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Summary

Although gut microbiome composition is well defined, the mechanisms underlying community 

assembly remain poorly understood. Bacteroidales possess three genetic architectures (GA1–3) of 

the type VI secretion system (T6SS), an effector delivery pathway that mediates interbacterial 

competition. Here we define the distribution and role of GA1–3 in the human gut using 

metagenomic analysis. We find that adult microbiomes harbor limited effector and cognate 

immunity genes, suggesting selection for compatibility at the species (GA1, GA2) and strain 

(GA3) levels. Bacteroides fragilis GA3 is known to mediate potent inter-strain competition, and 

we observe GA3 enrichment among strains colonizing infant microbiomes, suggesting 

competition early in life. Additionally, GA3 is associated with increased Bacteroides abundance, 

indicating that this system confers an advantage in Bacteroides-rich ecosystems. Collectively, 

these analyses uncover the prevalence of T6SS-dependent competition and reveal its potential role 

in shaping human gut microbial composition.
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Graphical abstract

The T6SS is an effector delivery system that mediates interbacterial competition. Using 

metagenomic analyses, Verster et al. investigate the prevalence and role of the T6SS in the human 

gut microbiome. They demonstrate that the T6SS mediates interactions between Bacteroides 
strains in the infant microbiome and between species in Bacteroides-rich environments.

Introduction

Bacterial communities are of fundamental importance to natural ecosystems (Prosser et al., 

2007). While cooperative interactions between the species comprising such communities can 

occur (Rakoff-Nahoum et al., 2016), it is clear that bacteria in these settings experience 

pervasive competition from surrounding cells (Coyte et al., 2015; Hibbing et al., 2010; Levy 

and Borenstein, 2013). Indeed, the genomes of bacteria encode a wealth of dedicated 

interbacterial antagonism pathways (Zhang et al., 2012). Some of these function through the 

production of diffusible small molecules (Riley and Wertz, 2002), whereas others utilize 

proteinaceous toxins. A prevalent pathway mediating the transfer of toxic proteins between 

bacteria is the type VI secretion system (T6SS) (Hood et al., 2010). This system has been 

most thoroughly studied in Proteobacteria, though it is found in several phyla of Gram-

negative bacteria, and while it can, in some cases, target eukaryotic cells, it has been 

primarily investigated as an interbacterial system.

The T6S apparatus transfers toxic effector proteins from donor to recipient bacterial cells by 

a mechanism dependent upon cell contact (Russell et al., 2014a). Characterized 

interbacterial effector proteins are thus far without exception enzymes that target conserved, 

essential features of the bacterial cell, such as peptidoglycan, phospholipids, and nucleic 

acids. This feature of effector proteins, taken together with the fact that T6SS targeting does 

not appear to be dependent on a specific receptor, confers broad activity against Gram-

negative cells. Indiscriminate effector transfer also extends to kin cells; therefore, cells with 
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the T6SS produce immunity proteins that inactivate cognate toxins through active site 

occlusion (Benz and Meinhart, 2014).

Given its wide phylogenetic distribution and its capacity to target diverse recipient cells, the 

T6SS is likely to play an important role in the assembly and composition of bacterial 

communities. Indeed, there are recent reports consistent with the pathway mediating 

bacterial interaction in environmental communities. For instance, T6S genes were found to 

be enriched and under positive selection in the barley rhizosphere (Bulgarelli et al., 2015), 

and T6S phospholipase effectors were detected in metagenomes from diverse sources (Egan 

et al., 2015). To date, however, systematic studies of the impact of T6S on microbial 

community assembly are lacking.

The human gut microbiome is a dense ecosystem whose composition is paramount to its 

function (Walter and Ley, 2011). Factors such as diet, immune status, and host genetics have 

each been implicated in shaping the gut community, yet the contribution of direct 

interbacterial competition to the structure of this community remains poorly understood. 

