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Abstract

Bioassay-guided fractionation of a methanol extract of Magnolia grandiflora against Plasmodium 
falciparum yielded two new (1 and 2) and six known (3 – 8) bioactive compounds. The structures 

of the new compounds were assigned by mass spectrometric and 1D and 2D NMR data. Known 

compounds were identified by comparison of 1H NMR and MS data with literature data. The two 

known neolignans 3 and 4 showed moderate antiplasmodial activity with IC50 values of 2.8 ± 0.1 

and 3.4 ± 0.1 μM, respectively. Weak antiplasmodial activity was recorded for compounds 1, 2, 5, 

6, 7 and 8, with IC50 values of 38 ± 2, 23 ± 2, 16.5 ± 0.2, 86 ± 1, 44 ± 4 and 114 ± 9 μM, 

respectively.
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Introduction

Malaria is one of the world’s most devastating diseases, with over 200 million people being 

infected every year and over 400,000 deaths in 2015 alone, most of them among children in 
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sub-Saharan Africa.[1] Unfortunately the lethal malaria parasite, Plasmodium falciparum, 

has become resistant to most of the antimalarial drugs that were effective in the past, such as 

quinine, chloroquine, sulphadoxine-pyrimethamine, and mefloquine.[2] Drug resistance to 

artemisinin, which is used in combination therapy with other antimalarials as the first-line 

treatment for uncomplicated P. falciparum malaria, has also been observed.[3] Therefore, 

there is a continuing need to develop novel and more effective drugs against malaria. Various 

reviews have describe the current state of antimalarial drug research,[4–7] but in the words of 

one review “although there has been a dramatic improvement in the pipeline of new 

antimalarial molecules over the past decade, the glass is still rather empty”.[8]

As part of a systematic search for antimalarial agents from plant extracts from the Natural 

Product Discovery Institute Repository, a detanninized methanol partition fraction of the 

twigs and fruit of Magnolia grandiflora was found to show moderate activity against the Dd2 

strain of P. falciparum. M. grandiflora is a well-investigated plant species, and is known to 

contain alkaloids,[9] flavonoids, phenolic compounds,[10] glycosides,[11, 12] sesquiterpene 

lactones,[13–15] and volatile compounds.[16] It has been reported in Traditional Chinese 

Medicine as a reliever of colds, headaches, and stomach ache.[9] It has not however been 

reported to contain any antimalarial compounds, and it was thus selected for investigation. 

Herein, we report the isolation and structure elucidation of two new (1 and 2) and six known 

(3 – 8) compounds with various degrees of antimalarial activity.

Results and Discussion

A methanol extract of M. grandiflora was subjected to liquid-liquid partitioning to 

eventually afford an ethyl acetate soluble fraction with an IC50 value of 10 μg/mL against 

the pyrimethamine, chloroquine, and mefloquine-resistant Dd2 strain of P. falciparum. 

Bioassay-guided isolation using solid phase extraction over C18 silica followed by C18 

HPLC gave two new compounds (1 and 2) along with six known compounds (3 – 8) as 

shown in Figure-1. The known compounds were identified as 4′-O-methyl honokiol (3),[17] 

magnolol (4),[18] honokiol (5),[19] 3-methoxymagnolol (6),[18] isomagnolol (7),[20] and 

ketone (8)[21, 22] after comparison of their mass spectrometric and 1H NMR data (Figure 

S13–S18) with experimental values.

Compound 1 was isolated as a colorless oil and was assigned the molecular formula 

C18H20O2 based on its sodiated molecular ion peak at m/z 291.1352 [M + Na]+ in its 

HRESIMS. Its 1H NMR data (Table 1) displayed three aromatic protons of an ABX system 

at δH 6.73 (1H, J = 8.0 Hz, H-2), 6.96 (1H, J = 8.0, 1.8 Hz, H-3), and 6.98 (1H, J = 1.8 Hz, 

H-5). Signals for two allyl groups were present at δH 3.34 (2H, d, J = 6.6 Hz, H-7), 2.47 – 

