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Abstract

Objectives—The aim of the study was to propose and demonstrate an approach to allow 

additional nonsampling uncertainty about HIV prevalence measured at antenatal clinic sentinel 

surveillance (ANC-SS) in model-based inferences about trends in HIV incidence and prevalence.

Design—Mathematical model fitted to surveillance data with Bayesian inference.

Methods—We introduce a variance inflation parameter  that accounts for the uncertainty of 

nonsampling errors in ANC-SS prevalence. It is additive to the sampling error variance. Three 

approaches are tested for estimating  using ANC-SS and household survey data from 40 

subnational regions in nine countries in sub-Saharan, as defined in UNAIDS 2016 estimates. 

Methods were compared using in-sample fit and out-of-sample prediction of ANC-SS data, fit to 

household survey prevalence data, and the computational implications.

Results—Introducing the additional variance parameter  increased the error variance around 

ANC-SS prevalence observations by a median of 2.7 times (interquartile range 1.9–3.8). Using 

only sampling error in ANC-SS prevalence ( ), coverage of 95% prediction intervals was 

69% in out-of-sample prediction tests. This increased to 90% after introducing the additional 

variance parameter . The revised probabilistic model improved model fit to household survey 

prevalence and increased epidemic uncertainty intervals most during the early epidemic period 

before 2005. Estimating  did not increase the computational cost of model fitting.

Conclusions: We recommend estimating nonsampling error in ANC-SS as an additional 

parameter in Bayesian inference using the Estimation and Projection Package model. This 

approach may prove useful for incorporating other data sources such as routine prevalence from 

Prevention of mother-to-child transmission testing into future epidemic estimates.
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Background

The primary data for estimating HIV epidemic trends in sub-Saharan Africa are sentinel 

surveillance of HIV prevalence among pregnant women attending antenatal clinics (ANC). 

Since the early 1990s, HIV prevalence was measured among women attending a selection of 

ANC sentinel sites every 1–3 years, furnishing a time series of HIV prevalence observations 

in each clinic. Additional clinics have been added over time. Estimates of HIV prevalence 

and incidence trends are created by statistically fitting the Estimation and Projection 

Package (EPP) model [1,2], a simple ‘susceptible–infected’ HIV epidemic model, to ANC 

sentinel surveillance (ANC-SS) prevalence and prevalence from nationally representative 

household surveys in a Bayesian framework. A linear mixed-effects model is used to 

account for the potentially unbalanced repeated observations at the same sites when inferring 

a population prevalence trend from ANC-SS [3]. One assumption underpinning this 

estimation is the discrepancies between the model predictions, and the observed ANC-SS 

prevalence is explained by the random sampling error expected based on the sample sizes in 

each clinic [3].

In practice, we observe greater variation in year-to-year prevalence in time series from 

individual clinics than would be expected from random sampling error alone, given the 

sample sizes in each clinic. For example, Brown [5] noted that the in-sample coverage of 

clinic-level 95% prediction intervals is on average around only 88% (instead of the 

theoretical 95%). A number of factors could potentially contribute to the underestimation of 

the uncertainty, such as uncertain sampling procedures or changes in sampling procedures; 

changes in inclusion criteria for women attending participating facilities; poor quality 

control in laboratories, contamination, or changes in diagnostic tests over time; or 

heterogeneous variation in local epidemic trends not captured by the site-level random-

effects intercepts.

Although national survey prevalence is included in the likelihood for fitting the model, in 

settings with large numbers of ANC sites and frequent sentinel surveys, ANC prevalence 

data tend to overwhelm the higher-quality national survey data, resulting in epidemic trends 

that can be inconsistent with national surveys. At present, there is a transition from using 

sentinel surveillance of HIV prevalence among a fixed number of pregnant women at a 

selection of ANC sites to utilizing prevalence estimated via routine HIV testing of all 

pregnant women attending ANC. For these data, the sampling variation of the observed 

prevalence is negligible due to the large sample sizes, but the nonsampling error may be 

expected to be even larger than for sentinel surveys [4].

