to a valuable
plant breeding tool to improve switchgrass and other
significant crops.

Conclusion
Overall DNA methylation levels in the two switchgrass
genotypes AP13 and VS16 were found to be similar. CG
methylation levels were the highest, followed by CHG,
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and CHH was the lowest. DNA methylation broadly reg-
ulates the genome, as no enrichment of GO terms was
found resulting from the BS-seq datasets. The typical
pattern of increased DNA methylation was seen in TEs
compared to genic regions. MeDIP-seq did not identify
differentially methylated regions as effectively as BS-seq,
but did effectively locate methylated regions throughout
the genome. The A and B subgenomes of switchgrass
did not have significantly differential methylation be-
tween collinear gene pairs.

Methods
Plant material
Switchgrass genotypes, AP13 (lowland ecotype) and
VS16 (upland ecotype), were grown in a greenhouse at
Delaware State University, Dover, DE with 28 °C day/
20 °C night temperature and 12–14 h photoperiod.
Plants were grown in 9 in. pots with Pro-Mix Bx soil
and watered when soil dried to prevent waterlogging
stress.

DNA extraction
A CTAB-based protocol was used for DNA extraction
from leaves of both genotypes (AP13 and VS) [38]. The
quality of DNA was determined by running on a 1.0%
agarose gel electrophoresis and quantified via a Nano-
drop 2000 spectrophotometer (Thermo Scientific,
Wilmington, DE). DNA samples were collected sepa-
rately from the leaves of nine clonal ramets (biological
replicates) of each genotype was then pooled in equimo-
lar amounts. A single pooled genomic DNA sample was
used for generating MeDIP-seq BS-seq libraries. All
libraries were sequenced on the Illumina/HiSeq-2500
platform (Illumina Inc., San Diego, CA).

Methylated cytosine sequencing
BS-sequencing library preparation
Methyl-MaxiSeq™ EpiQuest (BS-seq) libraries were
prepared from 100 ng of genomic DNA and underwent
bisulfite treatment using Zymo Research EZ DNA
Methylation - Lightning™ kit (Cat#: D5030, Zymo Re-
search, Irvine, CA). The resulting bisulfite-converted
DNA was PCR- amplified and ligated to adapters, with
barcodes. Amplified fragments were purified using the
DNA Clean & Concentrator-5™ (Cat#: D4003, Zymo
Research, Irvine, CA). The librarieswere checked for size
and and concentration using the Agilent 2200 TapeSta-
tion instrument (Agilent Technologies, Santa Clara,
CA), followed by sequencing on the Illumina HiSeq
2500 platform.

Processing of BS-Seq reads
Bisulfite-treated libraries were analyzed using the standard
Illumina base-calling software. Alignment was conducted

with Bismark (http://www.bioinformatics.babraham.ac.uk/
projects/bismark/) [39]. Index files were constructed with
the Bismark_genome_preparation command using the
switchgrass reference genome (V2.1). Bismark’s –non_di-
rectional and other default parameters were applied.
Fisher’s exact test for differentially methylated cytosines
(DMCs) was performed for each cytosine having a mini-
mum of five aligned sequence reads.

MeDIP-sequencing library construction
MeDIP-seq libraries were prepared using the Zymo
Research DNA Methylation IP Kit (Cat #D5101, Zymo
Research, Irvine, CA). Immunoprecipitated DNA was
PCR amplified, purified, and quantified, as described
above. Libraries were normalized to 4 nM, followed by
sequencing on the Illumina HiSeq 2500 platform
(Illumina Inc., San Diego, CA).

MeDIP-Seq sequence alignments and data analysis
Reads were aligned to the reference Panicum virgatum
genome (V2.1), with Bowtie’s best mode and other
default parameters. “MACS2 callpeak” was used to call
peaks, using input DNA as the control. BIGWIG files
were generated from the coverage for visualization
purposes [40]. MeDIP-seq peak density was calculated
using a previously reported method [41]. All sequences
derived from this project were submitted to the short
read archives at NCBI, BioProject#PRJNA369416.

Identification of differentially methylated regions (DMRs)
between AP13 and VS16
To study the methylation differences between AP13 and
VS16, DMRs were identified. Briefly, Fisher’s exact tests
were performed for the cytosines that can be covered by
at least 5 reads in AP13 and VS16. Then multiple test
correction was performed to control FDR. DMCs were
defined as the cytosines with FDR < 0.05. DMCs that
had a distance less than 100 bps were merged into clus-
ters. DMCs clusters that had less than 4 DMC and were
shorter than 50 bps were discarded. The remaining
DMC clusters were then defined as DMRs requiring
methylation differences above 0.4, 0.2 and 0.1 for CG,
CHG and CHH context, respectively. In other published
literature, similar strategies are widely used and no bias
was reported [26, 42, 43].

Distribution of DMRs and peaks across genomic features
DMRs and/or peaks were assigned to genomic features
based on gene annotations available from JGI and in-
house repeat annotation in GFF3 files. The features in-
clude: promoter, CDS, intron, UTR, TEs, 2 kb upstream,
and 2 kb downstream of genes.
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Analysis of DNA methylation of two subgenomes in
Switchgrass
Proteins from each subgenome were extracted (9 chro-
mosomes of each subgenome A and B). BLASTp was
performed using subgenome B as queries against subge-
nome A [44]. BLAST results and gene annotation infor-
mation were used as input for MCScanX to identify
collinear genes.

Repeat annotation
RepeatModeler [45] and RepeatMasker [46] were used
to identify repeat families in the switchgrass genome.
Repeat families were first identified by RepeatModeler
and then used as a library to introduce repeat annota-
tions by RepeatMasker [45, 46].

Visualization of data
Plots were generated using Circos [47]. Color keys were
selected from ColorBrewer (http://colorbrewer2.org)
[48]. Figure legends were added into the Circos plots by
Inkscape (http://inkscape.org) [49]. ViewBS (http://
github.com/readbio/ViewBS) was used to extract infor-
mation of global DNA methylation levels, distribution of
methylation levels, methylation patterns across genes
and TEs, DMRs, etc. Figures were also generated via
ViewBS. Integrative Genome Viewer (IGV; http://soft
ware.broadinstitute.org/software/igv/) was used to
visualize MeDIP-seq and BS-seq tracks together [50].

Additional files

Additional file 1: Figure S1. Meta-plots of DNA methylation level
across gene without intronic TE. (PDF 7 kb)

Additional file 2: Table S1. Overrepresentation hypergeometric test on
Hypermethylated-DMRs and Hypomethylated-DMRs. (XLSX 9 kb)

Additional file 3: Figure S2. Violin plot of length of TE that were
associated with DMRs. (PDF 19 kb)

Additional file 4: Table S2. GO analysis of hypermethylated- and
hypomethylated-DMRs. (XLSX 824 kb)

Additional file 5: Table S3. Hypermethylated- and hypomethylated-
DMRs flanking within 2000 bp of annotated genes. (XLSX 204 kb)

Additional file 6: Figure S3. Meta-plots of DNA methylation level
across collinear gene pairs between two sub genomes in AP13 (A) and
VS16 (B). Methylation patterns across genes in AP13 for collinear gene
pairs on the two sub genome (A-C). SubA means genes from sub
genome A; SubB means genes from sub genome B. (TIFF 137 kb)

Additional file 7: Figure S4. Distribution of methylation levels of
common peaks for CG, CHG and CHH context. (PDF 6 kb)

Additional file 8: Figure S5. IGV view of a hypermethylated-DMR (A)
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