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Abstract

Protein biomarkers found in plasma are commonly used for cancer screening and early detection. 

Measurements obtained by such markers are often based on different assays that may not support 

detection of accurate measurements due to a limit of detection (LOD). The ROC curve is the most 

popular statistical tool for the evaluation of a continuous biomarker. However, in situations where 

LODs exist, the empirical ROC curve fails to provide a valid estimate for the whole spectrum of 

the false positive rate (FPR). Hence, crucial information regarding the performance of the marker 

in high sensitivity and/or high specificity values is not revealed. In this paper, we address this 

problem and propose methods for constructing ROC curve estimates for all possible FPR values. 

We explore flexible parametric methods, transformations to normality, and robust kernel-based and 

spline-based approaches. We evaluate our methods though simulations and illustrate them in 

colorectal and pancreatic cancer data.
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1. Introduction

At the preclinical level, performing a research-grade biomarker assay might involve in vitro 

experiments and mass spectrometry techniques, among other procedures, with the objective 

of identifying genes or proteins that are over- or under-expressed in tumor tissue compared 

to control tissue (see [1]). Promising biomarkers obtained during that first phase are further 
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explored using a clinical assay, which is usually developed by an industrial partner at great 

expense. It is common to have limited resources and technology at the preclinical level, 

which might impose detection limits (LODs), depending on the platform. Having to base 

conclusions on naive techniques that cannot accommodate such LODs might cause 

researchers to reject a promising biomarker at the early stage of biomarker discovery. Hence, 

it is crucial to properly evaluate biomarkers at the early stage of research. Furthermore, this 

will in turn result in decisions related to spending resources to improve technology for those 

promising biomarkers and eliminate these technical issues. Examples of biomarkers with 

such issues are not rare and might be related to colorectal cancer as well as pancreatic cancer 

among others.

Colorectal cancer is the third most common cancer diagnosed in both men and women in the 

United States. Early detection of colorectal cancer is key to successful treatment since it 

might be curable if detected at an early stage (see [2]). Carcinoembryonic antigen (CEA), 

normally produced in gastrointestinal tissue, is known to increase in individuals with 

colorectal carcinoma and to exhibit increased levels in individuals with pancreatic, lung and 

breast carcinoma as well. CEA is produced during the fetal period by endothelial cells, and 

postnatal by epithelial cells. Adenocarcinoma cells of the colon as well as fetal intestinal 

cells produce CEA, which is used as a biomarker for treatment monitoring purposes and to 

identify disease recurrence after surgical intervention. However, laboratory limitations play a 

role in measuring CEA, making its value undetectable below some LOD that may vary 

among different assay techniques. Carbohydate antigen 19-9 (CA19-9) is another well-

known biomarker that is mainly used for diagnosis or monitoring response to therapy in 

pancreatic cancer. CA19-9 might also be subject to a lower LOD, the value of which 

depends on the assay. Although the most common situation is the existence of a lower LOD, 

there might be more rare cases that an upper limit of detection is present. An example is 

CA19-9. Its levels may be elevated in many types of cancer such as colorectal cancer, 

esophageal cancer, or hepatocellular carcinoma, as well as in pancreatitis and cirrhosis (see 

[3], [4], among others). Hence, it might not be safe to conclude that non-detected CA19-9 

measurements above the upper LOD correspond to pancreatic cancer. More specifically, as 

pancreatic cancer is a rare disease and there is no suitable high-risk population for screening, 

any biomarker that identifies an average-risk population for screening will require very high 

specificity, which in turn will require unbiased estimators of the associated sensitivity. A 

very high specificity level of CA19-9 or the target biomarker, in cases where an upper LOD 

is present, could compromise the ability to derive an accurate estimate of the associated 

sensitivity. Likewise, when an accurate estimate of the specificity at a high sensitivity level 

(e.g., 95%) is required in a clinical context, the lower LOD will limit the ability to accurately 

estimate the desired specificity at the cutoff that corresponds to that sensitivity. It is common 

that a potential upper limit of detection might be resolved within the laboratory by dilution. 

However, such a strategy costs in time, resources and available samples that might be 

limited. This is the case presented in [5] that focuses on Hepatitis B and the Cobas Amplicor 

HBV Monitor test for which there is a limited range of detection due to an upper limit of 

detection. In that study even the dilution took place prior to the assay to avoid issues with the 

upper limit of detection, some sera had to be retested because they were still found to be 

above the upper limit of detection. However, such a retesting might cause a batch effect. 
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Another example with an upper limit of detection is discussed in [6]. In that paper, the 

authors investigate kidney biomarkers for patients with cirrhosis and acute kidney injury. 

The measurements that correspond to the upper limit of detection are simply replaced by the 

exact value of the limit of detection and analysis is performed as if these measurements were 

exactly observed. Such an analysis might cause (downward) biased results. Therefore, the 

lower or upper LODs limit the ability to select candidate biomarkers for further development 

of clinical assays. We propose new approaches to address these issues.

The typical statistical tool to evaluate either continuous or ordinal biomarkers is the receiver 

operating characteristic (ROC) curve. If a lower LOD is present, clinicians cannot obtain 

exact measurements for patients whose measurements are below that lower LOD, dL. It is 

also not possible to obtain exact measurements when they exceed the upper LOD, dU. 

Hence, data that are left, right, or doubly censored arise in cases of a lower LOD, upper 

LOD, or both. We denote the biomarker measurements of healthy individuals as Y0, and 

those of individuals with disease as Y1. Assuming a continuous setting and that higher 

marker measurements are more indicative of the disease, we define sensitivity as P(Y1 > c) 

and specificity as P(Y0 < c), where −∞ < c < ∞ is a decision cutoff, above which we 

consider all measurements to be “positive.” For each cutoff value c, we obtain a pair of 

sensitivity and specificity values. The ROC curve is the plot of all possible pairs of 

sensitivity and specificity values obtained by scrutinizing all possible values of the cutoff c. 

