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Opioids

Opioids represent an efficacious therapeutic modality for some, but not all pain states. Singular 

reliance on opioid therapy for pain management, has limitations and abuse potential has 

deleterious consequences for patient and society. Our understanding of pain biology has yielded 

insights and opportunities for alternatives to conventional opioid agonists. The aim is to have 

efficacious therapies, with acceptable side effect profiles and minimal abuse potential, which is to 

say an absence of re-enforcing activity in the absence of a pain state. The present work provides a 

non-exclusive overview of current drug targets and potential future directions of research and 

development. We discuss channels activators and blockers, including: sodium channel blockers, 

potassium channel activators and calcium channel blockers; glutamate receptor targeted agents, 

including: NMDA, AMPA and metabotropic receptors). Further, we discuss therapeutics targeted 

at GABA, alpha2 adrenergic and opioid receptors. We also considered antagonists of angiotensin 2 

and Toll receptors, and agonists/antagonists of adenosine, purine receptors. And cannabinoids. 

Novel targets considered are those focusing on lipid mediators and anti-inflammatory cytokines. 
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Of interest is development of novel targeting strategies which produce long-term alterations in 

pain signaling, including viral transfection and toxins. We consider issues in the development of 

drugable molecules, including preclinical screening. While there are examples of successful 

translation, mechanistically promising pre-clinical candidates may unexpectedly fail during 

clinical trials because the preclinical models may not recapitulate the particular human pain 

condition being addressed. Molecular target characterization can diminish the disconnect between 

preclinical and humans’ targets, which should assist in developing non-addictive analgesics.

INTRODUCTION

The management of pain is a clinical imperative. Aside from humanistic concerns, failure to 

adequately control pain has negative consequences in terms of system biology. Opioids, 

through their potent modulatory effect mediated via canonical receptors on pain processing, 

have been, and remain, an essential component of pain management. Nevertheless, reliance 

on this therapeutic approach has limitations and deleterious consequences to the patient and 

society. Opioid misuse is an expanding crisis with over 36,000 deaths due to opioid overdose 

in 2015 alone.1,2 Pharmaceutical companies have pursued abuse-deterrent opioid 

formulations.3,4 While these formulations reduce the possibility of the content of the pills 

being extracted, the underlying properties of the pharmaceutical agent (i.e. opioids) remain 

the same and extraction deterrent systems are subject to being overcome.5–8

Our understanding of systems that mediate and regulate nociceptive processing has yet to 

produce a recognized alternative to opioids. Advances in pain biology has, however, yielded 

remarkable insights and opportunities. We will provide an overview of salient areas of 

research that focus on current advances in pharmacological target. Meaningful advances in 

drug therapy must consider not only i) analgesic efficacy, but as well ii) therapeutic ratio 

(separation of pain relief from side effects); iii) constancy of response over extended use 

(e.g. tolerance); iv) lack of positive reinforcing properties in the absence of a pain state. Due 

to space restriction, this review must be considered a non-exclusive overview of advances in 

terms analgesic targets.

PAIN PHENOTYPES

Pain is an aversive state that reflects the perceptual covariates of events that arise from 

stimuli of sufficient intensity to induce tissue damage or which otherwise mimic the activity 

induced by such stimuli, as in nerve injury. It is heuristically useful to think of mechanisms 

generating the aversive condition associated with afferent stimulation as having 4 elements.

i. Acute nociception in which an acute, non-injuring, high intensity stimulus 

activates small unmyelinated and myelinated afferents, driving intensity linked 

excitation of second order dorsal horn projection neurons, leading to a stimulus-

linked pain report/escape.

ii. Following tissue injury and inflammation, hyperalgesia occurs at the injury site, 

causing an enhanced response to moderate stimuli, and an enlarging receptive 

field, including areas not injured, resulting in a 2nd hyperalgesia/allodynia. This 

phenotype reflects a peripheral sensitization (development of ongoing activity, 
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and a left shift in the intensity response relationship at the terminal) and a 

central /spinal sensitization (heightened excitability of the primary afferent 

terminal and second order neurons causing an enhanced discharge to a given 

afferent input).

iii. Injury to the peripheral nerve resulting in ongoing dysesthesias and enhanced 

sensitivity to light touch and modest changes in temperatures (allodynia), 

associated with reactive changes in the afferent axon, DRG and dorsal horn 

(typically reflecting a loss of inhibitory regulation).

iv. Following persistent inflammation and tissue injury, the evolving pain state 

displays characteristics suggesting the development of a nerve injury phenotype, 

e.g. an acute to chronic pain transition.

The biology of these above states has been reviewed in detail elsewhere.9–11 These 

comments importantly emphasize that a pain condition may represent multiple mechanistic 

phenotypes. Accordingly, the regulation of the encoding and trafficking of the nociceptive 

stimulus to higher centers may reflect a role for engaging multiple targets.

ISSUES IN ANALGESIC DRUG DEVELOPMENT

Demonstration of target analgesic efficacy

Development of analgesic drugs with known targets and mechanisms of action can employ 

models of target engagement, such as in silico and in vitro modeling (e. g. opioids and COX 

inhibitors) which can move a drug with some predictability into a behavioral assessment. 

Novel targets often arise based on association of the target with specific systems, but their 

efficacy in regulating the pain state requires a sense of what role that target plays in 

mediating the behaviorally defined pain construct. Preclinical behavioral models provide 

such insights. Detailed reviews of preclinical models that focus on events secondary to 

inflammation (acute and chronic) and nerve injury (mono and poly neuropathies) with their 

strengths and shortcomings have been provided elsewhere.12,13 While instances of failure of 

the predictive models have been discussed (as is true for virtually every translational system 

in biology), mechanistic studies have made a number of valid predictions of clinical efficacy 

ranging from COX inhibitors to antimigraine drugs.9 Several issues regarding preclinical 

models are noted.

i. Each behavioral model has mechanistic components particular to that system. 

