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Abstract

Although large, complex genomic data sets are increasingly easy to generate, and the number of 

publicly available data sets in cancer and other diseases is rapidly growing, the lack of intuitive, 

easy to use analysis tools has remained a barrier to the effective use of such data. WebMeV (http://

mev.tm4.org) is an open-source, web-based tool that gives users access to sophisticated tools for 

analysis of RNA-Seq and other data in an interface designed to democratize data access. WebMeV 

combines cloud-based technologies with a simple user interface to allow users to access large 

public data sets such as that from The Cancer Genome Atlas (TCGA) or to upload their own. The 

interface allows users to visualize data and to apply advanced data mining analysis methods to 

explore the data and draw biologically meaningful conclusions. We provide an overview of 

WebMeV and demonstrate two simple use cases that illustrate the value of putting data analysis in 

the hands of those looking to explore the underlying biology of the systems being studied.

Introduction

As the cost of sequencing has fallen, the number of large, publicly available genomic data 

sets has grown dramatically. Projects such as The Cancer Genome Atlas (TCGA) (1), the 

Genotype-Tissue Expression Project (GTEx) (2), and others have placed large, complex, 

multi-omic data into the public domain. These data sets provide unprecedented opportunities 

for users to perform complex analyses and re-analyses, to make new discoveries, to search 

for associations among genes and phenotypes, and to test hypotheses that can then be more 

fully explored in future experiments. However, technical challenges such as moving and 

analyzing large multi-omic data sets, and the lack of intuitive and easy to use tools for data 

analysis, have limited broad exploration of the available data, often preventing experimental 

biologists from directly interacting with the data. WebMeV (http://mev.tm4.org) is an open-

source, web-based application designed to take advantage of cloud computing resources to 

provide users with access to cutting edge genomic analysis tools, direct access to large 
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public domain data sets, intuitive user interfaces and data visualization, and tools for 

reproducible research.

Approach

The WebMeV cloud-based architecture is built around an application server that 

communicates with a computing server deployed on Amazon Web Services (AWS) to 

provide access to expandable computational power that takes advantage of modern cloud 

architectures. WebMeV was developed to provide an intuitive, user-friendly interface that 

allows users to upload their own data or to easily access large public data sets such as those 

from TCGA and GTEx. The WebMeV interface also provides users with “click button” 

access to advanced analytical tools that have been released through Bioconductor (3). An 

overview of the system and its use to conduct basic analyses is provided in Video 1.

Bioconductor

Bioconductor , the largest publicly available collection of open source genomic data analysis 

tools. Bioconductor is based primarily on the R programming language with analysis tools 

distributed as R packages. While Bioconductor receives contributions from an extensive 

community of bioinformatics and biostatistics developers, the majority of Bioconductor 

packages have only command line interfaces. Further, both Bioconductor and R require 

appropriate installation, configuration and version control to assure the analytical tools 

function and provide reproducible results. These factors present significant barriers for many 

potential users, including basic and translational researchers who are interested in analyzing 

and exploring complex genomic data—and who are often in the best position to interpret the 

results. So despite the considerable resource that Bioconductor represents, adoption by non-

computational scientists has been slow. WebMeV was designed to lower those barriers by 

placing data and appropriate Bioconductor tools into an easy-to-use interface.

The WebMeV application server uses Rserve (https://cran.r-project.org/package=Rserve) to 

connect through TCP/IP to an active R session running on an AWS cloud-computing 

instance [Figure 1A]. Every Rserve connection uses a separate workspace and working 

directory, allowing analyses to be easily distributed from the application server to multiple 

computing nodes as required, thus leveraging the cloud-computing infrastructure to enhance 

performance and deliver scalable analytics through the platform. While WebMeV’s cloud-

based design was chosen to provide scalability, in reality the number of computing nodes 

allocated to the application can affect performance and the number of compute nodes is 

limited by our funding to support the project. Because we recognize some users may want to 

run large dedicated analyses, we provide a WebMeV docker container image (https://

hub.docker.com/r/cccb/mev-web/) for users to download and deploy on their own hardware 

architecture to take advantage of the computing resources to which they have access.