Namely, ROC(c) = {FPR(c), TPR(c), c ∈ (∞, ∞)}. Let F0(x) and F1(x) be the distribution 

functions of the healthy and the diseased group respectively. The definition of the ROC 
curve as a function of the underlying distribution functions is

(1)

where S0(x) = 1 − F0(x) and S1(x) = 1 − F1(x) are the survival functions of the healthy and 

the diseased group respectively. For a detailed overview of the ROC curve, see [7] and [8]. 

When a lower and/or upper LOD is present, the construction of the ROC curve must account 

for the censored nature of the available data. Some practices in the setting of a lower LOD of 

a positively defined continuous biomarker involve ignoring the censored nature of the data 

and proceeding with the usual empirical ROC curve analysis (see [11] for an overview). This 

strategy is essentially equivalent to simply treating all left-censored measurements as if they 

were observed exactly at dL, which is expected to result in bias. Other similar approaches 

might involve the replacement of these left-censored values with dL/2 (see [12]) or dL/√2 

(see [13]). The first approach is based on the assumption that the distribution of the data is 

uniform in the interval [0, dL]. The rationale for using dL/√2 is a strategy that completes the 

tail of the underlying density with a straight line toward the (0,0) point, forming an 

orthogonal triangle with corners at the points (0, 0), (dL, 0), (dL, f(dL)), where f is the 

underlying density function. It is not a surprise that the resulting empirical ROC curve 

remains the same regardless of which of these nave approaches one uses. This is due to the 

ranking of the data that remains unchanged no matter the replacement value used. The 

disadvantage of using such a replacement approach is threefold: (1) It only applies to 

positive supported marker measurements, which might not be the case even though it is 
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common; (2) such an approach cannot be applied for the case of an upper LOD, as 

theoretically the interval of the true measurement in that case is [dU, + ∞); and more 

importantly, (3) under the natural assumption of concavity of the ROC curve, the resulting 

ROC curve will most often be biased, which will result in downward bias of the targeted 

sensitivity and specificity values.

Some researchers have proposed parametric approaches. The use of the binormal model and 

the bigamma model was investigated in [14]. Mumford and others (2006) (see [15]) explored 

the binormal model as well, under a framework of taking random samples and pooling 

biospecimens. In [16] maximum likelihood ratio tests to compare biomarkers subject to 

LODs were considered. The multivariate normality assumption is employed in [17] for 

multiple biomarkers subject to an LOD. Maximum likelihood-based approaches under the 

normality assumption for making inference for optimal linear combinations of two 

biomarkers subject to LODs are discussed in [18]. They considered multiple biomarkers in 

the presence of lower LODs as well. However, such parametric approaches might be too 

restrictive. A spline-based approach was proposed in [19]. Their approach relaxes the need 

for common parametric assumptions; however, it cannot accommodate both upper and lower 

LODs.

The paper is organized as follows: In Section 2, we show that the naive empirical approach 

will provide a biased area under the ROC curve (AUC) estimate. We further show that, after 

the use of any replacement value, the empirical-based ROC curve will result in a biased 

estimate of the ROC(t). In Sections 3 and 4, we explore power transformations as well as the 

use of a flexible parametric model, the extended generalized gamma (GG) distribution (see 

[20] and [21]). In Sections 5 and 6, we investigate an imputation of kernel- and spline-based 

approaches to achieve robustness. We evaluate our approaches through simulations in 

Section 7, and apply them to colon cancer and pancreatic cancer data in Section 8. We close 

with a discussion.

2. Empirical ROC

A naive approach to the problem under study is to simply use the empirical ROC curve and 

ignore the censored nature of the data. The empirical-based ROC estimate for a continuous 

marker is obtained by all possible pairs of  and 

, −∞ < c < ∞. Some techniques (see Hughes, 2000 for a 

discussion) involve simply using a fixed replacement value for the censored data that are 

piling up on the lower LOD, dL. Some replacement values discussed in the literature are aL 

= dL/2 or aL = dL/√2, and are used to attempt to reduce bias in terms of the estimated AUC, 

which in the case of a continuous marker corresponds to the probability P(Y0 < Y1). 

However, for any replacement value αL < dL and/or αU > dU, the empirical estimate of the 

ROC curve remains the same when it is obtained by an analysis that ignores the censored 

nature of the data. We show that any estimate based on a replacement value strategy induces 

bias. We generalize the result of [14] and show that the theoretical ROC curve in the 
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presence of LODs dL and dU yields a biased estimate for any replacement value, both for the 

ROC(t) curve and for the AUC.

Proposition 1 Let the continuous marker that yields measurements for healthy individuals 

and those with disease be denoted by Y0 and Y1 from distributions F0, F1, respectively. 

Assume that the marker is subject to a lower LOD, dL, and an upper, LOD dU. Let aL ≤ dL 

and aU ≥ dU be the replacement values for the censored scores, which define the imputed 

scores M0 and M1 for the healthy and diseased, respectively. Denote with ROCY (t) the true 

unknown ROC(t) based on the unobserved scores Y0 and Y1, and denote with ROCM(t) the 

ROC curve that is based on M0 and M1. It then holds that:

i. ROCM(t) remains the same for any replacement values aU and aL. ROCM(0) = 0, 

ROCM(1) = 1, and ROCM(t) = ROCY(t) for t ∈ [S0(dU), S0(dL)]. It is not defined 

elsewhere.

ii. If we define  by linearly completing ROCM(t), then we have 

 for t ∈ (0, 1) if and only if , 

.

iii.  for t ∈ (0, 1) if and only if the following holds for the 

positive and negative predictive values of the (fully observed) marker: PPVY(c) = 

PPVY(dU) c > dU, NPVY(c) = NPVY(dL) c < dL.

iv. If Y0 is smaller than Y1 in the hazard rate order (Y0 ≤hr Y1), then 

 for t ∈ (0, S0(dU)). If Y0 is smaller than Y1 in the reverse 

hazard rate order (Y0 ≤rh Y1), then  for t ∈ (S0(dL), 1). 