Convergent results from multiple models and comparable dose effect 

relationships increase the likelihood of assessing mechanisms relevant to the 

human state.

ii. Preclinical models have long examined a single sex, for several reasons including 

economy and the belief there is little difference between the sexes. Numerous 

instances at the behavioral and mechanistic level can now be cited to dispute this 

assertion.14,15

iii. Many models’ threshold measurements. Alternative models employ 

“spontaneous behaviors”, including general activity, rearing, weight bearing and 
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gait as markers of an aversive condition.16 There is also an understanding that if 

there is an aversive condition generated by an injury, a drug that has no intrinsic 

rewarding property but which serves to diminish that pain state will in fact 

acquire a positive reinforcing property in the presence of the pain state. Such 

“conditioned place preference” models have an important place in current drug 

evaluations.1617

iv. While preclinical analgesic drug evaluation has been largely successful in 

rodents, characterization of issues of analgesic efficacy and tolerability may also 

be achieved through naturally occurring pathologies in companion animals, 

notably dogs. The incidence of canine osteoarthritis and osteosarcoma provides 

an important way station in defining efficacy in controlled trials using validated 

inventories and neurological assessments.18 While safety-toxicology studies in 

such animals are routinely part of an IND package during drug development, 

there may be an advantage to pursuing efficacy studies as well. Such information 

is pivotal in the development of veterinary analgesic products and their approval 

by the US-FDA-veterinary division to manage the pain states in this patient 

population. The predicted spending on analgesics for pets alone was predicted to 

be ~$335 million in 2011, so there is a secondary market that can incentivize 

additional testing in the veterinary patient.19

v. Human experimental models initiating a local injury (e.g. ultraviolet B 

irradiation, thermode burn) or afferent stimulation (capsaicin) are increasingly 

used to determine efficacy of both new and existing analgesics. Their apparent 

ability to demonstrate efficacy with known analgesics provides some validation 

of their sensitivity,20 and to define a drug effect and corresponding side effects at 

the effective dose.

vi. The following commentary considers a variety of targets and comments on 

systemic and neuraxial routes of delivery, reflecting the fact that drug effects 

upon pain processing frequently reflect an action at the first order synapse. It 

must be stressed that these discussions do not raise issues of safety. This 

commentary is particularly relevant for neuraxial drugs where appropriate 

assessment of neuraxial safety must be undertaken prior to such drug 

implementation.21

vii. Finally, it is challenging to find a drug target that can alter a pain state with a 

favorable therapeutic ratio (e.g. little or no effects upon mentation, arousal or 

motor function). An important concern we must now consider is that the drug 

target is not a mediator of positive reinforcement.

Assessment of abuse liability

An important issue in developing novel analgesics is to overcome the potential for abuse. If 

the drug acts upon components of systems associated with positive re-enforcement or 

possessive of stimulant and/or sedative effects, suspicion of its potential for abuse must be 

elevated. Such examples, at present, include drugs interacting with opioid receptors, CNS 

depressants (GABAA receptors); CNS stimulants (increased dopamine release/block re-
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uptake; nicotine), hallucinogens, glutamate antagonists (ketamine) and cannabinoids.22,23 It 

seems reasonable that a molecule lacking CNS bioavailability would show a reduced 

likelihood of having a reinforcing property (e.g. loperamide24), but now even large 

molecules are considered not to be excluded as having potential liability.25 To this end, 

locomotor, reinforcing and dependence-producing effects of the agent must be routinely 

assessed. A variety of strategies are considered relevant and have been effective in predicting 

human-drug behavior including self-administration, drug discrimination and conditioned 

place preference paradigms.26, 27,28

SURVEY OF CURRENT TARGETS OF PAIN THERAPEUTICS

In the following sections, we will consider several current drug targets and potential future 

directions of research and development. Figure 1 summarizes these targets as they reflect 

upon actions at the level of the peripheral terminal and central sites. Table 1 summarizes 

those agents that moved into clinical trials.

Sodium channel blockers/Potassium channel activators

Axon excitability depends directly upon voltage gated sodium channel while activation of 

potassium channels produces hyperpolarization reducing membrane excitability. These 

represent potential peripheral targets for altering afferent transmission.

Sodium channels—Voltage-gated sodium channel (Nav are the target of all clinical "local 

anesthetics"29 Nine Nav isoforms with distinct activation properties and tissue distributions 

have been identified: Nav1.1 and Nav 1. (large DRG/axons), Nav1.4 and Nav 1.5 (skeletal 

and cardiac muscle), and Nav 1.7,- 1.(small sensory DRGs / afferents).30 Following 

inflammation and nerve injury, increases in small afferent Nav (Nav1.3, 1.7, 1.8 and 1.9) 

expression are believed to underlie ectopic afferent traffic and increased 

responsiveness.30, 3131,32

Specific confirmation of the role of Nav 1.7 in human pain processing is based on the 

phenotype of naturally occurring gain and loss of function mutations in Nav1.7 channels 

wherein those expressing these mutations respectively show pronounced increased and 

decreased pain states.33,34

While local anesthetics given perineurally and neuraxially produce conduction block 

anesthesia, systemic anesthetics such as IV lidocaine have surprisingly selective anti-

hyperpathic effects in a variety of preclinical models and human pain states at concentrations 

that do not produce a general conduction block, suggesting a differential sensitivity of 

systems related to facilitated states after tissue and nerve injury.35,36

Future development of the sodium channel blocking drugs focuses on the role of selective 

blockers of channels expressed on nociceptive linkages. Clinically used local anesthetics 

(amide and ester) do not selectively block these channels,37 although several isoforms are 

sensitive to puffer fish toxin, tetrodotoxin (TTX) (Nav1.1–7), with the remainder resistant to 

TTX.37,38 Toxin-based sodium channel blockers, neosaxitoxin and tetrodotoxin, after 

perineural and intrathecal delivery demonstrated long-lasting nerve blocks and surprisingly 
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after systemic delivery in human and animal models.39,40,38,41 (Table 1). As regards 

selective channel antagonists, intrathecally-delivered, toxin-based Nav1.742 and 1.843 

inhibitors have shown preclinical efficacy in models of inflammation and nerve injury, with 

a favorable therapeutic ratio. Development of systemically bioavailable, small molecule, 

channel selective antagonists as analgesics have faced challenges.44,45 Clinical work with 

oral targeted, sodium channel selective blockade was negative,46 although promising results 

from multi-center studies in post-herpetic neuralgia and primary erythromelalgia have been 

reported.47 Loss of response to local anesthetics (e.g. tolerance or tachyphylaxis) has been 

reported after neural blocks, but the phenomena does not appear to be robust.48

An interesting application of the specific association of TRPV1 with pain afferents has been 

the use of protonated local anesthetics such as QX314, which are able to enter the otherwise 

impermeant axon membrane through TRPV1 channels upon their activation by capsaicin, 

and result in function block of the sodium channel in the TRPV1 (+) afferent axon.49 It is 

now understood that lidocaine by itself is a TRPV1 agonist and can promote passage of the 

protonated form,50 allowing quaternary lidocaine (QX314) to enter the TRPV1-bearing axon 

and selectively block the Nav channel, resulting in specific block of TRPV1 (+) primary 

afferents.50

Potassium channels—There are 4 major families of K channels (Voltage-gated (Kv), 

Calcium-activated (K Ca); Inwardly rectifying (Kir); Two P domain (K2P) potassium 

channels, which, when activated lead to membrane hyperpolarization through increased 

potassium conductance. Genetic analyses illustrate that variations in several K+ channel 

genes are relevant to the risk for persistent pain after injury (KCNS1-Kv9.1, GIRKs-Gir, 