2.51 (1H, m, H-7′a), 2.53 – 2.60 (1H, m, H-7′b), H-5.90 – 5.95 (1H, m, H-8), 5.6 – 5.76 

(1H, m, H- H-8′), 5.03 – 5.12 (2H, m, H-9), and 5.04 – 5.12 (2H, m, H-9′). Proton shifts at 

δH 5.62 (1H, d, J = 10.0 Hz) and 5.95 – 6.00 (1H, m) were assigned to H-5′ and H-6′, 

respectively. Moreover, two oxygenated methine and two methylene protons were also 

observed at chemical shift values of δH 4.14 (1H, dq, J = 8.4, 4.5 Hz, H-1′), δH 4.71 (1H, 

broad t, J = 3.9 Hz, H-3′), δH 2.00 – 2.08 (1H, m, H-2′a) and δH 2.41 – 2.48 (1H, m, 

H-2′b). Its 13C NMR spectrum (Table 1) showed the presence of 18 carbon signals. An 

HSQC experiment in combination with 13C NMR data identified five methylenes at δC 31.6, 
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39.8, 41.4, 115.6 and 118.6, two sp3-methines at δC 62.2 and 85.3, and seven sp2-methines 

at δC 110.1, 123.2, 128.0, 128.6, 131.4, 133.2, and 137.8. The remaining 4 carbon signals 

were classified as quaternary carbons with resonances at δC 47.8, 133.2 (2C), and 156.0. The 

NMR data (Table 1) of 1 is similar to that of ketone (8)[21, 22] except for the presence of a 

hydroxymethine at δC 62.2 (C-1′) instead of the ketone carbonyl at δC 195.2 (C-1′). An 

HMBC experiment on 1 (Figure 2) indicated correlations of H-7 (δH 3.34) with C-4 (δC 

133.2), C-3 (δC 128.6) and C-5 (δC 123.2) confirming the presence of an allyl group on the 

aromatic ring. The presence of a second allyl group at C-4′ was validated from correlations 

between H-7′ (δH 2.56) to C-4′ (δC 47.8), and C-3′ (δC 85.3). The position of the double 

bond was fixed between C-5′ and C-6′ by the correlations of H-5′ (δH 5.62) with C-4′, 

C-1′, and C-3′. The position of C-3′ (δC 85.3) was confirmed on the basis of its 

correlations to H-5′ (δH 5.62) and H-7′ (δH 2.56). A COSY spectrum (Figure 2) was also 

obtained for compound 1, and cross peaks were located for H-1′ to H-2′a/b and H-6′ and 

H-2′a/b to H-3′, indicating the presence of a cyclohexene ring (C-1′ through C-6′) in 1. 

Compound 1 was thus identified as 4,4′-diallyl-1,2,6,4′-tetrahydrodibenzo[b,d]furan-3′-ol.

Compound 2, also a colorless oil, was assigned the molecular formula C26H27NO2 (m/z 
386.2107 [M + H]+, calcd. 386.2115) on the basis of its HRESIMS. 1H NMR data (Table 1) 

exhibited the presence of two ABX substituted benzene rings and a 1,4-disubstituted 

benzene ring. Protons of the two ABX aromatic rings were assigned chemical shift values of 

δH 7.11 (1H, m, overlapped, H-2′), 7.02 (1H, m, overlapped, H-2), 6.89 (1H, m, H-5), 6.77 

(1H, d, J = 8.2 Hz, H-5′), 7.03 (1H,dd, J = 8.8, 2.3 Hz, H-6), and 7.24 (1H, dd, J = 8.2, 2.2 

Hz, H-6′). The 1,4-disubstituted third aromatic ring had proton signals at δH 7.11 (2H, d, J = 

8.4 Hz, H-2″ and H-6″) and 6.80 (2H, d, J = 8.4 Hz, H-3″ and H-5″). Chemical shifts of 

3.34 (2H, dt, J = 6.7, 1.7 Hz, H-7), 3.21 (2H, dt, J = 6.3, 1.7 Hz, H-7′), 5.97 (1H, ddt, J = 