Equivalently  for t ∈ (0, S0(dU)) if PPVY(c) is increasing in 

c and  for t ∈ (S0(dL), 1) if NPVY(c) is decreasing in c. In 

particular, if ROCY(t) is concave (equivalent to Y0 being smaller than Y1 in the 

likelihood ratio order, Y0 ≤lr Y1), then  for t ∉ [S0(dU), 

S0(dL)].

v. For the area under , 

, we 

have that , when the marker is subject to an upper LOD and 

PPVY(c) is increasing in c, or when the marker is subject to a lower LOD and 

NPVY(c) is decreasing in c, or when the marker is subject to both upper and 

lower LODs and with PPVY(c) increasing and NPVY(c) decreasing in c.

The proofs of the statements in the proposition are given in the Appendix. The first result in 

the proposition states that the ROC curve that corresponds to any replacement value strategy 

for the LODs is identical to the ROC curve obtained by setting all values outside the LODs 

equal to the LODs, and is a mixed-type ROC curve. In practice, one must be cautious with 

inference based on the empirical ROC since observed FPR and TPR values may not be 
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attainable in the true ROC curve for the marker when specific LODs are set. Statements (ii) 

and (iii) of the proposition concern the common practice of replacing values outside the 

LODs and then proceeding to inference for accuracy measures while ignoring the LOD 

issue. In general, this practice results in biases. Strictly speaking, this practice is valid when 

one is willing to assume that, in terms of patient classification, knowledge of the actual 

marker measurement is useless when classifying a patient as healthy based on a value 

smaller than the lower LOD or when classifying a patient as having the disease based on a 

value larger than the upper LOD. We note here that there are some scenarios in which 

 may be close to ROCY (t). For example, consider the marker values for the 

diseased group being a mixture of a subpopulation identical to the values for the healthy 

group and another subpopulation of marker values that are well separated (in the ROC sense) 

from those for the healthy group. In the case of a reasonable lower LOD, dL, based on the 

lower tail for the healthy group, we will have an approximately constant cdf ratio, resulting 

in . Statements (iv) and (v) of the proposition imply that the use of the 

empirical ROC in the presence of LODs results in the underestimation of the true ROC for 

markers that have desirable properties. Thus, LODs may lead to ‘good’ markers being 

‘shortchanged’ on the basis of estimated accuracy measures when using the empirical ROC.

3. Box-Cox based ROC

The available data under the framework studied in this paper are of the form {Yi, Δi}, i = 1, 

2, 3, …, n where Y = [Y0j, Y1k] with j = 1, 2, …, n0 with k = 1, 2, …, n1, (n0 + n1 = n) and 

Δi is the censoring indicator that takes values -1, 0, and 1 for a left-censored, an exactly 

observed and a right-censored measurement, respectively. When common parametric models 

cannot be justified by the data at hand, power transformations are often employed. Such a 

transformation is the so-called Box-Cox transformation (see [22]). The Box-Cox 

transformation has been used under the ROC curve framework (see [8], [9], [10]). Its form is 

given by  if λ ≠ 0, and by Y(λ) = log(Y) if λ = 0. The likelihood under this 

context is based on the power normal distribution implied for the original untransformed 

data:

where  if λ ≠ 0, and 1 otherwise. This is a truncation term often 

neglected by many authors, as discussed in [23]. However, as the support of the data must be 

positive in order for the Box-Cox transformation to be feasible, this truncation term must be 

taken into account when building the corresponding likelihood, which is given by
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(2)

where ,  if λ ≠ 0, and 1 otherwise 

with k = 0, 1. After maximizing likelihood (2), we obtain an estimate of all the underlying 

parameters . Note that I(A) = 1 if A is true, and 0 otherwise. 

Based on the estimate of the transformation parameter λ, λ̂, we then obtain the proposed 

estimate of the ROC curve by assuming that the transformed scores follow a truncated 

normal distribution, truncated at −1/λ. Namely, the cdf of the healthy is assumed to be

(3)

and this is similarly determined for the diseased. The inverse cdf function of the healthy is 

given by

(4)

Hence, the corresponding proposed ROC curve can be written in closed form based on the 

corresponding survival functions S0 = 1 − F0, S1 = 1 − F1, and is given by
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(5)

where t ∈ (0, 1). An estimate of this ROC curve can then be obtained by simply plugging in 

the estimated parameters . The tails of the underlying density of 

the transformed scores are expected to conform with the tails of an estimated truncated 

normal distribution, and hence are nicely captured below the lower LOD and beyond the 

upper LOD in contrast to a naive approach that considers a simple replacement value.

4. Extended Generalized Gamma ROC

In case there are biological insights for speculating the shape of the tail of the underlying 

density of each group, and to allow for more flexibility in the tails, we explore a flexible 

parametric model known as generalized gamma (GG), which is based on the initial work of 

[20]. Extensions and computationally robust parameterizations for this model have proposed 

in [24]. For a thorough and elegant investigation of the extended GG model, we refer to [21]. 