TRESK-K2P18.1), increased pain sensitivity (KCNS1, GIRKs), and analgesic efficacy of G 

protein coupled receptors (GIRK2).51 Inwardly rectifying, ATP sensitive potassium (K-ATP) 

channels are widely expressed in numerous cell types including neurons and are linked to 

anti-allodynic and anti-hyperalgesic activity. ATP sensitive potassium channel agonist 

mediated antinociceptive effects are reversed with pre-treatment with ATP-sensitive K+ 

channel blockers52,53

Interestingly, autoantibodies targeting Kv channels can lead to neuronal hyperexcitability 

and a pain state.54 Increasing potassium channel expression and potassium conductance via 

receptor channel agonists assists in hyperpolarizing (normalizing) otherwise enhanced axon, 

DRG and terminal excitability, resulting in anti-hyperalgesic actions.55,56

Calcium channel blockers

Movement of calcium into the cell represents a significant source of charge leading to 

membrane depolarization, while increased intracellular calcium leads to activation of a 

variety of kinases that phosphorylate: enzymes, channels (lower threshold for activation and 

increasing ion permeability) and receptors, resulting in hyperalgesic states.57–60 One source 

of this intracellular calcium is a variety of high and low voltage gated calcium channels 

(VGCC): high-VGCCs include: L-(CaV1.1–4), P/Q-(CaV2.1), N-(CaV2.2) and R-(CaV2.3) 

type channels; low-VGCCs include T-type (CaV3.1–3)61,62 These are transmembrane 

channels, composed of multiple subunits endowing members of each family with 
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distinguishing properties of voltage gating and antagonist pharmacologies. They are located 

on primary afferents and postsynaptic membranes in spinal dorsal horn..63

N-type channel (Cav 2.2)—The N-type calcium channel is present on presynaptic nerve 

terminals in the superficial dorsal horn and dorsal root ganglia. Upregulation occurs 

following peripheral nerve injury.64 Ziconotide, is an N-type VGCC blocker,65 possessing 

potent anti-hyperpathic properties in rodents and humans when administered intrathecally as 

a bolus or an infusion66, 67 and is without tachyphylaxis (tolerance).68 Although ziconotide 

remains the only approved N type channel blocker, there are efforts to develop new peptides 

and small molecules65,69 and to alter nociceptive properties of N-type VGCC function by 

hindering its membrane trafficking.70, 71 In humans, a systematically active N-type calcium 

channel blocker (Z160) failed in Phase 2 clinical trials in treatment of post-herpetic 

neuralgia and lumbosacral radiculopathy.72 (Table 1.)

L-type channel (Cav 1)—Channels are largely present post synaptically and are 

considered to play a possible role in maintaining facilitated states. Intrathecal delivery 

preclinically of channel blockers (nifedipine, verapamil and benzothiazepines) have shown 

efficiency in altering injury induced hyperpathia.73

T-type channel (Cav3.2)—T-type calcium channels are present in the dorsal horn and 

channel blockers, such as ethosuximide and mibefradil, have anti hyperalgesic effects in 

rodents.74

Glutamate receptor targeted agents

Glutamate released from primary afferents, interneurons and from sequestrated stores in 

astrocytes may interact with a variety of receptor gated ionophores and receptors with G-

protein coupling.

NMDA receptor—The NMDA-R is a calcium ionophore composed of three subunits 

(NR1, NR2 and NR3), each with multiple distinguishable subunits.75 This channel is 

expressed on primary afferents in the dorsal horn, on second order neurons and on non-

neuronal cells (oligodendroglia and astrocytes). Glutamate is released from afferents and 

interneurons, and binds to the NMDA receptor. At the spinal dorsal horn, high frequency C-

fiber stimulation leads to post synaptic depolarization, removal of a Mg2+ ion blocking the 

pore, and, if the allosterically coupled channel binding sites for glycine and polyamines are 

occupied,76 there is a channel influx of sodium and calcium76 leading to a cascade known as 

wind-up.77 NMDA-R blockade inhibits this phenomenon.

Block of NMDA receptor function is achieved by competitive glutamate binding site 

blockers, noncompetitive channel blockers and agents blocking associated allosteric binding 

sites.78 While NMDA receptor function may be prevented by blocking any of these sites, the 

side effect profile (learning, memory, excitability) for these different agents vary 

considerably and impact upon clinical tolerability.79

Preclinical work has demonstrated the anti-hyperpathic effects in inflammatory and nerve 

injury models of a variety of intrathecally and/or systemically administered competitive 
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glutamate blockers (2 amino 5 phosphonovalorate), non-competitive NMDA channel 

blockers (ketamine, MK-801 and memantine, Conantokin-G; agmatine), and glycine site 

blocker (7 Chlorokynurenic acid, Ifenprodil).80–82 Ifenprodil administered into the rostral 

cingulate cortex alleviated bone cancer pain in rats.83 While there are surprisingly few high 

quality clinical trials, ketamine has a long clinical history of use alone and in combination 

with opioids in diverse pain states characterized by hyperalgesia and allodynia, including 

neuropathic pain, surgery, and fibromyalgia.84–88 Ifenprodil, an inhibitor of the NMDA 

glycine-binding site, is currently being tested for the treatment of posttraumatic stress 

disorder in Phase1/2 study (Table 1).

The abuse potential of NMDA antagonists is controversial and complex.89 Channel blockers 

such as ketamine have identified abuse potential. This effect may be mediated by channels 

associated with specific subunit constituents.90 The role of other antagonism motifs in 

contributing to abuse potential is not known.

AMPA receptor—The AMPA receptor is a glutamate activated sodium selective 

ionophore, composed of 4 subunits (GluR1-GluR4) which plays a pivotal role in acute 

dorsal horn evoked excitation.91 In preclinical studies, Tezampanil (LY-293558, NGX-424) 

displayed efficacy in postoperative pain and spasticity.92,93 In humans, oral administration 

showed efficacy upon capsaicin evoked hyperalgesia.94 and in post-operative pain.95

With peripheral injury, the AMPA subunit composition changes leading to a calcium 

permeable channel. Joro spider toxin, selective for calcium permeable AMPA site, decreases 

secondary mechanical allodynia development evoked in tissue injury models.96 The abuse 

potential of these agents is not known.

