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Abstract

The ability to regulate inflammatory pathways and host defense mechanisms is critical for 

maintaining homeostasis and responding to infections and tissue injury. While unbalanced 

inflammation is detrimental to the host; inadequate inflammation might not provide effective 

signals required to eliminate pathogens. On the other hand, aberrant inflammation could result in 

organ damage and impair host defense. The lipid mediator leukotriene B4 (LTB4) is a potent 

neutrophil chemoattractant and recently, its role as a dominant molecule that amplifies many arms 

of phagocyte antimicrobial effector function has been unveiled. However, excessive LTB4 

production contributes to disease severity in chronic inflammatory diseases such as diabetes and 

arthritis, which could potentially be involved in poor host defense in these groups of patients. In 

this review we discuss the cellular and molecular programs elicited during LTB4 production and 

actions on innate immunity host defense mechanisms as well as potential therapeutic strategies to 

improve host defense.
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1. Introduction

The ability of innate immune cells to properly recognize, respond, and eliminate invading 

pathogens is a requisite for host survival. Microbial infections quickly elicit an inflammatory 

program that induces the recruitment of phagocytes, such as macrophages, monocytes and 

neutrophils. These newly migrated cells further enhance the production of pro-inflammatory 
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mediators such as cytokines, chemokines, growth factors, and bioactive lipids in the 

inflammatory milieu. After exposure to pathogens, sentinel cells such as epithelial cells and 

phagocytes (tissue resident macrophages and dendritic cells) detect pathogen associated 

molecular patterns (PAMPs) via binding to pattern recognition receptors (PRRs). Activation 

of PRRs such as Toll like receptors (TLRs) trigger the signaling programs that culminate in 

the generation of inflammatory cytokines and lipid mediators to provide signals essential to 

the recruitment of cells involved in the control of pathogens. The bioactive lipid mediator 

leukotriene B4 (LTB4) is produced primarily by neutrophils and macrophages and signals 

through its high or low affinity receptor B leukotriene receptor (BLT) 1 or 2, respectively, to 

enhance phagocyte antimicrobial effector functions. However, aberrant levels of LTB4 can 

be detrimental to host response and may be pathogenic in inflammatory diseases.

Effective inflammatory programs induced during infections can be compromised by 

underlying health conditions [1]. Although inflammation is important for coordinating 

immune responses during infection, excessive inflammatory responses can be destructive. 

Patients with chronic inflammatory diseases, such as diabetes, arthritis, and atherosclerosis 

have dysregulated inflammatory response functions and are more prone to infections [2–4].

This review covers the current understanding of the role of LTB4 and BLT1 on host defense 

mechanisms and how modulating the LTB4/BLT1 pathway can be therapeutically targeted to 

respectively amplify or inhibit host defense in settings of immunodeficiency or aberrant 

inflammation.

2. LT synthesis and receptors

2.1 LT synthesis

LTs are part of a large family of lipids termed eicosanoids that are derived from the Greek 

word “eicosa” since eicosanoids are made of 20 carbon atoms called eicosatetraenoïc acid. 

The synthesis of LTs involves several rate-limiting steps that comprise activation of 

phospholipase A2 (PLA2) and arachidonic acid (AA) release from phospholipids in the 

cellular membranes. Activation of 5-LO in concert with the 5-LO activation protein (FLAP) 

metabolizes AA to LTA4, which is converted to LTB4 by LTA4 hydrolase. LTA4 could 

alternatively be modified with glutathione by LTC4 synthase to form LTC4. Further 

modifications of LTC4 give rise to LTD4 and LTE4. Since LTC4, D4, and E4 contain a 

cysteine, they are known as the cysteinyl leukotrienes (CysLTs). Even though CysLTs exert 

stimulatory effects on macrophages and neutrophils, this review will focus primarily on 

LTB4 actions. The main cellular sources of LTB4 in both murine and humans are 

granulocytes, monocytes, and macrophages (Table 1) [5]. However, murine (RAW264.7 and 

J774) and human (THP1 and U937) macrophage cell lines express low levels of 5-LO and 

produce barely detectable levels of LTB4 [6]. Non-immune cells are also capable to produce 

LTB4. Some cell types have been reported to express some but not all of the LT-synthesis 

enzymes, which renders these cells incapable of synthesizing leukotrienes independently. 