Its density (see [24]) can be written as

where α ≠ 0 and γ > 0 are the shape parameters, and λ > 0 is the scale parameter. When α = 

0, the limiting case of the lognormal distribution is obtained. When γ = 1 or α = 1, we 

obtain the Weibull or the gamma distribution, respectively. Here, we denote the GG 

distribution by GG(α, λ, γ). The survival function is

where I{·,·} is the incomplete gamma function. It is defined as 

and is also known as the regularized gamma function. This distribution provides a 

parametric platform under a survival analysis concept. Its hazard rate can take the form of 

the four most common types, i.e., increasing, decreasing, arc-shaped and bathtub-shaped. 

Even though the hazard rate under the ROC curve framework has no appealing 

interpretation, it loosely expresses the risk of having a measurement q + Δq given that the 

measurement is > q, and directly relates to the tails of the underlying densities, the form of 

which are of crucial interest in our setting. For example, a decreasing hazard rate refers to a 
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heavy tail of the underlying density. Similarly, when the hazard rate is increasing, the tail of 

the density is light. The tails are of primary interest in our setting since it is the tails that are 

not ‘revealed’ due to the upper or lower LOD. We denote 

 and let I−1(x, α) and 

 be the inverse functions of I(x, α) and , respectively. The proposed GG-

based ROC curve can be derived after inverting the survival distribution of the healthy 

group. We denote the parameter vector of the GG that refers to the healthy group as (α0, γ0, 

λ0), and the corresponding parameters for the group with disease as (α0, γ0, λ0). The 

corresponding likelihood is given by

(6)

where F0(y; α0, γ0, λ0) = 1 − S0(y; α0, γ0, λ0), and f0(y; α0, γ0, λ0) is the GG cdf and pdf 

that correspond to the healthy group. We note that δi is -1 if the i-th measurement is left 

censored, 1 if it is right censored and 0 if the measurement is exactly observed. The indicator 

function I(A) is 1 if A is true, and 0 otherwise. This is performed similarly for the group 

with disease. Hence, the proposed ROC curve under this parameterization is given by

(7)

After maximizing the likelihood (6), the estimated ROC curve can be obtained by simply 

plugging α̂
0, γ̂

0, λ̂
0, α̂

1, γ̂1, λ1̂ into expression (7). The calculation of the incomplete 

gamma function as well as its inverse are built into software such as MATLAB (see gammainc 

and gammaincinv functions) and Mathematica (see GammaRegularized and 

InverseGammaRegularized). Furthermore, the fit of the GG model is readily available by 

using SAS (see LIFEREG procedure); a MATLAB routine named aft for the same purpose 

is available in the File exchange link of Mathworks provided by the first author.

5. Kernel-Imputation Based ROC

Here, we focus on a hybrid approach based on non parametric kernel based distribution 

estimates and parametric based imputation. A non parametric kernel based estimate of a 

density of a fully observed random variable X is given by:
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(8)

where , and hX is the bandwidth for which one can choose to use a simple 

plug in type equal to  (see [25]. When it comes to 

censored data the kernel estimate depends on the steps of the empirical survival curve that 

accommodates censoring. For example in the presence of right censoring the kernel based 

estimate depends on the steps of the Kaplan Meier estimate (see [26]). However, the Kaplan 

Meier survival estimate, and hence the kernel based distribution estimates, suffer from the 

‘last is censored’ phenomenon. Namely, the Kaplan Meier step curve cannot provide a valid 

estimate beyond the last observation if that is right censored. The same problem persists for 

doubly censored data even if one decides to use Turnbull's algorithm (see [27]). That is, no 

valid estimate can be obtained before the first observation if that is left censored.

To overcome this problem we consider imputing the censored data by random draws of 

plausible parametric models in order to have some pseudodata in the tails of both 

distributions (of the diseased and the healthy) and then proceed with the non-parametric 

kernel based estimators for both distributions separately. For an overview regarding 

imputation see [28]. Assume that the number of left and right censored observations of the 

healthy are denoted with  and  respectively (notation is similar for the diseased related 

censored data). The proposed algorithm is:

• Step 1: Draw  data from a plausible parametric model f0, , 

for which .

• Step 2: Draw  data from a plausible parametric model f0, , 

for which . The pseudodata set for the healthy is denoted with 

. Namely  consists of all imputed data in place of the 

previously censored ones, and the exactly observed from the original Y0.

• Step 3: Repeat the analogous Step 1 and 2 for the diseased group and obtain .

• Step 4: Obtain the kernel based distribution estimates based on  and 

separately and hence obtain an estimate of the kernel based ROC, RÔCj(t), t ∈ 
(0, 1).

• Step 5: Repeat Steps 1-4, 30 times, and obtain 30 smooth kernel based ROC 
curves.

• Step 6: The proposed kernel based ROC curve is the average of the ROC curves 

obtained in Step 5, namely .
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The proposed estimate of Step 6 of the previous algorithm can be considered as a robust 

alternative to simply assuming a parametric model. It only uses the parametric assumption to 

fill in the data of the censored tails of each distribution while the main body of the 

distributions of both groups is estimated non-parametrically. This hybrid estimate has also 

the property of providing a smooth ROC curve which is a natural assumption for the true 

ROC curve. Here, based on the two previous sections, we consider two versions of this 

estimate: The kernel based BC ROC estimate (Kernel(BC)), and the kernel based GG ROC 

estimate where imputation is based on the GG model (Kernel(GG)). For the former, we first 

transform the data based on the maximum likelihood parameter estimates, and then 

imputation is done based on the obtained truncated normal distributions.

6. Spline Based ROC

Here we explore a spline based technique that is based on estimating the underlying survival 

functions of the healthy and the diseased, namely S0(t) and S1(t). We extend a monotone 

spline initially presented in [29]. Consider the K knots placed at τ1 < … < τK and let the 

natural spline for the cumulative hazard which can be written as

(9)

(10)

The above model has the following appealing properties: (i) It is linearly extrapolated 

beyond the last knot τK, (ii) It equals to zero before the first knot τ1, (iii) It is a smooth 

function since its first two derivatives are continuous. The number of parameters of interest 

θ1, θ2,…, θk, is K − 2 since the last two parameters are functions of all previous.