Metabotropic receptors—Eight mGluRs (mGluR1–8) have been identified and are 

divided into three groups97: Group I (mGluR1 and mGluR5) stimulates phospholipase C 

(PLC); Group II (mGluR2 and mGluR3) and Group III (mGluR4 – mGluR8) inhibit 

adenylate cyclase.97,98 mGluRs have been localized on the primary afferents, neurons and 

glia within the brain and spinal cord.99,100 Group I resides post-synaptically, and Group II 

and Group III are dominantly located on presynaptic terminal.101

Activation of Group I mGluRs is linked to central sensitization and persistent nociception, 

while the activation of Group II mGluRs suppresses facilitated states.102 Group I mGluR 

antagonists have an analgesic action by an effect upon peripheral terminal, spinally and at 

supraspinal sites.103 Group II mGluR agonists regulate neurotransmitter release and depress 

pain transmission by acting at different levels of pain neuraxis, including nociceptors, dorsal 

horn and supraspinal regions such as the amygdala and PAG.104 Group III mGluR agonists 

are also involved in the control of hyperalgesia following inflammation. As with the other 

metabotrophic receptors, agonist injections into a peripherally inflamed site or into the 

spinal dorsal horn regulates glutamatergic transmission in inflammatory and neuropathic 

pain.103 Group I mGluRs antagonists and Groups II and III mGluRs agonists exhibited 

analgesic properties in neuropathic or inflammatory pain states105–112 and may serve as a 

basis to develop future spinally-targeted agents.113,114 Importantly, antagonists affecting 
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Group I mGluRs, have minimal impact on fast synaptic transmission and minimal cognitive 

effects as compared to ionotropic glutamate antagonists.115

Blocking a glutamate transporter (EAAT-3), reduces intracellular glutamate, attenuates pain 

and decreases cellular activation. In addition to their cytoplasmic location, mGluR5 are 

nuclear and may mediate these effects of intracellular glutamate. Accordingly, cell 

permeable mGluR5 antagonists may show increased efficacy in attenuating neuropathic 

pain.116

As regards abuse potential, central Group I mGluRs appear to be substrates for 

stimulants.115 Importantly, antagonists at Group I mGluRs reduce self-administration with 

no alteration in motor function or the reward value of natural rewards, while agonists at 

Group II mGluRs prevent reinstatement of drug-seeking after abstinence.117

GABA receptors

GABA, a principal inhibitor transmitter, is expressed in neurons throughout brain and spinal 

cord. GABAergic spinal interneurons presynaptically regulate large mechanosensitive 

afferents and postsynaptic excitation input by a potential interaction with two GABA 

receptors: the GABA-A ionophore and the GABA-B metabotrophic receptor.118,119

GABA-A—The GABA-A receptor is a GABA-gated chloride ionophore, and is composed 

of five subunits, each with four transmembrane spanning domains. The specific subunits 

define the binding of a number of molecules at the ionophore. Drugs can activate the channel 

(GABA. Muscimol), while others (benzodiazepines, neurosteroids, alcohol, many 

anesthetics) act as positive allosteric modulators at channels having specific subunit 

composition, stabilizing an open conformation in the presence of the agonist and at greater 

concentrations to directly activate the chloride channel.120 Studies show dense and variable 

staining for GABA-A subunits in brain,121 and spinal dorsal horn and on primary afferent 

terminals,118,122 regulating their excitability.123, 124 Non-spinal GABA-A ionophore 

activation leads to sedative, anxiolytic and amnestic effects, whereas at the spinal level 

increased GABA-A activity alters motor function.125 The high degree of GABA-A receptor 

structure/subtype heterogeneity raises expectations for determining specific structures to 

target these subtypes.126, 127–129 Subtype specificity may exhibit different effects upon 

neuronal inhibition in various systems.130

GABA-A agonists, such as muscimol or isoguavacine, display preclinical efficacy in 

neuropathic pain models.131–135 Intrathecal benzodiazepines depressed nociceptive reflexes 

in dogs,136 while bolus intrathecal midazolam has displayed efficacy in postoperative, low 

back and labor pain in humans.137–140 At allosteric binding sites, neurosteroids, such as 

allopregnanolone, have shown efficacy in preclinical models of tissue and nerve injury.141 

Of note, etifoxine promotes production of 3alpha-reduced neurosteroids and has efficacy in 

reducing mechanical and thermal pain symptoms in vincristine-induced neuropathic pain.142 

Further, etifoxine by binding to GABA-A receptor subunits has shown to be effective in 

different pain disorders followed by anxiety.143 Etifoxine was clinically tested in 

combination with lorazepam for cognitive improvement in elderly patients (Table 1).
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The abuse potential of GABA-A targeted drugs is clearly suggested by role of the GABA-A 

receptor in reward circuitry. It is clear however that the potential abuse for any GABA-A 

targeted drug must be interpreted in terms of the subunits with which the drug interacts and 

the systems with which the subunits are associated.144

GABA- B—Two GABA-B receptors have been cloned and are metabotrophic receptors 

serving to block the opening of voltage-gated Ca channel and activate inwardly rectifying K 

channels. These receptors are expressed peripherally and centrally, including thalamus, brain 

stem nuclei and spinal cord. While positive antinociceptive actions have been reported, they 

tend to be minimal. An important element is the potent effect upon motor neuron excitability 

leading to a clinically useful effect on elevated motor tone underlying spasticity occurring 

with neuraxial injury.119 Lioresal, typically employed by PO or intrathecal delivery in 

spasticity is not a controlled agent, but significant withdrawal can be seen with drug 

termination.

Opioid Receptor Targeted Drugs

Mu opioid receptor targeted agonists represent the gold standard for modifying acute 

nociceptive processing. This action reflects the association of these receptors i) with small 

afferent input that encode nociceptive processing at the spinal dorsal horn and, ii) at 

supraspinal levels, regulating spinal processing through descending pathways, altering 

perceptual processing and initiating reinforcing/reward circuit function.145 Apart from their 

analgesic efficacy, the classic opioids display tolerance, physical dependence, respiratory 

depression and a high propensity for abuse.