However, these cells may be able to contribute to the synthesis of LTs in a process known as 

transcellular biosynthesis [7]. An example of transcellular biosynthesis of LTB4 is between 

neutrophils-erythrocytes, and keratinocytes and endothelial cells [8–12]. Table 1 lists the 
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cellular expression of leukotriene synthesis enzymes. Although this topic is of interest, a 

more comprehensive review can be found at [13].

5-LO activity is dependent on various signals including calcium release and 

phosphorylation, which control the catalytic site and the translocation of 5-LO within the 

cell. In a resting cell, 5-LO location varies depending on the cell type [14]. In neutrophils 

and peritoneal macrophages, 5-LO is located in the cytosol whereas in alveolar macrophages 

and Langerhans cells, 5-LO is located within in the nucleus [15–17]. Upon cell activation, 

increased intracellular calcium levels induce 5-LO to translocate to the perinuclear or 

plasmatic membrane where it can metabolize AA into LTA4 [18]. 5-LO activity is triggered 

by various stimuli such as pathogens, cytokines, and immune complexes [19]. During 

infection, pathogens have limited abilities to increase intracellular calcium levels and 

therefore are poor 5-LO activators alone. However, treating infected cells with a calcium 

ionophore or opsonized zymosan particles are able to greatly enhance LT synthesis [20, 21]. 

Table 2 lists the relative levels of LTB4 produced in response to various stimuli. The 

molecular mechanisms that regulate 5-lipoxygenase activation are reviewed here [22, 23].

2.2 LTB4 receptors

There are two G protein coupled receptors (GPCRs) for LTB4, BLT1 and BLT2. BLT1 is a 

high-affinity receptor and BLT2 is a low-affinity receptor. Since other fatty acid metabolites 

besides LTB4 are able to activate BLT2, the effects of BLT2 signaling are not limited strictly 

to LTB4 effects [24]. Distribution of BLT1 and BLT2 on cells and tissues vary between 

mouse and human [24]. On human cells, BLT1 expression is limited to leukocytes (Table 1) 

and BLT2 is ubiquitously found on many cell types. On mouse cells, BLT1 expression is 

detected on leukocytes and BLT2 is found on intestinal epithelium and keratinocytes [24, 

25]. BLT1 can be coupled to Gαi or Gαq that culminate to decrease cyclic AMP (cAMP) 

levels and increase intracellular calcium levels, respectively [26]. We have previously shown 

that BLT1 utilizes mainly Gαi to enhance antimicrobial effector functions in alveolar 

macrophages [26]. Figure 1 demonstrates a schematic of LTB4/BLT1-induced effector 

functions in innate immune cells. The low affinity receptor BLT2 is also expressed in 

phagocytes, but its role in host defense is poorly studied. Previously, we have shown 

blocking BLT2 does not influence phagocytosis and bacterial killing in alveolar 

macrophages [27]. However, BLT2 might be a relevant receptor for other antimicrobial 

effector functions in different organs [24]. Recently, Zhang and Brown have shown that in 

the absence of BLT1, BLT2 enhances macrophage Borrelia burgdorferi phagocytosis. It 

remains to be determined whether BLT2 amplifies neutrophil chemotaxis to the site of 

infection and whether BLT2 controls antimicrobial peptide production in the skin or in the 

gut. However, BLT2 regulation and actions are out of the scope of this review.

3. Effects of LTB4 on host defense mechanisms

3.1 Migration and chemotaxis

Neutrophils are the first cells recruited to the site of infection or injury. There are various 

steps involved in successful recruitment of neutrophils: rolling, adhesion, and 

transendothelial migration [28]. LTB4 is well known for its role as a neutrophil 
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chemoattractant from distant sites to the site of inflammation [29–31]. Also, LTB4 

participates with chemokine gradients to further enhance neutrophil chemotaxis towards 

other chemoattractants such as fMLP, C5a, and heme [32–34]. Neutrophils from mice 

lacking BLT1 are not able to swarm and cluster to a focal damage site. BLT1−/− neutrophils 

have smaller neutrophil clusters than wild type neutrophils [35], demonstrating the 

importance of LTB4/BLT1 signaling in neutrophil accumulation. Additionally, neutrophil 

recruitment is not unidirectional. Reverse transendothelial migration has been reported 

where neutrophils reenter the blood stream after migration to the site of infection or injury 

[36]. In a model of ischemia-reperfusion injury, LTB4 and neutrophil elastase compose an 

important axis that drives reverse transendothelial migration. Neutrophils that reenter the 

vasculature are able to migrate to secondary organs and have the potential to cause injury 

[37].