In this study, we propose an additional variance parameter to allow nonsampling error in 

ANC prevalence observations, compare different methods for estimating the additional 
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parameter, and examine the implications of this for estimates of HIV prevalence and 

incidence from the EPP model.

Methods

Estimation and Projection Package model

Estimation and Projection Package model is a simple susceptible-infected epidemic model 

that is used to infer internally consistent estimates of adult HIV prevalence and incidence 

trends from ANC-SS prevalence and household survey prevalence. The model stratifies the 

adult (age 15–49 years old) population according to susceptible individuals, CD4+ stage of 

infection, and the antiretroviral therapy (ART) population.

Further details of the EPP model are available from Brown et al. [2]. EPP implements two 

flexible models for the transmission rate r(t). The ‘r-trend’ model is a flexible seven-

parameter model [5], and the ‘r-spline’ model uses penalized B-splines with seven knots, a 

smoothing penalty, and initial seed incidence rate (nine parameters total) [6]. In the EPP 

software, the r-spline model implements an equilibrium prior assumption for r(t) after the 

end of the data [7]. In this analysis, we examine the r-spline model both with and without the 

equilibrium prior assumption.

Incorporating nonsampling error

The likelihood function currently used for fitting the EPP model to ANC-SS data assumes 

that all uncertainty about ANC prevalence γst for a clinic s in year t is captured by the 

binomial sampling variation associated with the sample size Nst, that is, the number of HIV-

positive women Yst ~ Binomial (Nst,γst). Repeated observations at the same clinics over 

time are accounted for via a hierarchical linear model. The observed prevalence at clinic s in 

year t is modeled on probit scale [3]. Following notation of Alkema, Raftery, and Clark, 

define , (where Φ−1 is the inverse of the normal cumulative distribution 

function), and the model is

where ρt is the prevalence in year t predicted by the model, αANC is the systematic bias 

between prevalence among the ANC population compared to the general population, bs is a 

site-level random effect, and ∈st is the residual error. The variance of ∈st is approximated by:
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where  is substituted for the true prevalence γst in the delta method 

approximation to var(Wst). As the sample size Nst increases, the variance of prevalence at 

the probit scale declines to zero at the rate of 1/Nst.

To allow additional nonsampling error in observed ANC prevalence, we propose adding an 

additional variance term  to inflate the variance associated with clinic-level ANC 

prevalence observations. The residual variance becomes

The above approach maintains the relationship that uncertainty about ANC prevalence 

observations is related in magnitude to the expected binomial sample error, but allows 

additional variance in ANC prevalence observations as suggested by the data.

The additional variance could be global, with a single value fixed or estimated across 

countries and regions, or different values could be chosen for each setting. Consistent with 

the paradigm for application of the EPP model, we estimate  independently for each 

subnational region to which EPP is applied.

Estimating 

We consider the following three different approaches for estimating :

1. The simplest implementation applies a linear regression model to the residuals 

obtained from the original EPP model. It leads to a priori estimation of , 

which is then a fixed input parameter for the model fitting process,

2. Johnson et al. [8] and Ševčíková et al. [9] propose substituting an unbiased 

sample variance estimator for  in the likelihood calculation, or

3. The full Bayesian approach estimates the joint posterior distribution of  and 

other unknown parameters simultaneously.

For (1), we fit a linear regression to the probit-transformed observed ANC prevalences Wst 

with dummy indicator variables for each clinic s and time t, analogous to the hierarchical 

ANC likelihood, but with fixed effects for each clinic and year. Assume the residuals of 

transformed ANC prevalence are independent and identically distributed with an equal 

variance σ2, and let σ̂2 be its maximum likelihood estimate (MLE). We estimate the excess 

variance by subtracting the expected sampling variation v̂st:
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The estimate may underestimate the true  since the survey year fixed effects are 

completely independent, potentially allowing greater year-to-year change in prevalence 

rather than being constrained by the epidemiologic model. If the estimate , we set 

.