Receptor targeting—There are three identified gene products that yield three families of 

opioid receptors (mu/MOR, delta /DOR and kappa/KOR)146 that, when activated, alter pain 

processing in a naloxone-reversible fashion. More recently, identification of a receptor for 

the neuropeptide nociceptin has led to designation of a fourth receptor family (NOP), which 

is typically naloxone insensitive. While subtypes have been proposed, it appears likely that 

differences in pharmacology within a class may reflect on properties endowed by receptor 

organization and post-translational processing versus a distinctive receptor protein. These 

receptors are widely distributed in the brain and spinal cord and are characterized by 

comparable transmembrane spanning motifs and intracellular G protein coupled receptor 

(GPCR) signaling. At the membrane level, opioid receptors have typically been shown to be 

coupled, so that there is a presynaptic action reducing terminal release through a block of 

calcium-mediated exocytosis and membrane hyperpolarization through an increased 

potassium conductance.147 At the spinal level, the distribution of opiate receptors on C-fiber 

terminals and second order neurons is consistent with the analgesic actions being mediated 

by a block of excitatory transmitter release from C-fibers and inhibition of 2nd order neuron 

excitability.145 A peripheral opiate action manifested on sensitized afferent nerve terminals 

is observed reflecting in part the presence of opiate receptors on the peripheral terminals of 

the afferent.148 Supraspinal opiate actions have been identified wherein the classic 

descending pathways are considered to be activated by the effects of the opiate receptor on 

GABA interneurons in the mesencephalon removing a tonic modulation of downstream 

descending projections.149 Higher order action on forebrain structures have additionally 
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been identified145 and likely reflect upon the effects of opioids on distress.150 Recent work 

has suggested possible efficacy of kappa opioid antagonists as a migraine therapeutic.302 

Preclinical actions of opioids and their effects mediated through the several opioid receptors 

on pain behavior after systemic and spinal delivery have been reviewed 

extensively.145,151–153

As noted, the common opiate target for the clinically used agents is typically the mu 

receptor. The possibility that amongst these receptors there may be subtypes appears likely 

to reflect other aspects of signaling included ligand bias and the role of heteromers (see 

below). Delta opioid receptors clearly exert a regulatory role.152 Intrathecal delta preferring 

agonist such as DADL has analgesic efficacy in humans after intrathecal delivery.154 Two 

non-peptide molecules ADL5747 and ADL5859 were two orally bioavailable compounds155 

tested for acute (NCT00993863) and chronic (NCT00979953) pain management in Phase 2 

clinical trials but were not more effective than placebo in osteoarthritic patients.

Kappa opioid agonists which are peripherally restricted have shown minimum abuse 

potential and efficacy in inflammatory and visceral pain. This along with the potential of a 

reduced side effect profile and lower abuse potential suggests such agonists as promising 

candidates for treating pain.156,157

Interestingly while there is a typical aim to seek selective agonists, some have argued that 

effective improvements in efficacy side effect profiles may be achieved though ligands 

targeting multiple opioid receptors.158,159

Biased ligands—One of the major strategies that is gaining interest is that GPCRs can 

associate with multiple second messengers (such as G alpha proteins, β-arrestin, etc.) and 

ligands can modulate GPCR response via one of those functional pathways, thereby 

exhibiting “biased agonism.”160,161 Such biased agonists at the mu opioid receptors produce 

analgesia with limited side effects.162 Currently, a biased ligand (TRV-130) shows analgesia 

with reduced respiratory depression in phase II clinical trials.163 (Table 1) Recently, an in 

silico screening approach has identified PZM21, as a mu opioid biased agonist that shows 

promising analgesic data with reduced side effects.164

Heteromeric Receptors—Many G protein-coupled receptors couple to yield homo- and 

heteromers.165–167 Such oligomerized receptors serve as targets for developing novel 

analgesics. For instance, a bivalent ligand containing mu agonist and delta antagonist 

pharmacophores linked via a spacer (MDAN-21) effectively bridges mu-delta opioid 

receptor heteromers and exhibits enhanced efficacy and a reduced tendency for 

tolerance.168,169 Better understanding of mu and delta opioid receptor heteromers will help 

in understanding peripheral pain as well as development of tolerance as it has been shown 

that several clinically used opioids are also selective for these heteromers.170–172 A 

combination of mu-receptor agonists and cannabinoid receptor agonists in rhesus monkey 

models, showed significant antinociception.173 Mu opioid receptor and CB1 (cannabinoid) 

receptor heterodimers174 and mu-mGluR5175,176 heteromers with opioid and non-opioid 

binding sites, expressed strong antinociceptive effects in a range of models. In addition, a 

small molecule agonist for the mu-kappa opioid receptor heteromer, NNTA, is a potent 

Knezevic et al. Page 11

Anesth Analg. Author manuscript; available in PMC 2018 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



antinociceptive agent with no propensity to display physical dependence or drug-seeking 

behavior.177

Tissue target selective opioids—Inflamed tissues display an acidic environment as 

compared to a healthy tissue. NFEPP is a mu opioid agonist that displays pH-sensitive 

binding and is thus limited in its activity to a peripheral action at injured/inflamed tissues 

inflammatory, and is reported to be absent CNS effects or display addiction potential.178

Abuse liability of the classical analgesic opiate agonists reflecting an effect upon higher 

order neuraxial function is clear. To the degree that a pain state reflects upon activity 

generated by a peripheral stimulus (e.g. tissue injury, inflammation, neuroma, etc.) opioids 

with a peripherally- restricted action acting upon systems outside the blood brain barrier 

offers a potential way forward. As reviewed above, there is anticipation that NOP agonists or 

opioid agonists restricted to a peripheral action do not have intrinsic reinforcing effects.153 

Additional work on the biased ligands and heterodimer systems is required.

Alpha2 adrenergic receptor targeted drugs

Alpha 2 adrenergic agonists have a potent analgesic action that is accompanied by sedation. 

The analgesic effects are mediated in large part by spinal alpha 2 receptors of which there 

are three subtypes (Alpha 2A,B,C).179 These are G protein-coupled receptors that regulate 

dorsal horn excitation produced by small primary afferent input. Studies with mutations, 

antisense, and antagonists suggest an important role for the alpha2A subtype.180–182 Alpha 2 

agonists delivered systemically or intrathecally have significant effects upon acute, 

inflammatory and nerve injury hyperpathias.183,184 In humans neuraxial alpha2 agonist 

(clonidine) and systemic (clonidine, tizanidine dexmedetomidine) have analgesic properties 

with sedation being a common sequelae of the actions of these agents. Dexmedetomidine is 

not a controlled substance. While the dependence potential of dexmedetomidine has not 

been studied in human, preclinical studies have shown, as with clonidine, withdrawal upon 

discontinuation.185

Cannabinoids

Cannabinoids can produce strong antinociceptive results in various animal models of acute, 

tissue injury, and nerve injury-induced nociception.186 Cannabinoid receptors (CB1 and 