16.8, 10.0, 6.7 Hz, H-8), 5.82 (1H, ddt, J = 16.6, 10.2, 6.3 Hz, H-8′), 5.04 (1H, dq, J = 10.0, 

1.7, H-9a), 5.08 (1H, dq, J = 17.0, 1.7, H-9b), 4.99 (1H, dq, J = 17.0, 1.7, H-9a′) and 5.01 

(1H, dq, J = 10.2, 1.7, H-9b′) were assigned to two allyl groups on the separate aromatic 

rings. Additional signals characteristic of an ethylamino group[23] were observed at δH 2.90 

(2H, t, J = 6.9 Hz, H-7″) and 3.41 (2H, dt J = 6.9, 6.9 Hz, H-8″). 13C NMR data (Table 1) 

for compound 2 displayed a total of 26 carbon atoms. An HSQC NMR experiment in 

combination with 13C NMR data classified these carbon atoms into 6 methylenes (δC 34.6, 

36.6, 39.6, 45.1, 115.6, and 116.8), 12 methines (δC 111.2, 115.4, 115.6 (2C), 128.4, 128.5 

(2C), 130.1 (3C), 135.5, and 138.0) and 7 quaternary carbons (δC 124.8, 128.0, 130.2, 130.6, 

131.4, and 154.3 (2C). Assignment of the 13C NMR spectrum of 2 was made on the basis of 

its HMQC spectrum and by comparison with the 13C NMR spectra of honokiol analogs.[24] 

An HMBC NMR spectrum (Figure 3) showed key correlations for 2, including cross-peaks 

for the three-bond correlation H-2″/H-6″ to C-7″ (δC 34.6), for the two-bond correlation 

H-7″ to C-8″ (δC 45.1), and for the three bond correlations H-2 to C-1′ (δC 125.3) and to 

C-4 (δC 151.1), H-7 to C-2 (δC 130.3), and H-7′ to C-2′ (δC 130.6) and C-4′ (δC 146.1). 

These correlations established the structure of 2 as 3,3′-diallyl-4′-((4-

hydroxyphenethyl)amino)-[1,1′-biphenyl]-4-ol.
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Compound 2 is most probably formed by oxidative coupling of 2-allyphenol followed by 

condensation of the intermediate with p-hydroxyphenethylamine. Figure 4 shows an 

example of one plausible pathway.

The isolated compounds 1–8 were evaluated for their antiplasmodial activity against the Dd2 

strain of P. falciparum. Compounds 3 and 4 showed moderate antimalarial activity with IC50 

values of 2.8 ± 0.06 and 3.4 ± 0.08 μM, respectively. Compounds 1, 2, 5, 6, 7, and 8 had 

weaker activities with IC50 values of 37.5 ± 2.00, 22.7 ± 1.81, 16.6 ± 0.2, 86.1 ± 0.6, 44.4 

± 4.1 and 114 ± 9 μM, respectively.

The fact that simple lignans show moderate antiplasmodial activity is not unprecedented. 

Thus several lignans with antiplasmodial activity from African medicinal plants are reported 

in the review by Ntie-Kang et al.,[6] and lignans with antiplasmodial activity have been 

reported from Asparagus africanus[25] and Carrisa edulis.[26] Neolignans have also shown 

good antiplasmodial activity.[27] One point of interest is that antiplasmodial activity appears 

to be strongly dependent on the substitution pattern of simple lignans. Thus compounds 3 
and 4 were active at the single digit micromolar level, but compound 5, isomeric with 4, was 

fivefold less potent, and compound 6, with an extra hydroxyl group, was thirtyfold less 

potent than 3.

Experimental Part

General Experimental Procedures

UV spectra were measured on Shimadzu a UV-1201 spectrophotometer. 1H- and 13C NMR 

spectra were recorded on a Bruker Avance 500 spectrometer in CDCl3 with TMS as internal 

standard. An Agilent 6220 mass spectrometer was used to obtain high resolution mass 

spectra. Solid phase extraction was performed using RP-18 silica gel (40–63μm, EM 

Science, Germany). Semi-preparative HPLC was performed on a semipreparative 

Phenomenex C18 column (5μm, 250 × 10 mm), using Shimadzu LC-10AT pumps coupled 

with a Shimadzu SPD M10A diode array detector, and a SCL-10A system controller.