Recently, a T6SS-like pathway was detected in Bacteriodetes, the most abundant Gram-

negative phylum in the human gut (Coyne et al., 2014; Russell et al., 2014b). Additional 

work demonstrated that T6S contributes to the fitness of Bacteroides fragilis in competition 

with other bacteria in vitro and in gnotobiotic mice (Chatzidaki-Livanis et al., 2016; Hecht et 

al., 2016; Russell et al., 2014b; Wexler et al., 2016). These and other data show that the 

mammalian GI tract is physically conducive to T6SS-dependent interbacterial antagonism, 

suggesting a potential impact of this pathway on the composition of the human gut 

microbiome (Anderson et al., 2017; Sana et al., 2016). Here, we sought to define the 

distribution of the Bacteroidales T6SS and to explore its function in the human gut 

microbiome through the analysis of several publicly available metagenomic datasets. These 

datasets allow us to study the outcome of natural community dynamics in the gut 

microbiome, and we reasoned that their analysis could therefore provide unique insight into 

the physiologic role of T6SS-dependent competition in this ecosystem. Our findings reveal 

the prevalence of this pathway in intact human gut microbial communities, highlight striking 

and non-random patterns in its distribution across samples, and suggest an active role for the 

T6SS in intra- and inter-species bacterial interactions in the gut.

Results

Detection of T6SS E–I pairs in the human gut microbiome

We first set out to characterize the prevalence and distribution of T6SS genes in the gut 

microbiomes of healthy adult individuals. Based on their organization and content, 

Bacteroidales T6SS gene clusters can be divided into three distinct subtypes, termed genetic 

architecture 1–3 (GA1–3) (Coyne et al., 2016). Each T6S subtype possesses one or more 

cassettes at stereotyped positions that contain variable genes predicted or demonstrated to 

encode effector–immunity (E–I) pairs (Chatzidaki-Livanis et al., 2016; Coyne et al., 2016; 

Russell et al., 2014b; Wexler et al., 2016). As T6SS-based antagonism is determined by the 

effector and immunity genes of donor and recipient cells, respectively, the identification of 

E–I pairs provides information regarding the potential for interbacterial interactions 

mediated by this system. Furthermore, since these cassettes are variable within, but appear 
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unique among the T6S subtypes, estimation of the abundance of these genes within 

metagenomes can serve as a proxy for the presence and distribution of GA1–3.

To define the E–I repertoire associated with GA1–3, we searched within T6-associated 

variable cassettes from Bacteroidales reference genomes and from preassembled 

metagenome contigs from the Human Microbiome Project (HMP) for genes with hallmarks 

of known T6SS effector and immunity factors (Human Microbiome Project, 2012). These 

included fusion to modular adaptor domains, reduced GC content, bicistronic arrangement, 

and similarity to protein families defined by their association with characterized E–I pairs 

(see Experimental Procedures for a complete description of annotation criteria; Figures 1A 

and S1). In total, we identified 12 GA1, 19 GA2, and 14 GA3 putative E–I pairs. As 

expected, genes with significant homology to GA3 pairs were identified only in B. fragilis 
reference genomes, whereas GA1 and GA2 pairs were detected throughout the order. 

Importantly, we did not identify GA1–3 E–I genes outside of Bacteroidales.

To estimate the abundance of these E–I pairs in gut microbiomes, we obtained metagenomic 

datasets derived from healthy donor samples of the HMP (Human Microbiome Project, 

2012) and MetaHIT (Qin et al., 2010) studies. We next mapped the reads from each sample 

to our catalog of E–I genes (using 97% sequence identity threshold). Our results indicate 

that T6S is prevalent in the human gut microbiome; of the 246 samples analyzed, we 

detected E–I genes in 155 (63%). Moreover, each E–I pair in our list was detected in at least 

one microbiome sample, with an average of 9.5 occurrences. Importantly, the abundance of 

GA1–3 effector genes across samples correlates with that of subtype-specific T6SS 

structural genes with only very few samples containing structural genes and no effector 

genes, suggesting that our catalog of E–I pairs is comprehensive and approximates the full 

diversity of such genes in nature (Figure 2A).