CB2) are G-protein-bound receptors that negatively bind via Gi/o proteins.187 CB1 receptors 

are found in spinal neurons, particularly in the dorsal root ganglia,188 and its agonists 

decrease excitatory transmitter release, whereas CB2 receptors reside in spinal microglia and 

attenuate microglial activation.189,190 Cannabinoids mediate their psychotropic effects 

through CB1, not CB2.191,192 Ligands that interact with CB1 and CB2 demonstrated the 

ability to regulate nociceptive processing.193,194 Agents that block the metabolism of CB1 

endogenous agonists consequentially increase its concentration and may be used to activate 

cannabinoid receptor function.195 CB1 and CB2 selective agents intrathecally-delivered 

decreased facilitated states such formalin model, hyperpathia in neuropathy models and in 

tumor bone pain in rodents.196–198 Cannabinoid role in pain processing is based on spinal 

and nociceptive neuron inhibition, although peripheral sites of action have also been 

identified. The use of spinal cord stimulation (SCS) in a rodent neuropathic pain model 
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revealed long-lasting and incremental reduction of hyperalgesia mediated by 

endocannabinoids. The effect was amplified by co-administration of LY2183240, an 

endocannabinoid reuptake/breakdown inhibitor, and inhibited by a CB1 R antagonist, 

AM251, but not by a CB2 R antagonist, AM630.199 CB2 receptor antagonists may be a 

potential target in treating chronic pain of several etiologies by modifying cytokine profile 

when blocking peripheral immune tissue receptors, and by blocking receptors in neurons and 

glial cells.200

The anti-nociceptive effect of eslicarbazepine acetate (ESL), an anti-epileptic drug derived 

from carbamazepine/oxcarbazepine, has been shown to be mediated by serotonergic 5-

HT1B/1D and cannabinoid CB1/CB2 receptors. ESL showed beneficial effect in different 

neuropathic and visceral pain models.201 ESL has been tested clinically in different pain 

conditions (diabetic neuropathy, PHN, fibromyalgia, etc. (Table 1).

Abuse potential associated with CB1 receptor agonists has been well documented.202 The 

CB2 receptors has been shown to modulate ventral tegmental dopamine neuron activity, 

circuitry considered pivotal in the addictive process.203

Angiotensin 2 receptor antagonist

Angiotensin may reside in primary afferents and can activate facilitatory cascades mediated 

through AT1 and AT2 receptors.204,205 An AT2 antagonist, EMA401 has been tested in 

Phase 2 clinical trials for the treatment of post-herpetic neuralgia (PHN), and preliminary 

data showed that it is well tolerated and it exhibited a primary analgesic efficacy 

endpoint.206 Two phase 2b studies with EMA401 for PHN and painful diabetic neuropathy 

were put on hold.(207) However, recently, the new Phase 2 study for PHN was registered at 

clinicaltrials.gov. (Table 1)

Adenosine agonists/antagonists

In models of acute nociceptive processing,208 neuropathy208–212 and inflammatory pain213 

administration of adenosine and related ligands yielded significant anti-hyperalgesic effects. 

Intrathecally administered adenosine lowered allodynia in experimental pain models,214,215 

and in patients suffering from neuropathic pain,216,217 although negative results have also 

been reported.218 Adenosine activates four G-protein-bound receptors: A1, A2A, A2B, 

A3.219 A1 receptors, which pre-synaptically inhibit neurotransmitter release and post-

synoptically inhibit excitatory transmission,220,221 are found on dorsal horn neurons and on 

small-to-medium-sized neurons of the DRG.220, 222–225 A2A receptor agonists were 

reportedly able to cause long-term reversal of allodynia in mononeuropathies,226 while the 

possible explanation was the role of A2A agonists as potential glial inhibitors. In addition, 

A2A receptors may enhance glutamate release, and A2A antagonists may behave 

protectively by reducing such excitatory effect.227 A2A receptor knock-out mice showed a 

significant reduction of the mechanical allodynia and a suppression of thermal hyperalgesia 

and allodynia, and well as attenuated expression of microglia and astrocytes, confirming 

potential beneficial role of A2A receptor antagonists in the treatment of neuropathic pain.228 

Activation of the A3 adenosine receptor (A3AR) blocked hyperalgesia in mono and 

polyneuropathies.229 The abuse potential of agonists at these A1–3 receptors is not known.
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Purine agonist/antagonists

Adenosine triphosphate, widely present in the CNS,230 reacts with P2 receptor family with 

several subtypes. The P2X ligand-gated ionotropic receptors (consisting of 7 subtypes) and 

P2Y\G-protein-coupled receptors (divided into 8 subtypes). P2Y receptors may signal either 

via Gq/G11 to initiate the phospholipase C/inositol triphosphate (InsP3) endoplasmic 

reticulum Ca2+-release pathway (the P2Y1, P2Y2, P2Y4, P2Y6, and P2Y11 receptors) or 

via Gi/o, blocking adenylate cyclase and modulating ion channel function.231 Both P2X and 

P2Y receptors reside in dorsal root ganglia, spinal neurons and glia.232These receptors as 

glia activators, lead to spinal release of proinflammatory proteins and cytokines, associated 

to commencing facilitated pain states.233–237 Transient reversal of hyperpathia after nerve 

injury was achieved via intrathecal administration of P2X and P2Y inhibitors.238–241 The 

P2X3 subtype is predominantly on C- and Aδ-fiber primary afferent neurons. P2X3 

antagonists have shown efficacy in inflammatory and in mono and poly neuropathic pain 

states.242 P2X4 subtype is important in spinal facilitation that originated from tissue and 

nerve injury.243 P2X4R antisense oligodeoxynucleotide intrathecal delivery prevented 

P2X4R protein expression and restrained mechanical allodynia development.238 P2X4R by 

modulating neuroimmune interactions in the spinal cord and DRG could have an important 

role development of neuropathic pain, signifying potential therapeutic effects of P2X4 

receptor antagonists.244 Electroacupuncture showed beneficial effect in neuropathic pain 

models by attenuating IFN-γ release and reduced expression of P2X4R in microglia.245 

Furthermore, duloxetine, a serotonin and noradrenaline reuptake inhibitor, showed results in 

neuropathic pain models by inhibition of P2X4 receptors.246 AF-219, a P2X3 antagonist is 

in clinical development as an antitussive. The abuse potential of purine receptor agonists and 

antagonists is unknown.247 (Table 1)

Innate immune signaling

Toll-like receptors (TLRs), a key sensory component in innate immune function are found 

on neuronal and non-neuronal cells in the spinal cord and function by recognizing injury-

associated molecular structures, while being strongly associated with proalgesic/

inflammatory cytokines (DRG).248,249 Intrathecal TLR4 antagonist administration resulted 

in improved effects within inflammatory and neuropathic pain states250 and was associated 

with opiate-induced hyperalgesia phenomenon.251 Another perspective on the role of TLR4 

signaling was noted when it was found that the spinal delivery of a TLR4 antagonist (LPS-