A major challenge in integrating a large number of Bioconductor packages under a single 

application is management of package specific dependencies and versions. To solve this 

problem, we implemented an inversion dependency framework (https://cran.r-

project.org/web/packages/injectoR/index.html) with R version repository (https://

github.com/dfci-cccb/raven) that decouples Bioconductor package dependencies from the 
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global Rserve environment. This framework helps WebMeV to tightly control the 

dependencies being used by defining clear boundaries around each Bioconductor package; 

this allows for the inclusion of Bioconductor packages with contradicting dependency 

requirement during implementation.

Data Visualization

Another factor that greatly affects application efficiency is data visualization. WebMeV 

emphasizes bringing genomic data to users through the use of informative and interactive 

visualizations. WebMeV visualizations were primarily constructed using D3.js (4). D3.js is 

an open-source JavaScript data visualization library that conforms to SVG, HTML5, and 

CSS open standards and allows for seamless integration with modern browsers. It also 

provides software developers the flexibility to manipulate any part of the document object 

model (DOM) to produce flexible, dynamic, and interactive genomic data visualization 

interfaces.

Features

Accessing Public Data Sets

While WebMeV allows users to upload their own data for analysis, it was also designed to 

provide intuitive access to and analysis of large, publicly available data sets, allowing 

exploration of these data sets and the development of new hypotheses. One significant 

advantage of cloud-based application systems is data can be housed in a central location 

such that users can connect and run advanced analyses without having to download the data. 

This ability to “bring the analytics to the data,” allows the analysis of data sets whose size 

would otherwise be prohibitive. WebMeV provides two routes for deploying and accessing 

data in the cloud. Since the largest repository of gene expression data is the Gene Expression 

Omibus (GEO) (5), we used the NCBI E-utilities API to access data directly from GEO and 

to import normalized gene expression and sample annotation data into WebMeV. We also 

aggregated and curated data from the TCGA, the largest public source of cancer genomic 

data in cancer, including both RNA-seq and microarray gene expression data, both of which 

are stored with annotation, in the WebMeV AWS S3 bucket. There are other large 

expression data sets that users have requested we add, including GTEx (2), which will be 

included in a future release.

Analysis Methods

Because there is a significant collection of gene expression analysis tools in Biocondcutor, 

the Rserve package integration into WebMeV allowed us to substantially decrease the time 

and effort associated with deploying new tools. Modularizing both client-end data 

visualization and data analysis also drastically reduce implementation time. For the initial 

deployment of WebMeV, we concentrated on incorporating gene expression analysis 

methods for both microarray and RNA-seq data. The RNA-seq methods include a variety of 

tools for normalization and detection of differentially expressed genes (LIMMA/VOOM (6), 

edgeR (7), DESeq (8)), for gene set enrichment analysis (topGO, ReactomePA (9)), and 

tools for survival analysis in a framework that delivers concise, interactive graphical 

representations of the results [Figure 1B–C]. In addition to gene expression data analysis, 
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the WebMeV interactive data visualization capability enables users to formulate data-driven 

sample groupings by explore unsupervised clustering (hierarchical clustering, k-nearest 

neighbor clustering) and principle component analysis (PCA) results. Users can interactively 

select samples groups for additional analysis or comparison using results such as 

hierarchical clustering tree branches and PCA distribution patterns.

Cohort Selection

The basis for most experimental or computational analyses is the identification of distinct 

cohorts and the comparison of those cohorts to identify differences. WebMeV was designed 

to allow users to upload data and test specific hypotheses by defining and comparing 

cohorts. For example, one could use the TCGA data to ask which genes are differentially 

expressed between HER2+ and ER+ breast cancer patients? What are the biological 

pathways that appear active in early onset prostate cancer patients compared to those who 

develop the disease later? Answering these questions requires the construction of complex 

composite queries on high-dimensional clinical attributes to stratify patient samples into 

specific cohorts that can then be compared to identify significant differences.