T6S E–I pairs display low diversity within human gut microbiome samples

The systematic characterization of E–I abundance in metagenomic samples provided a 

unique opportunity to examine the distribution of the genes associated with each genetic 

architecture across healthy gut microbiomes. We first focused on GA1 and GA2, which 

utilize unique complements of effectors, but share the ability to undergo conjugative transfer 

between species belonging to the order Bacteroidales (Coyne et al., 2016). Surprisingly, we 

found that the complement of GA1- and GA2-associated E–I genes in a typical microbiome 

is small, with only a few pairs per sample, comparable to the number of pairs usually 

detected in a single genome (Figure 1B,C, E). Moreover, in many cases, the same 

complement of E–I genes was detected in multiple samples. Henceforth, we refer to these 

combinations as E–I genotypes. This pattern suggests that either each sample is dominated 

by a single strain that harbors the observed E–I genotype or that there exists selective 

pressure for compatible E–I genes across multiple strains or species in a sample.

To further explore these possibilities, we focused our attention on the most prominent 

members of the genus Bacteroides. Other genera in the order Bacteroidales are less abundant 

constituents of the microbiome and based on reference genomes do not often harbor GA1 or 

GA2. We identified a set of species-specific single-copy marker genes for each Bacteroides 
species and estimated their abundance in each sample. Next we compared marker gene 
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abundance to that of GA1 and GA2 E–I genes across samples (see Experimental 

Procedures). We found that the abundance of these E–I genes was not consistent with that of 

an individual species (Figures 2B–C). These findings suggest that multiple species co-

existing in a microbiome typically encode a single GA1 and/or GA2 E–I genotype, 

potentially due to selective pressure for maintenance of E–I compatibility.

We next examined GA3 E–I genes, and found, as in GA1 and GA2, that each sample harbors 

only a small set of E–I pairs (Figure 1D–E). Moreover, observed GA3 E–I genotypes 

matched those detected in reference genomes (Figure S2A–B), and appeared randomly 

distributed between the American (HMP) and European (MetaHIT) datasets (Figure 1D). 

However, in contrast to GA1 and GA2, we found a strong correlation (R = 0.94) between the 

abundance of GA3 effector and immunity genes and that of a single species, B. fragilis 
(Figures 2B–D). This finding shows that restriction of GA3 to B. fragilis observed in 

sequenced reference genomes holds across naturally occurring communities (Coyne et al., 

2016).

We hypothesized that the pattern of GA3 E–I genotypes we observed could be explained by 

the dominance of a single B. fragilis strain within each individual microbiome. Indeed, prior 

studies suggest that B. fragilis exhibits relatively low diversity within individuals (Yassour et 

al., 2016). To confirm that this pattern is also observed in HMP and MetaHIT samples, we 

first measured nucleotide diversity in species-specific markers of Bacteroides spp. We found 

that within an individual, B. fragilis possesses the lowest average SNP diversity of well 

represented members of the Bacteroides genus (Figure S2C). We then used a previously 

developed method for inferring the most likely set of strains in metagenomic samples based 

on nucleotide variants, combined with a phylogenetic analysis of these inferred strains to 

determine the number of different monophyletic groups of strains present in each sample 

(see Experimental Procedures). We found that B. fragilis inferred strains in every HMP and 

MetaHIT sample formed a single monophyletic group, indicating that extant B. fragilis 
strains in each sample are likely derived from a single colonization event or outcompeted 

other strains to obtain dominance. Moreover, the set of E–I pairs detected in each 

metagenomic sample generally matched the set of E–I pairs found in the reference strains 

closest in the phylogenetic tree to the inferred strains, especially when the distance of 

inferred strains to their nearest reference was low (Figure S3).

To experimentally confirm our computational findings, we additionally selected 20 B. 
fragilis colonies isolated from two healthy adults and subjected these to whole genome 

sequencing. Consistent with our findings using metagenomic data, our sequencing showed 

that a single clonal strain of B. fragilis dominates the microbiome of these individuals 

(Figure S2D).

B. fragilis GA3 is important in the developing microbiome

The finding that the presence of singular GA3 genotypes within individuals is due to the 

dominance of one B. fragilis strain motivated us to investigate the role of this system in the 

microbiome. We reasoned that in this dense and competitive microbiome ecosystem an 

antagonistic pathway such as the T6SS might provide a fitness advantage (Ley et al., 2006),. 