Second, Johnson et al. [8] and Ševčíková et al. [9] propose substituting an MLE conditional 

on the model output to approximate an unknown variance in the likelihood calculation. For 

(2), let ρt(θ) be the predicted prevalence among pregnant women for a vector of input 

parameters θ. The clinic level random effect bs is approximated by

where T_s is the number of observations for site s, and γ̂st = Φ−1(ρt(θ)) + αANC + b̂s the 

model predicted transformed prevalence for clinic s at time t. In the likelihood calculation 

we substitute

We subtract the number of sites S in the denominator to account for the lost degrees of 

freedom for calculating b̂s at each site.

Finally, approach (3) is to explicitly estimate  as an additional parameter in Bayesian 

inference. We used an exponential prior distribution with rate v0=0.015−1, informed by the 

regression analysis for approach (1). We test the sensitivity to the prior using more diffuse 

priors with rate v0∈{0.1−1,1}.

Analysis

Data were taken from national estimates country files provided by UNAIDS for the 2016 

UNAIDS estimates. We used data from nine countries in southern and eastern Africa with 

two or more prevalence estimates from household-based surveys: Botswana, Kenya, 

Lesotho, Malawi, Tanzania, Uganda, South Africa, Zambia, and Zimbabwe. For Botswana, 

Lesotho, Tanzania, Uganda, and Zambia models were fit separately to data from urban and 

rural regions. Data from Malawi were stratified by region (northern/central/southern), Kenya 

by eight former provinces, and South Africa and Zimbabwe by province (9 and 10, 

respectively), for a total of 40 subnational regions as defined for the 2016 UNAIDS 

estimates.

Each of the three approaches for incorporating  are implemented for the EPP r-trend 

model [5], the EPP r-spline model [7], and the EPP r-spline model without the equilibrium 
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prior. Outcomes are compared to results without additional variance for the ANC prevalence 

( ).

Parameter estimation is conducted via Incremental Mixture Importance Sampling (IMIS) 

[10] with B0=100 000 initial samples and B=10 000 samples per iteration. R code for 

reproducing the analyes is available from https://github.com/jeffeaton/anc-over-dispersion.

Model outputs compared are HIV prevalence, HIV incidence, and the transmission rate r(t) 
for the age 15–49 population represented by EPP.

Model selection and validation

We compare the model performance using a number of metrics: such as the coverage of the 

predictive interval, the log-posterior predictive density (LPPD) [11], the computing cost, and 

coefficient of variation at different time points. We obtain the posterior predictive 

distribution for each ANC observation and calculate the coverage of 95%predictive intervals 

(in-sample fit).We also conduct an out-of-sample validation by fitting the model to 90% of 

the ANC observations as a training dataset while ensuring at least one observation is 

retained for each ANC site, and withholding the remaining 10% as a test dataset. Fifty 

training/test splits are created randomly for each dataset and the coverages of the 

95%predictive intervals are calculated by using the observations from test datasets. Second, 

we evaluate the effect of including  for model fit to household survey HIV prevalence 

by calculating the LPPD, a measure of model accuracy in Bayesian framework [11]. The 

computational implications of incorporating  were assessed by comparing the median 

number and interquartile range (IQR) of iterations for convergence of the IMIS algorithm. 

Finally, we summarize the overall uncertainty about the epidemic by calculating the 

coefficient of variation for estimated HIV prevalence and HIV incidence at different time 

points in the epidemic.

Results

Derivation of prior

The first estimation approach does not require refitting the EPP models to the surveillance 

data, and provides a reasonable initial approximation to the value of the additional variance 

parameter. Following that approach, regression-based estimates of  for the 40 datasets 

considered range from 0 to 0.030, with mean of 0.007 and median 0.003. Based on this, we 

propose an exponential distribution with rate 0.015−1 as an informative prior distribution for 

the full Bayesian approach. This distribution has a median of 0.01 and 90% of the mass less 

than 0.035.