RS) would prevent the transition from an acute inflammatory state to chronic post 

inflammatory state with neuropathic pain phenotype252 while a small molecule TLR4 

antagonist (TAK242) would prevent the onset of late phase allodynia after intraplantar 

formalin.253 Repeated intrathecal administration of LPS-RS (TLR2 and TLR4 antagonist) 

and LPS-RS Ultrapure (TLR4 antagonist) attenuated allodynia and hyperalgesia and 

potentiated the effect of buprenorphine but not morphine254 Effort has been put into 

developing new structures to block TLR activation by interacting with the TLR4 ligand or 

downstream signaling255–257 as shown by the antihyperpathic effects achieved by inhibition 

of MyD88 signaling.258
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Lipid mediators

Prostaglandins—The role of lipid mediators, such as the omega 6 derived prostaglandins, 

which produce a sensitized primary afferent and is centrally facilitated and mediated by 

eponymous receptors, has been long appreciated. Discovery of cyclooxygenase isoforms led 

to the rational development of prostanoid receptor antagonists and isoform specific 

inhibitors, which were shown to have both a peripheral anti-inflammatory and a central 

action on spinal facilitatory processing.259 Non selective and COX-2 inhibitors have been 

shown to have significant anti-hyperpathic effects in a variety of tissue injury pain states in 

animal models259 and in humans.260 Unfortunately, typical limiting issues involve target 

related actions on cyclooxygenase (GI, platelet function and cardiovascular) side effects.261 

An interesting parallel to the NSAIDs is the actions of acetaminophen.262 This molecule has 

been shown to be efficacious in a variety of preclinical models and in clinical pain states 

associated with inflammation and tissue injury and in mono and polyneuropathies, with dose 

dependent effects upon hyperalgesia and allodynia.263–265 Available as an OTC, this agent, 

in us for more than 100 years, has revealed no abuse liability. In spite of its utility, its 

mechanism of action is at best controversial.264

Soluble epoxide hydrolases—The epoxidized metabolites obtained from omega-3 long 

chain fatty acids show anti-inflammatory and an anti-hyperpathic effect in a variety of 

preclinical models. However, they are being rapidly metabolized by enzymatic hydrolysis by 

soluble epoxide hydrolases (SHI). Of interest inhibitors of SHI have been shown to have 

significant anti-hyperalgesic actions in a variety of preclinical models.266

Proresolvins—Inflammatory cascades are typically self-limited leading to the healing 

phase of an injury. One of the mechanisms of this resolution has been a variety of lipid 

mediators referred to as proresolvins. These endogenous mediators include omega 3 

(resolvins, protectins, and maresins) and omega 6 derived lipoxins. It is increasingly 

recognized that anti-inflammation and proresolution cascades represent distinct mechanisms 

for controlling the inflammatory response.267 Delivery of a variety of these proresolvin 

molecules has shown to have significant anti-hyperpathic actions in a variety of 

inflammatory, mono and polyneuropathic models.268,269 The abuse potential of these lipid 

mediators is not known.

Anti-inflammatory Cytokines

Upon activation of various glial signaling cascades, numerous cytokines (including 

activation of NF-κB) influence the proinflammatory mediators’ production (e.g. TNF, IL-6, 

and IL-1β), which, in turn, activate pro-algesic cascades.270 Additionally, such cascades can 

aid in the release of anti-inflammatory products (e.g. IL-4, IL-6, IL-10, IL-11, IL-13, TGF-

β) and soluble cytokine receptors,271 which control the inflammatory cascade.272

IL-10—It has been shown that IL-10 is one of the most powerful endogenous anti-

inflammatory cytokines in nervous system.273 In animal models, IL-10 intrathecal delivery 

demonstrated therapeutic efficacy in various chronic pain models, primarily in treating 

different types of neuropathic pain.273 In different animal models, viral vector-mediated 
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expression of IL-10 in DRGs prevented development of painful diabetic neuropathy274 and 

helped in treatment of HIV-induced neuropathy.275

IL4—Another anti-inflammatory cytokine IL-4 showed beneficial role in treating different 

types of neuropathic pain in different animal models.276–278 An interesting variation is the 

intrathecal transfection of an IL4/IL10 fusion protein leading to a potent and persistent 

antihyperalgesia.279

Toxins

There is an increasing interest in potential of producing long term changes in neuraxial pain 

processing by the peripheral or spinal delivery of agents which target the functionality of 

systems processing pain information. Here the consideration is for the treatment of 

persisting pain states. The role of these therapeutic approaches is not clear at present time. 

For those approaches leading to permanent loss of cells such as the saporin conjugates or the 

TRPV1 agonists, it appears less likely that they would be employed outside of the terminal 

patient (as in cancer). Toxins that result in long lasting but irreversible effects such as the 

botulinum toxins might betherepeutic approach for persistent pain states in a non-terminal 

patient.

TRPV1 receptors—TRPV1 channels are with few exceptions located on the central and 

peripheral terminals of high threshold primary afferents. Topical280 and spinal delivery281 of 

TRPV1 agonists such as capsaicin or analogues such as resiniferatoxin (RTX) desensitize 

the TRPV1 (+) afferent and destroy the DRG terminal282 by calcium cytotoxicity.283 and 

analgesia. The effects after topical delivery has led to the approval of transdermal 

capsaicin.284 Neuraxial delivery of TRPV1 agonists has been shown to result in robust anti-

nociception in dogs.285, 286 Intrathecal RTX showed potent and persistent anti-hyperalgesic 

effects refractory bone cancer pain in canines, without evidence of deafferentation 

sequelae.287 One clinical trial testing the use of intrathecal resiniferatoxin for intractable 

cancer pain was begun and is currently on hold. (Table 1)

Saporin conjugates—G-protein-coupled receptors undergo internalization when 

occupied by their respective agonists.288 Appropriate linking of a G-protein targeted agonist 

such as substance P (SP) and a toxin such as saporin (plant product from Saponaria 
officinalis which is not otherwise taken up by the cell) will result after agonist binding to the 

neurokinin 1 receptor (NK1r), internalization of the agonist and toxin complex into the cell 

expressing that receptor.289 Saporin blocks riboslyation and protein synthesis, resulting in 

cell death. The neurokinin 1 (NK1) receptor, a GPCR, found on postsynaptic second order 

dorsal horn nociceptive neurons290 is taken up into the neuron and the neuron dies. 