The system could mediate antagonism against other B. fragilis strains, Bacteroides spp., 
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Gram-negative inhabitants of the microbiome, or a combination of these. Assuming such a 

role for T6SS, we further reasoned that in the microbiome of infants, which is less stable 

than that of adults, the function of an antagonistic pathway like the T6SS might be more 

pronounced. To test this hypothesis, we obtained publically available metagenomic datasets 

derived from infant gut microbiomes (Backhed et al., 2015; Kostic et al., 2015; Vatanen et 

al., 2016; Yassour et al., 2016). We then identified samples that contain B. fragilis but lack 

GA3-associated structural genes (see Experimental Procedures) in both adult and infant 

datasets. Such samples indicate the presence of B. fragilis strains unable to intoxicate 

competitor bacteria using this pathway. We found that infant microbiomes containing B. 
fragilis are significantly less likely to lack GA3-associated structural genes relative to those 

of adults (Fisher’s exact test, P < 0.01, 8% infants, 23% adults; n = 276; Figures 3A and 

S4A–B).

This finding suggests that GA3 provides an advantage for B. fragilis in early life; however, 

the selective pressure underlying this advantage remained unclear. Several independent 

studies using gnotobiotic mice have shown that the GA3 T6SS can play a major role in the 

competition between B. fragilis strains in the gut (Chatzidaki-Livanis et al., 2016; Hecht et 

al., 2016; Wexler et al., 2016). However, B. fragilis is thought to be stable after acquisition 

from the mother, and inter-strain competition within the human gut microbiome has not been 

documented for this organism (Faith et al., 2013; Nayfach et al., 2016). Aiming to capture 

such processes in the developing microbiome, we estimated the abundance of GA3 E–I 

genes for individual infant samples as we did for adults. In general, the E–I landscape of 

infants mirrors that of adults, with generally a single genotype present in each sample. 

Moreover, many of the most prevalent E–I genotypes we observed in adults are also frequent 

in infants.

Notably, the infant microbiome datasets we analyzed include multiple samples per 

individual, thereby allowing us to examine the temporal dynamics of B. fragilis and of T6SS 

genes. Surprisingly, this analysis revealed many instances in which the E–I genotype of an 

individual changed between samples (Figure 3B). In total, we observed E–I turnover in 22 of 

the 117 infants for which longitudinal data was available. Such E–I turnover events include 

instances where one GA3 genotype is replaced by another (Figure 3C), but also gains and 

losses of the T6SS (Figure 3D–E). To further confirm these E–I dynamics, we used the strain 

inference method described above. We detected a corresponding strain replacement in 17 of 

the 22 individuals in which an E–I turnover event was observed (Figures 3C–E and S4C). 

Moreover, comparing the set of E–I genes detected in each sample to those encoded by the 

reference strains phylogenetically closest to the inferred strain, we further find overall 

agreement between observed and expected E–I turnover events. Notably, instances of one 

strain replaced by another with a similar E–I genotype (Figure S4C; Vatanen:T014827) or of 

transient co-existence of E–I genotypes (Figure S4C; Backhed:587) were also observed. 

Examination of the few HMP adult individuals for which data was available from multiple 

visits revealed one adult in which the E–I genotype similarly changed over time (Figure 3B). 

Similar analysis of GA1 and GA2 again revealed several individuals with non conserved E–I 

profiles over time, suggesting a general instability of these subtypes in the developing gut 

microbiome (Figure S4D).
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B. fragilis GA3 T6SS is associated with shifts in community composition

Due to its lower frequency in adult microbiomes compared to those of infants, the GA3 

T6SS is absent in many adult samples in which B. fragilis can be detected (23%), offering a 

unique opportunity to compare the community composition in samples with or without GA3. 