Estimates for 

Table 1 summarizes the estimates of  by different approaches for the 40 datasets, and 

the left panels of Fig. 1 shows the posterior density estimates for the three estimation 

approaches. Estimates for all sites are shown in supplementary figures (http://
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links.lww.com/QAD/B45). For each estimation approach, estimated values for  were 

similar across the three EPP model variants r-trend, r-spline with equilibrium prior, and r-

spline without equilibrium prior. The first estimation approach based on regression output 

yielded smaller values (median 0.003, IQR 0.0–0.007) than the two alternatives, suggesting 

that the regression estimator underestimated the extra variance. The point estimates between 

the unbiased variance estimator and the full Bayesian estimator were highly correlated 

across the 40 datasets (correlation=0.91).

By comparison, the mean value for v̂st in each dataset, the transformed sampling variance 

around observed ANC prevalence, has a median of 0.008 (IQR 0.006–0.014). Estimating 

 with the r-spline model increased the error variance about ANC prevalence by 2.7 

times (IQR 1.9–3.8), measured by ( ).

Analysis of variance (ANOVA) shows that estimates of  for regions within the same 

country were more similar than values of  between countries (P<0.001), with country 

explaining 56% of the variation in the log of the mean value of . The number of regions 

into which a country was stratified, urban versus rural location, the number of sentinel sites, 

and the median number of observations per site were not associated with the estimated value 

of .

Comparing model fit

To choose a recommended approach, we compared the approaches in terms of how well they 

fit the ANC data in in-sample comparisons, out-of-sample prediction, fit to household 

survey prevalence data, and the computational implications (Table 2). Fitting the r-trend 

model, with sampling variance only ( ) the average coverage of 95% prediction 

intervals was 78%. With the fixed regression estimator, this increased to 86%, and 

substituting the unbiased variance estimator or explicitly estimating  in the Bayesian 

model achieved very close to the theoretical 95% coverage. In out-of-sample prediction, 

when , the coverage was 69%. This increased to 90 and 89%, respectively, when 

using the unbiased variance estimator or jointly estimating . Similar coverage results 

were observed for r-spline models with and without equilibrium prior.

Incorporating  improved the fit to household survey prevalence data, measured by the 

log posterior predictive density (LPPD). This is expected because the effect of additional 

variance for ANC data is to give relatively less weight to ANC data in the likelihood, and 

hence more weight to household survey prevalence.

Finally, we used the number of iterations of the IMIS algorithm, which scales with the 

number of likelihood evaluations required, as a proxy for the computational implications of 

the candidate approaches for incorporating . The bottom rows of Table 2 show the 

median number of IMIS iterations required for convergence across 50 fits for the 40 regions 

in out-of-sample prediction simulations, and the width of the IQR as a measure of the 
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variability in model fitting. The median number of iterations was twice as many for the r-

spline model than the r-trend model (55 for r-spline, 56 without the equilibrium prior, 27 for 

r-trend). None of the approaches systematically affected the number of iterations required 

for convergence, including explicit estimation of an additional model parameter. They also 

did not increase the variation in number of iterations for model fitting.

Implications for HIV estimates

Figure 1 illustrates the trend for HIV prevalence (second column) and incidence (third 

column) estimated by the r-spline model without additional variance ( ; green lines) 

and when  is estimated as an additional parameter in Bayes (pink lines) for two EPP 

regions: Botswana Urban and Zimbabwe Manicaland. For Botswana Urban, the posterior 

mean of  was 0.007 [95% confidence interval (CI) 0.005–0.011], and estimates for 

incidence and prevalence were relatively similar with slightly greater epidemic uncertainty 

when allowing nonsampling error. In contrast, for Zimbabwe Manicaland, the estimates of 

 were larger (mean 0.036; 95% CI 0.019–0.060), and the inferred epidemic trend peaks 

and declines less rapidly and is more consistent with the prevalence trend observed in 

national household surveys. Uncertainty is much wider.