We attempt the fit of the above model to the cumulative hazard nonparametric step estimate. 

For that reason, monotonicity conditions must be imposed since the cumulative hazard is a 

non decreasing function. There is an implied region of monotonicity which is non-linear (see 

[29]). We employ an optimal polygon strategy to approximate linearly the nonlinear 

monotonocity region so that the minimization problem reduces to a least squares one with 

linear restrictions on the parameters (see [29]). We propose the use of six knots and 

regarding the knot placement we consider the following strategy: We derive the following 10 

percentiles derived by the fully observed data: 0, 2.5th, 5th, 10th, 20th, 40th, 50th, 60th, 

80th, and 100th. There are 10!/(6!4!) = 210 possible combinations, and thus 210 possible 

knot schemes. In a given application all 210 knot schemes are explored by fitting model (9) 

to the non-parametric maximum likelihood based cumulative hazard function. Finally, the 

knot scheme that results to the smallest distance from the corners of the step cumulative 
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hazard function is the one chosen. That is, the knot scheme selection is based on the 

objective function for minimization:

(11)

where θ̂0 is the estimated parameter vector of the spline related to the control group, Y0i is 

the score of the i-th individual of the control group and Δ0i refers to the censoring status of 

that individual (taking the value of 0 for an exactly observed score and the value of 1 for a 

right censored score), Ĥ0 is the fitted model (related to the control group) defined in (9) 

under the appropriate constraints of monotonicity, and  is the Kaplan Meier based 

cumulative hazard estimator obtained by the biomarker data of the control group. The 

notation for the diseased group is similar. In the case of doubly censored data the above 

criterion is defined through Turnbull's non parametric cumulative hazard function estimate:

(12)

where  is Turnbull's estimate for H0. Notation is similar for the diseased group. 

Resampling methods are feasible for inference. The proposed spline based ROC estimate is 

given by  where Ŝi(t) = exp(−Ĥi(t)), i = 0, 1 and Ĥ0(t) and Ĥ1(t) are the 

spline based cumulative hazard estimates for the healthy and the diseased whose forms are 

given by (9). We note here that the placement of the first knot in the case of doubly censored 

data can be derived with the help of the box-cox transformation and the first percentile of the 

underlying density estimate. Namely, for a given data set, we apply the box-cox 

transformation, estimate the first percentile of the implied truncated normal as discussed in 

section (3), and then back-transform on the original scale. This is done because the 

cumulative hazard is naturally assumed to be zero before the first knot. A simulated example 

that includes all methods discussed is given in Figure 1. In that figure we visualize how for a 

simulated example that is generated from two normal distributions, all methods approximate 

better the true underlying ROC curve compared to the Naive Empirical.

7. Simulations

To evaluate our approaches we conduct simulation studies for 105 different scenarios and 

use comparisons based on different ranges of the underlying integrated squared errors. The 

scenarios that generate the data depend on sample size, direction of censoring, level of 

censoring, AUC, and the true underlying model. We consider sample sizes fo (n0, n1) = (100, 

100), (200, 200), and (500, 500). We generate data based on normal, gamma, and lognormal 

distributions with parameters set to achieve true values of the AUC equal to 0.7 and 0.8. All 

underlying true parameters for all scenarios are given in Table 1 of the Web Appendix (WA). 
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Note that we consider scenarios that lie in the Box-Cox family as well as out of the Box-Cox 

(e.g. gammas). The levels of censoring we consider are 30% and 50% caused by a lower 

LOD, an upper LOD or both. The criterion on which we base our evaluation is the relative 

integrated squared error for different FPR ranges, namely 

. We consider exploring this criterion to 

intervals (a – b) = (0 – 0.2), (0 – 0.4), (0.6 – 1), (0.8 – 1) and the total (0 – 1). The value of 

our methods will be revealed in those cases that this criterion is > 1 and we are particularly 

interested in those areas where the tail of the true ROC is not supported by fully observed 

data. Namely, for lower LOD we do not fully observe the upper part of the ROC that 

corresponds to a high FPR (or equivalently high TPR range). Conversely, when an upper 

LOD is considered, particular interest in terms of performance lies in the part of the ROC 
estimate that corresponds to a range of low FPRs.

For the parametric approaches (see Tables 2 and 3(WA)) we observe the following: The BC 

approach appears to outperform the empirical naive estimate by far in all cases of the normal 

scenarios. For example, for the scenario of AUC = 0.8 and 50% censoring due to a lower 

LOD it provides rISE0–0.2 = 3.1032, namely over three times smaller ISE. We observe that 

as we increase the sample size the gain is greater: (n0, n1) = (200, 200), and (500, 500) the 

rISE0–0.2 equals to 5.6420 and 14.4367 respectively. The results of the lognormal related 

scenarios are equally impressive. The reason is that both the normal and the lognormal 

models are in the family of the Box-Cox. However, the BC approach demonstrates 

satisfactory robustness. For the gamma related scenarios we observe for AUC = 0.7, and 0.8 

with 50% censoring due to an upper LOD rISE0–0.2 = 4.1410 and 13.7343 respectively. As 

we increase the sample size, we outperform the naive empirical in almost all cases. The GG 

model seems to not provide so impressive results especially for smaller sample sizes. It 

seems, however, to outperfrom the naive empirical for larger sample sizes. For example it 

provides rISE0–0.2 = 8.9095 for a lognormal related scenario with an upper LOD causes 50% 

censoring when AUC = 0.8. For the same scenario and a lower LOD it yields rISE0.8–1 = 

1.5484. The GG is a very flexible parametric model that contains as special cases the 

Weibull, the Lognormal, the Gamma, the log-logistic, the logistic, and the so called ‘ammag’ 

among other not so common parametric models as well (for a detailed discussion on this 

aspect see [21]). Due to its flexibility it seems that it requires a larger sample size to 

outperform the BC, which is also quite robust, but does not capture all these models 

theoretically within its family. In finite sample sizes, the BC seems to work well even for 

distributions like gamma which are out of the Box-Cox family. This is also stressed in [10]. 