3.2 Phagocytosis

We, and others, have shown that LTB4/BLT1 signaling amplifies the actions of different 

signaling components required for ingestion of particles. The first demonstration that LTB4 

enhances phagocytosis was shown by Wirth et al using a model of Trypanosoma cruzi 
infection [38]. After this, Dr. Peters-Golden’s group pioneered in demonstrating the role of 

endogenous LTs in amplifying phagocytosis of antibody-opsonized targets [39, 40]. Both 

genetic and pharmacologic blockage of LTB4/BLT1 actions greatly reduces ingestion of a 

myriad of pathogens, including both gram-positive bacteria (Streptococcus pneumoniae) 

[27], gram-negative bacteria (Klebsiella pneumoniae [41]), fungi (Histoplasma capsulatum 
[42, 43], Candida albicans [44], and Paracoccidioides braziliensis [45]), and parasites 

(Leishmania braziliensis [46], L. amazonensis [47], and T. cruzi [38, 48]).

In addition to this extensive list of pathogens, the molecular mechanisms involved in LTB4-

mediated amplification of phagocytosis have been studied. BLT1 signaling enhances 

activation of Syk, a protein tyrosine kinase, important for FcγR-mediated phagocytosis [26, 

49]. When macrophages are challenged with IgG-opsonized targets, LTB4 enhances 

phagocytosis of IgG-RBC in an FcγR1-dependent manner. This enhancement is attributed to 

the association of BLT1 with lipid raft formation and heightened signaling capabilities [50]. 

Furthermore, LTB4 amplifies phagocytosis by increasing phosphorylation of kinases 

involved in the formation of a phagocytic cup, such as PKC-α, PKC-δ, PI3K, and ERK1/2 

[51, 52]. However, the hierarchical role of these kinases in amplifying phagocytosis remains 

to be determined. Molecular studies regarding the signaling programs involved in the 

phagocytosis of nonopsonized pathogens are scarcer than opsonized targets. It has been 

shown that LTB4 enhances C. albicans phagocytosis via activation of GαI-mediated PKC-δ 
and PI3K activation culminating in F-actin polymerization [53]. LT enhancement of yeast 

phagocytosis involves the activation of PKC and PI3K, with subsequent activation of LIM 

Kinase, decreased cofilin-1 activation, and ultimately, F-actin assembly [53]. Furthermore, 

LTB4 enhances phagocytosis of fungi by increasing the expression of dectin-1, a main 

phagocytic receptor detecting fungal pathogens [42]. LTB4-mediated dectin-1 expression is 

dependent on GM-CSF production and activation of the transcription factor PU.1 [44].
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3.3 Pathogen killing mechanisms

We, and others, have extensively shown that LTB4 is a potent neutrophil activator [41, 54–

56]. 5-LO−/− neutrophils or neutrophils treated with leukotriene synthesis inhibitors have 

significantly lower ingestion of serum-opsonized K. pneumoniae [41]. Exogenous LTB4 

treatment restores phagocytic capabilities in 5-LO deficient neutrophils [40, 45]. After 

phagocytosis, neutrophils kill pathogens by producing toxic components within granules that 

are released in a process known as neutrophil degranulation [57]. When human neutrophils 

are infected in vitro with the parasite L. amazonensis, endogenous and exogenous LTB4 

promotes neutrophil degranulation [47]. Also, LTB4 induces release of myeloperoxidase 

[55] and elastase in neutrophils [37, 58]. LTB4 treatment of mice infected with influenza 

virus induced production of antimicrobial peptides β-defensin 3 and Cramp [59], the mouse 

ortholog of human cathelicidin LL-37. In human neutrophils, LTB4 induces the production 

of LL-37 in a dose-dependent manner [56].