Antiplasmodial Bioassay

The effect of each fraction or compound on parasite growth of the Dd2 strain of P. 
falciparum was measured in a 72 h growth assay in the presence of compound as descibed 

previously [28, 29]. Briefly, ring stage parasite cultures (100 μL per well, with 1% hematocrit 

and 1% parasitemia) were grown for 72 h in the presence of increasing concentration of the 

drug in a 5% CO2, 5% O2, and 90% N2 gas mixture at 37 °C. After 72 h in culture, parasite 

viability was determined by DNA quantitation using SYBR Green I assay [29]. The half-

maximum inhibitory concentration (IC50) calculation was performed with KaleidaGraph 

software using a nonlinear regression curve fitting. IC50 values are the average of three 

independent determinations with each determination in duplicate and are expressed ± SEM. 

Artemisinin was used as the positive control with an IC50 of 6 ± 2 nM.
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Plant Material

The plant material was collected in Santa Barbara, CA on September 11, 1995 by Cori 

Morenberg and Jan Wienpahl (NYBG) in the Santa Barbara Alice Keck Memorial Park, 

along Arrelaga St. 34°25′ N, 119°42′ W. http://sweetgum.nybg.org/science/vh/

specimen_details.php?irn=284841. Voucher specimen CM00144c.

Extraction and Initial Fractionation

The dried and powdered twigs and fruit of M. grandiflora (175 g) were exhaustively 

extracted with MeOH in two 24-hour percolation steps followed by partition into hexane, 

methylene chloride and an aqueous methanolic fractions. The latter was detanninized by 

passage through a column of polyvinyl pyrrolidone to give the active methanolic fraction 

0038279-03C, X-4568 (about 10 g). For purposes of fractionation and purification, 1.5 g of 

extract was shipped to Virginia Tech for bioassay-guided isolation.

Isolation of Bioactive Constituents

The crude extract (1.3 g) was first detanninized again by dissolving in MeOH and passing it 

through a polyamide column. A total of 932 mg detanninized extract was collected after 

elution and evaporation. It was dissolved in 200 mL of 90% aquous methanol and extracted 

with hexanes (200 × 5 mL). A total of 69 mg hexanes fraction was obtained. The 90% 

aqeous methanol extact was evaporated, suspended in 200 mL water, and then extracted with 

EtOAc (200 × 5 mL); evaporation of this EtOAc-soluble fraction gave 317 mg residue. The 

water layer was concentrated to a brown reside (530 mg). The EtOAc fraction had the 

highest antiplasmodial activity, with an IC50 value between 5 and 2.5 μg/mL. It was 

separated into seven sub-fractions (F1–F7) by open column chromatography over RP-18 

silica gel with a MeOH/H2O gradient. Sub-fraction F5 (eluted with 90% MeOH/H2O) was 

the most active fraction with an IC50 value between 2.5 and 1.5 μg/mL. Semi-preparative 

C18 HPLC (MeOH/H2O sovent system) on F5 yielded nine subfractions (F5-1 to F5-9). 

Fraction F5-8 was further purified on HPLC using a C18 column with a MeOH/H2O solvent 

system to give compound 3 (3.2 mg, tR 19.2 min). Fraction F5-6 was subjected to HPLC 

purification on a C18 column using MeCN/H2O as solvent system to afford compounds 4 
(2.0 mg, tR 12.76 min) and 6 (0.3 mg, tR 14.5 min). F5-5 was purified by HPLC on a C18 

column using the MeCN/H2O solvent system to obtain compound 1 (0.5 mg, tR 12.1 min). 

The seventh fraction F5-7 yieded compounds 2 (0.6 mg, tR 14.2 min) and 7 (0.3 mg, tR 18.8 

min) on HPLC separation on a C18 column using the MeCN/H2O solvent system. HPLC of 

fraction F5-3 on a C18 column (MeCN/H2O solvent system) resulted in the isolation of 

compounds 5 (2.7 mg, tR 10.1 min) and 8 (0.3 mg, tR 14.4 min).