Allowing nonsampling error in ANC prevalence systematically increases the uncertainty 

about epidemic estimates (Table 3). The magnitude of the increase in uncertainty depends on 

the timing of the epidemic and the model choice. Using the r-trend model, the median 

increase in the coefficient of variation about prevalence was 1.49 times in 1990, 1.32 in 

1995, 1.25 in 2000, and 1.04 times in 2005. For the r-spline models the increase was slightly 

less: 1.40 times in 1990 declining to 1.03 times in 2005. The decline over time is because 

during the late 2000 period, the level and uncertainty is largely determined by household 

survey prevalence, whereas uncertainty about the course of the epidemic from ANC-SS data 

has a larger effect on the estimates before the survey availability.

Sensitivity to prior

Figure 2 presents the posterior mean for  using the informative prior with rate 

v0=0.015−1 (horizontal axis) compared to more diffuse priors with v0=0.1−1 (dots) and v0=1 

(triangles). At small values of  the estimates are very similar, whereas at larger values 

of  there is some evidence of attenuation using the informative prior. Results in Fig. 2 

are based the r-spline model, and are similar for the other model variants.

Discussion

Probabilistic uncertainty for HIV epidemic estimates was a major innovation for the 

robustness of HIV estimates and projections from HIV surveillance data [12]. The imperfect 

statistical fit of the statistical model for ANC-SS has noted previously [5], potentially giving 

too much weight to outliers and overemphasizing ANC-SS data relative to other data 

sources. In this study, we propose a method to account for additional variance and 

demonstrate that this improves the statistical fit to data from both ANC sentinel surveillance 
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and from national household-based prevalence surveys, which generally have more rigorous 

sampling.

We recommended estimating the additional variance  as an additional parameter in the 

full Bayesian inference because this captures the full uncertainty about the error variance 

without incurring additional computational cost. Although the number of parameters has 

increased, the added parameter flattens the sharp peaks in the likelihood, which are likely 

caused by underestimates of the residual variance of ANC-SS data. Estimating  as an 

additional parameter performed similarly to substituting an unbiased estimator for the 

variance in the likelihood calculation, an approach that has been used elsewhere [8,9]. That 

values of  were more similar for regions within the same country suggest that greater 

nonsampling error may reflect changes over time in the methodology or quality of the 

national sentinel surveillance systems.

Accounting for nonsampling error systematically and appropriately increases the uncertainty 

about HIV prevalence and incidence during early periods of the epidemic. This additional 

variance allows for greater uncertainty than would be expected relative to plausible epidemic 

trends represented by the EPP model. Some error could also be attributable to ‘model error’ 

if the model is not flexible enough to capture the true underlying epidemic patterns. This 

highlights a key challenge for further methodological enhancements to improve model-based 

HIV epidemic estimates: the need for model structure to constrain epidemiologically 

plausible estimates during the early epidemic period when HIV data were very sparse, but 

the desire for a suitably flexible model that is sensitive to recent changes in epidemic trends 

which are of greatest policy interest.

The additional uncertainty does not overcome other fundamental assumptions that underpin 

the interpretation of ANC-SS data for estimating population-wide epidemic trends, including 

potential selection biases arising from initial sentinel sites having been selected as a 

‘convenience sample’ [13], and the assumption that the epidemic trend is homogenous in all 

ANC sites. These may prove to be substantially greater sources of uncertainty than that 

discussed here. It also does not account for the true uncertainty about other model 

parameters which are currently treated as fixed in epidemic inference, such as disease 

progression and survival, mortality rates on ART, and the relationship between fertility and 

HIV [14,15]. Reflecting the uncertainty about these is expected to further increase 

probabilistic uncertainty intervals generated by the EPP model around incidence trends 

inferred from prevalence and is an area for future development.