Reactive oxygen and nitrogen species (ROS and RNS) production is another important 

antimicrobial effector function that phagocytes use to kill pathogens. LTB4 enhances the 

production of NADPH oxidase-dependent ROS generation [54, 60]. We, and others, have 

shown that LTB4 enhances ROS-dependent NADPH oxidase activation via phosphorylation 

of the cytosolic subunit p47phox. This activation is dependent on PKC-δ [54], ERK-1/2 and 

PI3K activation [61]. LTB4 is part of a positive-feedback loop in human neutrophils infected 

with L. amazonensis, which is important to kill parasites [47]. Similar to neutrophils, 

macrophages produce a variety of different microbicidal molecules such as ROS, RNS, 

antimicrobial peptides, and indoleamine deoxygenase (IDO). LTB4 is known to enhance the 

generation of most microbidicidal molecules mentioned above. LTB4-mediated ROS 

production in macrophages is dependent on PKC-δ-mediated p47phox and p40phox 

phosphorylation and membrane translocation in alveolar macrophages challenged with 

opsonized K. pneumoniae [52]. Furthermore, we also showed that aerosolized LTB4 

increases p47phox expression and membrane translocation during Streptococcus 
pneumoniae lung infection [62]. Additionally, our unpublished results show that 

macrophages from BLT1−/− mice have impaired phagocytosis and killing of gram-positive 

methicillin-resistant Staphylococcus aureus (MRSA), which correlates with diminished ROS 

production in macrophages from the BLT1 deficient mice.

LTB4-dependent RNS production is dependent on NFκB and STAT1 activation [46]. LTB4 

treatment further enhances the production of nitric oxide (NO) in murine macrophages, 

which improves killing of different pathogens such as L. amazonensis and T. cruzi [52, 63]. 

It remains to be determined whether LTB4 enhances noncanonical microbicidal effectors in 

macrophages such as antimicrobial peptides, tryptophan depletion (via IDO activation), 

GTPases, and transferrin receptor activation.

3.4 PRR activation and cytokine generation

TLRs are known to detect both PAMPs and danger associated molecular patterns (DAMPs). 

There are 11 TLRs in human and 13 in mouse. TLRs can be found on the cell surface of 

immune cells or in endosomes located within cells. The role of LTB4 in TLR activation has 

been suggested [64–66]. TLR signaling induces pro-inflammatory cytokine responses [67, 
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68]. TLR2 is a cell surface receptor that senses peptidoglycan molecules commonly found 

on gram-positive bacteria and TLR9 is an endosomal receptor that detects DNA [67, 68]. 

LTB4 stimulation upregulates the expression of TLR2 and TLR9 in human neutrophils [69]. 

Enhanced expression of TLRs could allow for neutrophils to better sense various pathogens 

and induce a stronger signaling cascade, which allows for a more potent immune response. 

Furthermore, LTB4 is also known to amplify the actions of different PRRs. TLR activation is 

dependent on different adaptors such as myeloid differentiation factor 88 (MyD88) and TIR-

domain-containing adapter-inducing interferon-β (TRIF). Most TLRs except TLR3 utilize 

MyD88, and only TLR3 and TLR4 utilize TRIF. MyD88 activation is followed by 

phosphorylation of downstream components such as IRAKs and TAK-1. LTB4 enhances 

MyD88 expression and MyD88-dependent activation of NFκB, which are able to intensify 

the signaling potential of TLRs and other PPRs [64]. The mechanisms involved in LTB4-

enhanced MyD88 expression relies on enhancing the activation of STAT1, the main 

transcription factor responsible for MyD88 expression [70]. BLT1 activation leads to mRNA 

degradation of suppressor of cytokine signaling 1 (SOCS1), the major STAT1 negative 

regulator, which contributes to enhanced MyD88 expression and subsequent enhancement of 

TLR-mediated macrophage activation [64]. Furthermore, it has been shown that LTB4 

amplifies the phosphorylation of IRAK and TAK-1 in human neutrophils [66]. In all 

circumstances, through TLR and PRR activation, LTB4 amplifies the induction of cytokine 

production. LTB4/BLT1 enhancement of inflammatory cytokine production has been 

extensively studied. LTB4 is known to induce the cytokines GM-CSF, TNF-α, IL-6 and 

IL-1β and the chemokines KC, MCP-1, CXCL1, and CXCL2 that are thought to enhance 

inflammatory responses [71, 72].