Intrathecally administered sP-saporin, but not saporin, robustly destroys NK1(+) dorsal horn 

neurons and attenuates pain states in rodents and bone cancer pain in dogs291, 292,293 

Intrathecal administration of sP-Saporin is currently in Phase 1 clinical trial for the treatment 

of intractable cancer pain (Table 1). Importantly, this functional coupling of a ligand to 

saporin is effective for any ligand for any G protein coupled receptor that displays 

internalization.289
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Botulinum toxin—These toxins are composed of a heavy chain (HC) and a light chain 

(LC). The HC portion enables the toxin to be taken into the cell. Once inside, the complex is 

cleaved, freeing LC, which serves as enzyme cleaving SNARES.294, 295 SNAREs mobilize 

vesicles for transmitter release and aid in the transport of GLUA1 AMPA receptor subunits 

to the membrane.296 In case of SNARE cleavage, transmitter release is blocked. 

Preclinically, intrathecally administered BoNTs produced anti-hyperalgesic effects in 

various inflammatory and neuropathic hyperpathia.297–300 The BoNT uptake is ubiquitous 

and the potent effects upon transmitter release may include inhibitory interneurons and 

motor neurons.301,302 Several BoNT serotypes have been shown after topical application to 

be taken up and to block both local (peripheral) release from a nociceptor and to be 

transported centrally to inhibit downstream nociceptive processing, with indications of a 

possible pre- and post-synaptic effect.303 Intravesical injections of onabotulinumtoxin-A 

(BoNT-A) showed significant pain reduction in patients with interstitial cystitis/bladder pain 

syndrome (IC/BPS) refractory to other treatments suggesting a local effect upon the 

urothelium.304 Coupling of the light chain of BoNT-A with substance P showed a beneficial 

role in treating chronic pain after intrathecal delivery.305

Transfection targets

The use of viral transection at the spinal level represents an exciting approach to modify 

spinal function. Intrathecal delivery of various transfection systems has been used to 

increase the expression of cytokines,302,303 knock down of pivotal targets with shRNAs,

(304,305) expression of transcription factor decoy proteins,306 over-expression of 

microRNAs are among many spinal targets that have been successfully manipulated through 

transfection approaches. Technically, it is clear that while intrathecal delivery of AAV may 

transfect ganglion neurons, parenchymal transfection may be limited, in part by the diffusion 

barrier presented by the pia and transfection enhanced by subpial delivery.307 

Intraganglionic injections have also been suggested as an efficient tool to alter afferent 

function.308 The ability to produce long-term, regulated changes in processing offer a 

potential to modify the pathological expression of pain by modifying system function.

Conclusions

The FDA has been mandated to address the national epidemic of opioid abuse with policies 

aimed at reversing the epidemic. One element of this plan, recognizing the pivotal role 

opiate receptors play in pain management, is to stimulate development of more effective 

pain medications with abuse-deterrent (AD) properties and abuse-deterrent formulations 

(ADFs) of opioids. The rational way forward is to develop analgesics that minimize abuse 

potential. In order to improve the translations, the FDA launched the Analgesic, Anesthetic, 
and Addiction Clinical Trial Translations, Innovations, Opportunities, and Networks 
(ACTTION) that issued recommendations to improve the reproducibility of research 

pertaining to pain studies.(306)

In the last three decades, by virtue of funding from the national funding agencies and by 

pharma, we have obtained an increased understanding of pain mechanisms and accordingly 

an abundance of relevant targets for which we must develop drugable molecules. The 

development of novel targets and the implementation of approaches that can alter processing 
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for extended periods (transfection and toxins) represent exciting advances in managing the 

chronic condition.

An important issue in analgesic drug discovery is that apparently promising pre-clinical 

candidates can fail during clinical trials. Several reasons for this may be entertained. It is 

straightforward to model human conditions for which the initiating mechanisms are likely 

known, as for example in chemotherapy-induced neuropathy. Conversely, it is difficult, if not 

impossible, to rationally define surrogate models for a pain state such as fibromyalgia, where 

the mechanisms of hyperpathia observed in the human conditions are not known.307 Thus, 

preclinical models may fail to recapitulate the human pain condition being studied. Research 

into mechanisms and the appreciation of the role played by innate and adaptive immunity 

are likely to shed light on these complex problems, revealing novel, mechanistically-defined 

targets that lack congruence of the clinical and preclinical target, where minor species 

differences in a receptor sequence may yield a drug that does not engage the human target. 

Modern molecular techniques and target sequencing makes this disconnect less likely. 

Further research into biological biomarkers (exosomes) and genetic characterization will 

provide an important link to define human and animal covariates.308,309

It is interesting to note, as outlined in Figure 1, that a preponderance of the targets producing 

therapeutic efficacy as analgesics (vs. anesthetics) display a robust effect upon primary 

afferent and dorsal horn processing that leads to surprisingly specific changes in pain 

behavior, denoting the role played by the content of the ascending message in characterizing 

components of the aversive nature of the stimulus event. This emphasis does not exclude the 

likelihood that many agents, notably opioids, can exert a potent effect upon pain behavior 

after supraspinal action with such actions accounting for changes in the affective-

motivational component of the pain state. While it appears likely that specific supraspinal 

systems may be found that possess a pharmacology specifically targeting the pain state, 

current research has provided little evidence that what affects pain processing/behavior at 

supraspinal sites does not also have pronounced effects upon behavior and perception, 

aspects of which are associated with positive reward and the addictive potential. These 

results suggesting the interdigitation of these affective components are in parallel with the 

early work involving surgical resection of limbic and forebrain structures. While such 

interventions were reported to lead to a loss of the affective components of the pain state, 

they also led to profound changes in personality and judgement.310

Finally, the translational development of analgesics for the clinic must increasingly consider 

the issues of drug abuse. The aim is to address the specific management of pain and 

suffering. Clearly, agents minimizing the psychological underpinnings of suffering may well 

display a positive reinforcing component in the absence of pain. This conflation emphasizes 

the complexity of the problem and the challenges to selectively modify one of the most basic 

cognitive elements, the pain experience.
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Figure 1. Potential Opioid and Non-Opioid Targeted Drugs
Figure showing some of the key drug targets that act as peripheral (peripheral afferent 

neuron – peripheral terminal) and central (dorsal horn) targets. Cav - voltage-dependent 

calcium channel; TRPV - transient receptor potential cation channel; Nav – voltage-gated 

sodium channel; K - potassium channel; GPCRs - G-protein-coupled receptors; NMDA - N-

methyl-d-aspartate; AMPA - α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid; 

GABA - γ-aminobutyric acid; α2 – adrenergic alpha 2 receptor; CB1 - cannabinoid receptor 

1; mGlu - metabotropic glutamate receptor
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