However, as the sample size increases and of course asymptotically, being within the gamma 

family is in favor of the Generalized Gamma model. This is also verified by a large sample 

simulation we ran for n = (5000, 5000) where the GG outperforms the BC throughout. This 

result justifies the theoretical asymptotic expectation that as the sample size increases the 

GG will eventually outperform the BC when we lie within the GG family and outside the 

BC family. However, such huge sample sizes are not realistic in the early stage of biomarker 

discovery.
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For the kernel based approach (see Table 4(WA)) we observe that when used in combination 

with the BC (Kernel(BC)), it performs nicely in all scenarios, outperforming the Naive 

empirical in nearly all cases. For larger sample sizes we achieve up to 27 times smaller 

rISE0–0.2. The results of the Kernel(GG) approach are inconclusive for smaller sample sizes 

(see Table 5(WA)). For (n0, n1) = (500, 500) it seems to attain descent results in many cases, 

outperforming the Naive in the regions of interest as well as in terms of total rISE (rISE0–1). 

Conclusions for the spline based approach are similar (see Table 6(WA)). We note, however, 

results for AUC = 0.8 are better compared to those that refer to AUC = 0.7. The explanation 

for that is the curvature of the underlying ROC curve. For poor biomarkers, it is a fact that 

the ROC near its tails is almost linear, hence the Naive empirical provides a computationally 

very effective approach for such cases. We additionally explore cases for which AUC = 0.6 

and AUC = 0.9 that support this argument (see Tables 7-9(WA)).

In summary, the BC and the Kernel(BC) approaches perform nicely in all explored cases 

outperforming the Naive empirical. They provide satisfactory level of coverage for the 

underlying bootstrap based confidence intervals for the RÔC(t), while the Naive Empirical 

dramatically fails in that aspect yielding coverage close to 0 (see Table 10(WA)). The 

Kernel(BC) based approach is considered as a more robust alternative compared to the BC. 

The GG, Kernel(GG), and the spline approach should be used only in cases of very large 

sample sizes, and still they do not attain such a good performance compared to the BC and 

Kernel(BC). To further illustrate that we considered an additional simulation study for which 

the diseased group is generated from a bimodal normal mixture density. The results are 

given in Table 12 of the Web Appendix. In this scenario we observe that the BC under-

performs as it fails to capture satisfactorily the true underlying density which is now 

bimodal. However, the Kernel(BC) as being more robust by construction is outperforms the 

Naive empirical in terms of rISE(0–1) in all scenarios. The spline seems to generally be 

unstable and does not perform well in cases where the true AUC is not close to 0.8. The 

efficiency of all approaches depends heavily on the underlying curvature of that portion of 

the ROC curve that is undetected. In cases where the biomarkers under study have poor 

performance then the true ROC curve tends to be linear in the tails. Hence, for such cases the 

Naive empirical might have an advantage but these cases are unidentifiable in practice. We 

present an additional simulation for AUC = 0.6 for the normal related scenario for that 

purpose (see Tables 7-9 (WA)) in which we explore settings with AUC = 0.6 and AUC = 0.9. 

For the AUC = 0.9 the Box-Cox and the Kernel(BC) still perform nicely. It is a fact that 

below the lower LOD and above the upper LOD one deals with a ‘black box’ situation and 

caution is needed, since this is not a simple setting or random censoring out of which the 

pattern of the two underlying densities can be easily revealed. We observe that the Box-Cox 

based approaches tackle the problem nicely by extracting all information under its robust 

assumption, attempting to approximate the hidden tails. The notion of imputation under the 

same assumption is used for the Kernel(BC) which can be considered as a hybrid approach 

since it only uses the BC assumption to impute the censored data that only refer to the 

underlying tails of the corresponding densities.

As concluding remarks we provide the following guidance: (1) if the BC approach can be 

justified by the data at hand then it should preferred over all other explored approaches. (2) 

The spline based (HCNS) approach is not to be preferred over the other proposed 
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approaches. It performs better than the Naive empirical when the sample size is large and the 

curvature allows it (around AUC=0.8). (3) When the available sample size is very large and 

the GG assumption can be justified by the data at hand then we propose the GG. Based on a 

large sample simulation (not presented here for brevity) for the gamma related scenario, 

where n = (5000, 5000), the GG outperforms the BC as expected. Such large sample sizes, 

however, are unrealistic in the early stage of biomarker discovery. (4) For any sample size, in 

case the BC assumption is not justified by the data at hand we propose the Kernel(BC) 

which performs satisfactorily in all cases illustrating robustness. The Kernel(BC) is the most 

robust alternative to the fully parametric BC method and is to be preferred when certain 

parametric assumptions cannot be justified by the data at hand.

8. Applications

We employ our methods by using two examples that motivated our study. First, we use CEA 

measurements from a case-control validation study presented in Taguchi and others (2015). 