Another layer of immune regulation induced by LTB4 is the expression of microRNAs 

(small ~22 nucleotides in length) that inhibits mRNA degradation or translation. We have 

shown that 5-LO deficient macrophages exhibit a decreased expression of a specific set of 

inflammatory microRNAs (inflammatory regulon). Among these microRNAs, we detected 

decreased levels of miR-155, miR-125b, and miR-146b in LT-deficient cells [73]. We have 

shown that these microRNAs specifically bind to SOCS1 3′UTR, restrict SOCS1 expression 

and enhance MyD88 expression [64]. Therefore, LTB4/BLT1 axis provides very potent and 

pleiotropic signals by decreasing microRNA expression and allowing inflammatory 

programs to be elicited in macrophages.

4. Aberrant LTB4 is detrimental to host defense

Chronic inflammatory morbidities are accompanied by aberrant LTB4 production that is 

thought to negatively influence disease pathogenesis. Among the diseases that LTB4 plays a 

detrimental role include type 1 and type 2 diabetes, arthritis, and atherosclerosis [74–80]. 

The bad reputation of LTB4 comes from its capacity to maintain inflammatory programs in 

monocytes/macrophages and prolonging neutrophil recruitment to the inflammatory foci. 

LTB4/BLT1 blockade is expected to dampen inflammatory responses and restore tissue 

homeostasis during chronic inflammation.

Besides increased production of LTB4, chronic inflammatory diseases are often associated 

with co-morbidities, including the major threat of increased susceptibility to infections. 
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Although LTB4 plays a beneficial role in promoting pathogen clearance, the counterintuitive 

effect of LTB4 in chronic inflammatory diseases could be explained by the overwhelming 

inflammatory response and lack of proper phagocyte response to pathogens. Abundant LTB4 

production and detrimental host defense responses have been associated in a zebrafish model 

of Mycobacterium marinum infection. The authors showed that LTA4 hydrolase (LTA4H), 

the enzyme that converts LTA4 to LTB4, is an important susceptibility factor involved in 

Mycobacterium infection. Zebrafish expressing hyperactive LTA4H are hypersusceptible to 

M. marinum infection [81]. Additionally, overexpression of LTA4H produces high levels of 

LTB4 that drive aberrant TNFα production and uncontrolled mycobacterial infections [82]. 

Furthermore, zebrafish expressing the enzyme that inactivates LTB4, leukotriene B4 

dehydrogenase/prostaglandin reductase 1 (LTB4DH/PTGR1), exhibit lower bacterial 

numbers than WT zebrafish. The susceptibility to infection of LTB4DH mutant animals can 

be reversed with BLT1 antagonism, further implicating LTB4 as detrimental to host defense 

during Mycobacteria infection in zebrafish [83].

Exaggerated LTB4 is also detrimental to systemic infection (sepsis). 5-LO−/− mice or 

pharmacological inhibition of BLT1 actions protect mice during cecum ligation and 

puncture (CLP). 5-LO−/− and WT mice treated with a LT synthesis inhibitor have drastically 

lower levels of neutrophil infiltrates and lower levels of inflammatory cytokines such as 

IL-1β [84]. During CLP-induced sepsis, treatment with the BLT1 antagonist U-75302 

decreases lung injury [85] as evidenced by decreased neutrophil recruitment. 

Therapeutically regulating 5-LO products or blocking BLT1 during or after sepsis may help 

prevent organ injury. Aberrant LTB4 production also renders diabetic mice more susceptible 

to sepsis than nondiabetic animals. We have shown that increased LTB4 drives MyD88 

expression and mediates chronic systemic inflammation in diabetic mice. Diabetic BLT1−/− 

mice are protected from sepsis, which correlates with lower inflammatory cytokine 

production and decreased MyD88 expression.

Given the pleiotropic effects of LTB4 on amplifying the actions of immune receptors by 

influencing intracellular programs and gene transcription in macrophage and neutrophil 

activation [86], exaggerated LTB4 levels could be influencing both the actions of PRR (via 

increased expression of MyD88 [64, 73]), cytokine (GMCSF,TNF-a and IL1b [44, 64, 87]), 

and phagocytic receptors (FcRs and dectin receptor [50, 52]) and transcription factors 

(NFkB, AP1 and PU.1 [44, 64, 73]) to elicit inflammatory programs and cause organ injury 

and poor host defense.