To enable such queries on the TCGA, we implemented a cohort selector in WebMeV using 

OpenRefine (http://openrefine.org). OpenRefine is an open source application for data 

cleaning and transformation. OpenRefine has an interface that is similar to a spreadsheet 

application but behaves like a database in that it allows complex queries and operations on 

the data. We adapted OpenRefine to support multiple clinical attribute selection methods 

such as regular expression, numerical range, and categorical facets, to allow users easily 

visualize attribute distribution across cohort for selection. Users can aggregate multiple 

selections into a composite criterion for complex cohort stratification and perform set 

operations on defined cohorts to reduce manual curation effort.

Example Use Case 1

WebMev was designed for use in a variety of different scenarios. As a first example, 

consider a simple experiment involving measuring gene expression using RNA-Seq to 

compare gene expression in three treated samples to that in a set of three control samples. 

We will assume that the researcher starts with the typical data produced by an RNA-Seq 

experiment: a tab-separated gene-level raw count matrix file (a file containing a set of genes 

and their RNA-Seq read counts in each sample, with tabs between column entries). The 

researcher can upload the file to WebMeV and first normalize across all samples. The 

normalized gene expression distribution can be explored using PCA and experimental and 

control groups to be contrasted can be defined based on the groupings visualized in the PCA 

plots. The researcher can also perform unsupervised hierarchical clustering to define sample 

groups, or simply separate samples into groups based on treatment status. The groups 

defined by the user can be compared to identify differentially expressed genes, using a 

method such as VOOM (6). The differentially expressed genes can then be further filtered 

and saved as gene list for pathway enrichment analysis. A video showing a step-by-step 

walkthrough of this example is available at https://youtu.be/6aK4t2vXcg4.
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Example Use Case 2

WebMeV also allows users to download and analyze public data sets such as those from 

TCGA. Consider a researcher is interested in comparing gene expression between breast 

cancer patients differing in HER2, PR, and ER status using all the available breast invasive 

carcinoma (TCGA-BRCA) RNA-Seq data. The researcher can launch WebMeV, select 

TCGA data, identify and import the full level 3 TCGA-BRCA data set. Data and metadata 

from TCGA are uploaded and the researcher can use the text facet function in the Sample 

Set Selector to stratify the cohort based on hormone receptor status. Once individual sub-

cohorts are defined, the researcher can use the Sample Sets operation to construct sub-

cohorts with composite criteria such as patients with triple negative status. Cohorts or sub-

cohorts can be compared to identify differentially expressed genes and to perform a meta-

analysis. The gene expression pattern of each sample group can be visualized and explored, 

including using PCA. A video demonstrating this example is available at https://youtu.be/

W48Zhouzdr4.

Conclusions

In genomics and computational biology, there is too often a divide between those who 

generate the data and those who analyze it. A physician scientist treating ovarian cancer 

patients will approach the analysis of ovarian cancer gene expression data with a very 

different mindset than a computational biologist or biostatistician and, if able to follow his 

instincts through hands-on analysis, may well reach different insights that if working 

through an intermediary quantitative scientist. WebMeV provides a resource that emphasizes 

making large-scale RNA-seq and other genomic data sets accessible to a wide range of 

potential users. In particular, WebMeV helps to assure that basic, clinical, and translational 

scientists have access to data sets such as those from the TCGA and other public projects in 

a tool that allows exploration of the data to develop and test hypotheses—and to extend 

those explorations using own data. While we recognize the importance of having 

quantitative scientists, trained in computational biology, bioinformatics, or biostatistics, 

involved in analyzing data, scientists who understand cancer have unique intuition if 

followed, can lead to new discoveries.
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Figure 1. 
(A) An overview of WebMeV’s architecture. Screenshots of WebMeV showing (B) a simple 

hierarchical clustering, and (C) a bubble plot summarizing the results of a gene set 

enrichment analysis.

Wang et al. Page 7

Cancer Res. Author manuscript; available in PMC 2018 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Introduction
	Approach
	Bioconductor
	Data Visualization

	Features
	Accessing Public Data Sets
	Analysis Methods
	Cohort Selection
	Example Use Case 1
	Example Use Case 2

	Conclusions
	References
	Figure 1