The purpose of the study is to determine the performance of biomarker MARPE1 in the 

presence of other biomarkers such as CEA in detecting early colorectal cancer and colon 

adenoma. Plasma samples are used from 60 patients with adenomas, 30 patients with early 

colorectal cancer, 30 with advanced colorectal cancer, and 60 individuals participating as 

controls. CEA plasma levels were measured based on ELISA. Here we focus on the 

performance of CEA in discriminating between subjects with either early or advanced 

colorectal cancer (n0 = 60) from controls (n1 = 60). The lower LOD as induced by the 

ELISA assay results in 66.67% left censoring. The empirical Naive AUC estimate is 0.6561 

(see Figure 2). We illustrate the BC (AUC=0.7016), the Kernel-BC (AUC=0.6861), as well 

as the spline method (AUC=0.7440) since the generalized gamma did not converge for this 

data set. The LOD affects the Naive empirical for FPR > 0.2. We observe that all approaches 

yield a higher ROC(t) for t ∈ (0.2, 1) compared to the empirical naive. For the underlying 

AUC, we obtain 95% percentile bootstrap based confidence intervals see Table 1. We also 

focus on specific TPR values: 0.7, 0.8, and 0.9. For the sensitivity levels we calculate 95% 

confidence intervals for the associated FPRs (see Table 1). We observe that the confidence 

intervals obtained by the naive approach are narrower as expected since variability is 

reduced due to the linear part that is always used for estimation in that FPR range in all 

bootstrap samples. Narrow confidence intervals are indicative of the bias induced by the 

Naive empirical approach. The BC and Kernel(BC) yield fairly similar results. The spline 

based approach yields somewhat lower FPRs at the explored TPR values but with less 

certainty since all corresponding condidence intervals are wider. This is the price we pay for 

not making any parametric assumption at no stage. For this example we recommend the 

estimates obtained by the BC and Kernel(BC) since simulations have shown better 

performance of these approaches for scenarios related to AUCs approximately equal to 0.7. 

Based on the results for TPR=0.8 and 0.9 we observe that the point estimates of the Naive 

Empirical (0.7 and 0.85 respectively) barely make it to lie within the 95% confidence 

intervals as obtained by the BC and the kern(BC) method ([0.358-0.720] and [0.382, 0.738] 

respectively), giving evidence that conclusions based on the Naive approach might be 

deceiving.
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As a second example we consider CA19.9 measurements from a study conducted at the MD 

Anderson Cancer Center ([30]). Plasma samples were obtained from the University of 

Michigan Comprehensive Cancer Center, the University of California San Francisco, the 

University of Utah School of Medicine and the University of Texas MD Anderson Cancer 

Center. The purpose of the study is the evaluation of candidate protein based biomarkers for 

the diagnosis of early stage pancreatic cancer. We focus only on the CA19-9 marker for 

which a lower LOD yields approximately 15% left censoring. Since in this example only a 

small portion of the empirical ROC estimate is affected by the lower LOD, we use it as 

illustration by artificially censoring more measurements and hence observe how our methods 

would have captured the empirical ROC based on all observed data, which is expected to be 

closer to the true and uknown ROC curve. We impose an upper LOD that along with the 

original lower LOD yields a total of 55% censoring (see Figure 2b). For this example we 

focus on very low FPR values (=0.01, 0.02, 0.04, 0.05, 0.10) and provide point estimates for 

the corresponding sensitivity as well as percentile bootstrap based 95% confidence intervals 

for all approaches. Results are given in Table 1. For this example, we have the luxury of a 

‘substitute’ for the truth, and we are able to compare how all approaches perform at these 

low FPR values. We can observe how our approaches capture the empirical based ROC 

curve that uses all data as compared to the naive empirical. This is nicely visualized in 

Figure 2b. The fact that the Naive empirical approach can be misleading is evident in this 

example. For FPR=0.01, 0.02, and 0.05 we observe that the sensitivity point estimates, as are 

provided by the Naive empirical, fail to lie within the 95% confidence intervals of all 

methods, including the ‘full’ empirical which takes into account all available data. We 

observe that the point estimates of the Box-Cox and the Kernel(BC) approach are fairly 

close to the ‘full’ empirical that takes into account all available data. For example, the 

Kernel(BC) approach yields TP̂R = 0.554, 0.613, and 0.633 for FPR=0.02, 0.04, and 0.05 

respectively. The corresponding sensitivity estimates based on the ‘full’ empirical are 0.593, 

0.686, and 0.721, while for the Naive empirical we get 0.182, 0.364, and 0.455 respectively. 

Conclusions are similar for the confidence intervals as well. There is an impressive overlap 

of the CIs obtained by our approaches with those obtained by the ‘full’ empirical, as 

opposed to those that are obtained by the Naive empirical. Regarding the GG method we 

observe that is very close to the ‘full’ empirical for FPR=0.05, 0.05 and 0.10 yielding TP ̂R = 

0.686, 0.721, 0.756 that are fairly similar to the TPR estimates provided by the ‘full’ 

empirical: 0.686, 0.7210, and 0.756 respectively. The similarity is also epressed in terms of 

overlap of the corresponding 95% CIs. However, it seems that for even lower FPR values: 

FPR = 0.01 and 0.02 the GG has some discrepancies compared to the full empirical, a 

disadvantage that is not expressed by the kernelBC which generally performs better as 

shown in our simulation studies.

9. Discussion

Cancer screening is commonly based on biomarkers related to technology that includes gene 

expression profiles based on microarrays and protein expression profiles based on mass 

spectroscopy (see [1]). During a research based assay (Phase I of biomarker development) 

such technological resources might be limited due to technical reasons and as a result limits 

of detection might be present. Improper evaluation techniques at this stage might yield 
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deceiving results against a promising biomarker. As a consequence, a potentially good 

biomarker might fail to pass the criteria of Phase I, since a clinical assay might be a very 

expensive step to undertake. When LODs are present, one has to take into account the 

censored nature of the data during the estimation of the underlying ROC. In the case of a 

lower LOD, dL, many researchers refer to the replacement value technique that involves 

imputing all scores to a value less than dL, typically dL/2 or dL/√2 (see [11] for a discussion). 