The mechanisms involved in aberrant LTB4 production and poor systemic and localized host 

defense remains to be determined. However, preliminary data from our laboratory suggest 

that local uncontrolled LTB4 production drives a robust production of chemokines and 

cytokines along with overwhelming neutrophil migration to the site of infection that releases 

inflammatory mediators that cause tissue damage. Furthermore, exaggerated BLT1 

activation seems to impair clearance of dead cells by controlling the expression of don’t eat 

me signals, such as CD47 [88]. When apoptotic cells are not cleared properly, these cells 

become necrotic and secrets many danger associated molecular patterns (DAMPs) [89, 90]. 

DAMP secretion might lead to LTB4 production which could be part of an amplification 

loop involved in chronic inflammation and lack of bacterial clearance observed in diabetes. 
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Whether these molecular events are involved in enhanced susceptibility to skin infections in 

people with diabetes remains to be determined and are an active research program in our 

laboratory.

5. Manipulating LTB4 levels/actions as a therapeutic potential to control 

host defense

5.1 Enhance LTB4 effects

There are many potential advantages to using LTB4 in immunotherapeutic protocols, which 

include: (i) generation of proteins is relatively expensive, time consuming and subject to 

contamination with products of the vectors used to generate the protein, while lipids can be 

produced quickly and with a high degree of purity; (ii) because lipids exhibit are known to 

have a short half-life, it offers flexibility and precision in controlling localized or systemic 

actions; (iii) LTB4 is safe to be administered to the human lung in vivo; and (iv) LTB4 could 

amplify initial antimicrobial responses by enhancing pathogen recognition and phagocytosis, 

release of NADPH oxidase-derived ROS, and pro-inflammatory responses through MyD88 

expression and activation of inflammatory transcription factors.

Treatment protocols employing exogenous LTB4 can be greatly beneficial to patients known 

to exhibit attenuated LT synthesis such as in malnutrition [91], cigarette smoking [92], 

vitamin D deficiency [93], HIV infection [94], and bone marrow transplantation [95]. These 

patients are more susceptible to infection. Therefore, adding back LTB4 to immunodeficient 

patients could potentially restore phagocyte response and favor appropriate host defense.

We, and others, have starting paving the way to establish treatment protocols to determine 

the therapeutic effects of LTB4 in host defense. Exogenous LTB4 treatment is able to boost 

effector functions in wild type mice. In a model of Streptococcus pneumoniae lung 

infections, aerosolized LTB4 treatment was effective in restoring host defense mechanisms 

in 5-LO−/− mice and enhancing effector functions in wild type mice [62]. Intravenous 

injection of LTB4 in macaques enhances plasma levels of the antimicrobial peptide α-

defensins. Plasma from the treated macaques can neutralize pathogens ex vivo [96]. LTB4 

treatment during influenza virus infection reduces viral titers compared to untreated mice 

[59]. The reduction in viral titers correlates with enhanced levels of the cathelicidin-related 

antimicrobial peptide (Cramp). Neutrophils are a major source of Cramp so when mice are 

depleted of neutrophils, exogenous LTB4 treatment during influenza infection is unable to 

control viral load [59].

A potential pitfall is the fact that LTB4 could lead to overwhelming recruitment of 

neutrophils, which may contribute to tissue injury. Also, the stability and safety of LTB4 in 
vivo is a concern, but its been shown that bronchoscopy instillation of LTB4 into the airways 

of normal human subjects elicited a marked influx of neutrophils. Its inhalation proved to be 

well tolerated and caused no adverse effects on blood pressure, pulmonary function, or 

bronchial responsiveness [97].

The importance of LTB4 during infections is clear and exogenous treatment with LTB4 may 

be a potential therapeutic strategy. However, high LTB4 levels during some infections or in 
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chronic inflammatory diseases may need to be blunted to limit inflammation and alternative 

therapeutic strategies to prevent infection-mediated organ injury are necessary.

5.2 Preventing exaggerated LTB4 actions in host defense

Overwhelming production of inflammatory mediators and reactive oxygen species are 

known to be detrimental to host defense in different models of infection [98–101]. 

Therapeutic strategies to block the actions of inflammatory mediators could also restore 

protective host defense. In our laboratory, we are focusing our efforts in understanding 

whether preventing BLT1 and/or BLT2 actions could be an important tool to control 

exaggerated inflammatory response and poor host defense in people with preexisting chronic 

inflammatory conditions, such as diabetes, obesity, asthma, rheumatoid arthritis and elderly. 