Structural Identification

Characterization data of compounds 1 and 2 are shown below and their 1H NMR, 13C NMR, 

HSQC, and HMBC spectra are reproduced in the Supporting Information. The 1H NMR 

spectra of compounds 3 – 8 are also reproduced in the Supporting Information.

4,4′-Diallyl-1,2,6,4′-tetrahydrodibenzo[b,d]furan-3′-ol; 1—Colorless oil. 

[α]D
21-33.8 (c = 0.020, MeOH), LC-UV [(acetonitrile in H2O)] λmax 225, 285 nm. 1H 
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NMR (CDCl3, 500 MHz) and 13C NMR (CDCl3, 125 MHz), see Table 1. ESI-HRMS m/z 
291.1352 [M + Na]+; C18H20O2Na+ (calc. 291.1361).

3,3′-Diallyl-4′-((4-hydroxyphenethyl)amino)-[1,1′-biphenyl]-4-ol; 2—LC-UV 

[(acetonitrile in H2O)] λmax 219, 280 nm. 1H NMR (CDCl3, 500 MHz) and 13C NMR 

(CDCl3, 125 MHz), see Table 1. ESI-HRMS m/z 386.2107 [M + H]+; C26H28NO2
+ (calc. 

386.2120).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Structures of compounds 1–8.
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Figure 2. 
Key HMBC and COSY correlations of compound 1
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Figure 3. 
Key HMBC correlations of compound 2
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Scheme 1. 
Plausible biosynthetic pathway for compound 2
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Table 1

1H- and 13C NMR data of compounds 1 and 2.

Position 1 2

1H NMR (J in Hz) 13C NMR 1H NMR (J in Hz) 13C NMR

1 - 156.2 - 128.0

2 6.73, d, J = 8.0 110.3 7.02, d, J = 2.3 130.3

3 6.96, dd, J = 8.0, 1.8 128.6 - 132.2

4 - 133.4 - 151.0

5 6.98, d, J = 1.8 123.4 6.89, d, J = 8.8 115.4

6 - 133.2 7.03, dd, J = 8.8, 2.3 128.5

7 3.34, d, J = 6.6 39.9 3.34, dt, J = 6.7, 1.7 39.6

8 5.90 – 5.95, m 138.0 5.97, ddt, J = 16.8, 10.0, 6.7 138.0

9 5.03 – 5.12, m 115.8 5.04, dq, J = 10.0, 1.7
5.08, dq, J = 17.0, 1.7

115.6

1′ 4.14, dq, J = 8.4, 4.5 62.4 - 125.3

2′/a or b 2.00 – 2.08, m, 2.41 – 2.48, m 31.8 7.11, d, J = 2.2 130.6

3′ 4.71, br t, J = 3.9 85.6 - 124.8

4′ - 47.9 - 146.1

5′ 5.62, d, J = 10.0 131.6 6.77, d, J = 8.2 111.2

6′ 5.95–6.00, m 128.2 7.24, dd, J = 8.2, 2.2 128.5

7′/a or b 2.47 – 2.51, m, 2.53 – 2.60, m 41.6 3.21, dt, J = 6.3, 1.7 36.6

8′ 5.66 – 5.76, m 133.4 5.82, ddt, J = 16.6, 10.2, 6.3 135.5

9′ 5.04 – 5.12, m 118.7 4.99, dq, J = 17.0, 1.7
5.01, dq, J = 10.2, 1.7

116.8

1″ - - - 131.3

2″ - - 7.11, d, J = 8.4 130.1

3″ - - 6.80, d, J = 8.4 115.6

4″ - - - 154.3

5″ - - 6.80, d, J = 8.4 115.6

6″ - - 7.11, d, J = 8.4 130.1

7″ 2.90, t, J = 6.9 34.6

8″ 3.41, dt, J = 6.9, 6.9 45.1

NH 3.85, br s

OH 5.21, s

OH 4.70, s
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