In some datasets, different approaches to estimating  or different EPP model variants 

resulted in dramatically different and sometimes implausible epidemic patterns 

(supplementary figures, http://links.lww.com/QAD/B45). This highlights the extent to which 

multiple epidemic trends could be considered broadly consistent with available data, 

suggesting even expanded uncertainty intervals may understate the true uncertainty about the 

epidemic. In real applications of the EPP software to create country-level HIV estimates, 

users have the opportunity to specify prior constraints on HIV prevalence to exclude 

implausible epidemic curves in formal Bayesian Melding, but ideally these should be 
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specified a priori before doing any model fitting. Hierarchically sharing information between 

neighboring regions constitutes a systematic approach to enhance epidemiologically 

plausible estimates in regions where data are sparse [16].

Fully quantifying all sources of uncertainty about data becomes increasingly important as 

more data sources are incorporated into estimates and each must be given appropriate weight 

relative to others. Examples of other data sources which could enhance future estimates of 

HIV epidemic trends include routine test of pregnant women attending ANC, adult mortality 

data, phylodynamic data, HIV incidence assays, and biomarkers for antiretroviral drug 

usage. The approach proposed here may be naturally applicable to the inclusion of routine 

prevalence data from Prevention of mother-to-child transmission testing, where the sampling 

error may be negligible owing to very large sample sizes, but nonsampling error may be a 

much greater source of uncertainty because of unknowns about the sampling frame, 

completeness, reporting errors, and other factors related to the ‘routine’ nature of the data 

[4].

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Example of effect of accounting for nonsampling error in ANC-SS prevalence for 
Botswana Urban and Zimbabwe Manicaland regions

Left panels illustrate estimates for  by different approaches. Center panels show the 

effect on estimates of adult HIV prevalence when  is estimated in full Bayesian 

inference (pink) versus not included ( ; green). Right panels illustrate the estimated 

trend in HIV incidence. Shaded regions represent 95% credible intervals. Results for other 

approaches and regions are provided in Supplementary Appendix (http://

links.lww.com/QAD/B45). ANC-SS, antenatal clinic sentinel surveillance.
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Fig. 2. Sensitivity of estimates  to the prior distribution

Scatter plot illustrates the posterior mean estimate for  using the informative prior with 

rate v0=0.015−1 compared to the posterior mean with more diffuse priors (v0=0.1−1: circles; 

v0=1: triangles). Points represent estimates from the same dataset. Results are presented for 

the r-spline model.
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Table 1

Summary of estimates of  across the 40 datasets for the three approaches.

 estimator

Median Mean IQR Min/max

r-trend model

 Regression 0.003 0.007 (0.000, 0.007) (0.000, 0.030)

 Unbiased 0.016 0.023 (0.007, 0.030) (0.002, 0.080)

 Estimated 0.018 0.019 (0.007, 0.026) (0.001, 0.052)

r-spline model

 Regression 0.003 0.007 (0.000, 0.007) (0.000, 0.030)

 Unbiased 0.016 0.022 (0.006, 0.028) (0.001, 0.082)

 Estimated 0.017 0.019 (0.006, 0.026) (0.001, 0.053)

r-spline, no equilibrium prior

 Regression 0.003 0.007 (0.000, 0.007) (0.000, 0.030)

 Unbiased 0.015 0.021 (0.006, 0.027) (0.001, 0.066)

 Estimated 0.017 0.018 (0.006, 0.025) (0.001, 0.051)

Mean sampling error (v̂st) 0.008 0.011 (0.006, 0.014) (0.004, 0.030)

Relative increase 

2.664 2.982 (1.882, 3.809) (1.093, 6.876)

For comparison, the bottom two rows show the summary of the average sampling variance v̂st for each dataset, and the relative increase in the 

variance for ANC observations when estimating  in full Bayesian inference. IQR, interquartile range.
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