It is known that people with diabetes are more susceptible to numerous infections, including 

systemic, respiratory, and skin infections [2–4]. Indeed, both innate and adaptive immune 

cells from diabetics have impaired functions including poor phagocytosis and killing of 

pathogens [102, 103]. We have shown that macrophages from diabetic mice produce higher 

levels of LTB4 than from control mice even under basal conditions [65]. Although seemingly 

counterintuitive, the mechanism by which people with diabetes are more susceptible to 

infections may operate in a similar manner to other infections where high levels of LTB4 is 

detrimental to host defense [81, 83]. We detected higher levels of LTB4 in the serum of 

septic and diabetic mice when compared to the levels of LTB4 detected in septic and 

nondiabetic mice. Diabetic mice treated with the 5-LO inhibitor AA-861 greatly improve 

survival during sepsis. The increase in survival correlates with reduction in IL-1β [65]. 

Since LTB4 is able to enhance IL-1β levels through inflammasome activation [104] and that 

LTB4/BLT1 signaling enhances MyD88 and NFκB activities [64], it is possible that LTB4 

synthesis inhibition or actions prevents overwhelming Toll-interleukin receptors, such as 

IL1R, IL18R1 and TLR actions prevents organ damage. Therefore, a potential therapeutic 

opportunity to treat sepsis in diabetic mice could rely on preventing overwhelming 

inflammation with a BLT1 antagonist along with antibiotics to prevent bacterial growth.

Our unpublished data also show the detrimental role of aberrant LTB4 on host defense in 

diabetic mice in a model of local infection. Diabetic mice are more susceptible to MRSA 

skin infection than nondiabetic mice. Diabetic mice infected with MRSA have increased 

LTB4 production in the skin, which correlates with uncontrolled production of inflammatory 

mediators and neutrophil migration. Topical treatment with a BLT1 antagonist improves skin 

host defense in diabetic mice, as evidenced by decreased lesion size and bacterial numbers 

(data not shown).

6. Conclusion

LTB4 is a homeostatic determinant for optimal host defense in healthy individuals by driving 

pleiotropic actions on phagocytes that include phagocyte chemotaxis, amplifying 

macrophage/neutrophil antimicrobial effector functions, and production of cytokines. 

However, during chronic diseases characterized by aberrant LTB4 levels, excessive LTB4 

could be responsible for impaired host defense mechanisms. In the era of antibiotic-resistant 

pathogens, new therapeutic strategies are critically needed. Modulating levels of LTB4 to 
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either enhance or limit immune responses as appropriate is a potential strategy that could be 

used as a single agent or in combination with antibiotics for an added benefit. There is a 

great need of further research in areas of inflammation regulation under homeostatic 

conditions and during infections as well as understanding how chronic illnesses alter these 

immune responses. This will allow for the development of customized immunomodulatory 

therapies.
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Abbreviations

LT leukotriene

PAMP pathogen associated molecular patterns

PRR pattern recognition receptor

AA arachidonic acid

LO lipoxygenase

cPLA2 cytosolic phospholipase A2

FLAP 5-lipoxygenase-activating protein

cysLT cysteinyl LT

BLT B leukotriene receptor

cAMP cyclic adenosine monophosphate

PKC protein kinase C

ERK extracellular signal-related kinase

PI3K phosphoinositide 3-kinase

NFκB nuclear factor kappa B

AP1 activator protein 1
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Highlights

• LTB4 triggers signaling programs necessary for effective clearance of 

pathogens

• LTB4/BLT1 signaling enhances innate and adaptive immune receptor effector 

functions

• LTB4 can therapeutically boost host defense in settings of host vulnerability

• Aberrant LTB4 levels observed in chronic inflammation is harmful to host 

defense

• LTB4 synthesis/actions blockage restores host defense in chronic 

inflammatory diseases
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Fig. 1. Host defense mechanisms enhanced by LTB4/BLT1 axis during microbial infection
Upper panel. Upon infection, microbial recognition triggers 5-LO activation to generate 

LTB4 in phagocytes. Lower panel. LTB4 amplifies macrophage and neutrophil effector 

function by enhancing the actions of different PRRs and FcR.
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