However, if one is based on these imputed scores to construct the empirical ROC curve, then 

the resulting empirical estimate remains unchanged regardless the actual replacement value 

used. We show that the naive empirical approach is biased both in terms of AUC and in 

ROC(t) for any pair of replacement values chosen. Even if one aims to build a parametric 

ROC curve based on some assumptions justified by the data, the rational of such an 

imputation technique is vague, and in that case building the underlying likelihood by taking 

into account the censored nature of the data is more appropriate. Furthermore, such an 

approach is inapplicable when the data lie on the real line, which often can be the case. This 

is due to transformations such as the log, that are typically employed in such settings, and 

project intrinsically positive scores on the real line. In addition, even if the scores are 

actually positive, an upper LOD is not bounded by an upper bound so as to justify any kind 

of replacement value.

We investigate flexible parametric, power transformations, as well as spline based 

techniques. More specifically, we explore the generalized gamma distribution which is an 

umbrella for many known distributions typically used in the ROC framework. The nature of 

censoring, however, is not random. Random censoring would allow at least some fully 

observed measurements to be available in the tails of the distributions of the healthy and the 

diseased. Under the investigated setting, all censored data pile up at the point of the LOD, 

resulting in a black box as far as the corresponding tails of the underlying densities 

concerns. An approach that deals nicely with this problem, is the proposed Box-Cox 

approach. The rational behind it is that it manages to transform the scores of the healthy and 

the diseased to exhibit an approximate known distribution. Hence, we attain some 

information regarding the tails of the underlying transformed densities, and thus construct 

the Box-Cox based ROC. One may argue that the Box-Cox assumption cannot be justified 

by the data at hand. For that purpose we also investigate a hybrid approach, that involves 

both the Box-Cox and kernel smoothers to non-parametrically estimate the fully observed 

measurements, and to only rely on the Box-Cox transformation to impute the censored data 

that lie on the tails of the underlying densities. Both approaches yield nice results and 

outperform the naive empirical approach throughout. An additional spline based approach is 

also explored. The latter does not make any distributional assumptions for the data and 

attempts to extrapolate the cumulative hazard of the measurements of the healthy and the 

diseased. The price to pay is that it is less efficient that the Box-Cox and the Kernel(BC) 

approach. Our simulation studies indicate that the Box-Cox based approaches are to be 

preferred over the others. We note also that the naive empirical might offer a nice robust and 

computationally simple strategy to deal with settings where very poor or very accurate 

biomarkers are under study. The reason is that the tails of the underlying true ROC are 

almost linear in those cases.
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Once the ROC estimate is obtained any subsequent measures such as the AUC, the 

maximized Youden index or its associated cutoff point can also be straightforwardly derived. 

We stress that our approaches are mainly focused on the early stage of biomarker discovery 

in which it is usual that resources are an issue and hence technological limitations might 

impose limits of detection. At this early stage we attempt to explore the potential usefulness 

of a given biomarker so that further exploration can be suggested which would imply 

spending more resources in specific technologies in order to alleviate any similar limitations 

at subsequent stages of a biomarker study and thus be able to derive the ROC at the full 

spectrum of the FPR values. Estimation and inference with respect to other measures such as 

an optimal cut-off based on some criterion, is not generally appropriate at this early stage. 

Under a limit of detection framework such an optimal cutoff might lie at the undetected 

region of FPRs. Therefore, estimation of such a crucial index that might be used for clinical 

decision making should not be based on extrapolation of any kind and should generally be 

avoided under the studied framework.

Our proposed approaches, as shown in the simulation studies, clearly outperform the Naive 

empirical method which under some assumptions that are stated in our proposition is 

negatively biased. Thus, our approaches can provide the methodology framework to reveal 

potential markers that otherwise might have been ‘killed’ in the early discovery stage due to 

the Naive empirical estimate. As a referee pointed out, the followed methodology is 

appropriate only in the search and evaluation of biomarker potential. Use of our approaches 

is not recommended when interest lies in the actual discriminatory ability of the markers, or 

when interest lies in comparing the actual discriminatory capacity of two biomarkers. Our 

approaches are extremely useful in providing the biomarker potential, based on which 

subsequent decision making regarding the improvement of technology can follow. Once the 

actual measurements are technically possible, then the aforementioned issues of the actual 

accuracy of the biomarkers can be appropriately addressed. Without the proposed methods, 

useful biomarkers might have been totally missed and discarded as uninformative due to the 

Naive empirical method that most practitioners follow.
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Figure 1. 
Simulated data set of two normal distributions generated to attain true AUC=0.8 and 

expected level of censoring 50% due to a lower LOD. Left panel: Box-Cox (BC) and 

kernel(BC) based ROCs along with the true and the naive empirical. Right panel: 

Generalized gamma (GG), kernel(GG), and spline based ROCs along with the true and the 

naive empirical.
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Figure 2. 
Figure (2a): ROC curves for CEA that refers to colon cancer. AUCs for the Box-Cox, 

Kernel(BC), HCNS (spline) and naive empirical are 0.699, 0.686, 0.744 and 0.6566 

respectively. Figure (2b): ROC curves for CA19-9 that refers to pancreatic cancer. AUCs for 

the Box-Cox, Kernel(BC), GG, kernel(GG), spline and naive empirical are 0.8577, 0.8474, 

0.8657, 0.8569, 0.8627, 0.8428. The corresponding AUC for the empirical when using all 

available data is 0.8651. We note that even though it seems so, the GG based ROC estimate 

does not exhibit a step on the right panel. It simply has a very steep curvature close to TPR = 

0.7.
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