We hypothesized that such an analysis could identify potential competitors of B. fragilis 
targeted by the GA3 subtype. To this end, we obtained the taxonomic profile of all HMP 

samples (see Experimental Procedures) and identified associations between these profiles 

and the presence of GA3 T6SS structural genes. We first compared overall community 

composition between samples as measured by the Bray-Curtis distance. We found that 

samples harboring B. fragilis and GA3 genes (T6SS+) significantly differ in community 

composition from samples harboring B. fragilis but lacking these genes (T6SS−; P < 0.01 

PERMANOVA; n = 51). Examining the abundance of each genera across samples, we 

further identified four genera whose abundance in T6SS+ versus T6SS− samples 

significantly differs (Wilcoxon rank sum test; FDR<0.05; Figure 4 and Table S1). 

Specifically, we found that the abundance of Bacteroides is positively correlated with the 

presence of GA3, which is consistent with experimental and theoretical work indicating that 

members of this genus are most likely to compete with B. fragilis for its niche (Trosvik and 

de Muinck, 2015). Furthermore, the genera Faecalibacterium, Oscillospira and 

Ruminococcus from the phylum Firmicutes were negatively correlated with GA3. Gram-

positive organisms are not targets of the T6SS; therefore, the observed decreases in 

abundance of these genera in T6SS+ microbiomes are likely to be the indirect result of 

selection for GA3 occurring in communities with an increased ratio of Bacteroidetes to 

Firmicutes.

Discussion

Despite the wide distribution of T6S in Gram-negative bacteria, little is known about its role 

in natural communities. Here, we surveyed human microbiome samples and discovered that 

these communities are replete with bacteria containing the T6SS. We focused our analyses 

on genes specific to the order Bacteroidales; thus, our findings are an underestimate of the 

prevalence and impact of this system in gut communities. Nonetheless, our characterization 

of T6SS E–I gene distribution in human gut microbiomes suggests that this contact-

dependent pathway plays a role in competition and selection at multiple levels.

We observed markedly low diversity of T6SS E–I genes in human microbiome samples. 

Specifically, a single genotype of GA1 and GA2 E–I genes is found in each microbiome, yet 

the abundance of these genes does not correlate with that of any one species in the 

Bacteroides genus. This supports a model in which antagonism via GA1 and GA2 exerts 

selective pressure for compatibility between Bacteroides spp. in the gut. We postulate that in 

the case of GA1 and GA2, horizontal transfer facilitates E–I compatibility. Indeed, theory 

predicts that strongly selected traits are most likely to be horizontally transferred in an 

environment in which ecological competition is strong, like the gut (Coyte et al., 2015; 

Niehus et al., 2015). Moreover, Comstock and colleagues found that transfer of GA1 and 

GA2 can occur between Bacteroidales species within the microbiome of an individual 

(Coyne et al., 2014).
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Similar to GA1 and GA2, we found a single genotype of GA3 in each microbiome. 

However, GA3 is restricted to B. fragilis and our data are explained by the presence of a 

single B. fragilis strain in each individual. This is consistent with experimental studies 

demonstrating a role for GA3-dependent competition between B. fragilis strains 

(Chatzidaki-Livanis et al., 2016; Hecht et al., 2016; Wexler et al., 2016). Whether the infant 

microbiome strain replacements and accompanying E–I turnover events we observe are a 

consequence of GA3 activity cannot be determined from our current data. Nevertheless, 

these findings in conjunction with our observation that B. fragilis strains lacking the GA3 

T6SS are more common in adults suggest that, early in life, B. fragilis strains compete for 

dominance. The infant microbiome may accordingly represent a particularly dynamic 

ecosystem in which the GA3 T6SS facilitates B. fragilis strain competition.

We find that strains of B. fragilis lacking GA3 are more commonly found in adults than 

infants. This could arise either by the replacement of T6SS+ with T6SS− strains, or by the 

loss of the T6SS system from a previously T6SS+ strain of B. fragilis. This decline in B. 
fragilis GA3 prevalence in adulthood may reflect a change in its selective advantage. Indeed, 

there is precedent for the lability of T6S in bacteria undergoing strong shifts in 

environmental context, such as Burkholderia mallei and Bordetella spp. (Schwarz et al., 

2010). It is likely that community effects buffering the B. fragilis niche develop with the 

maturation of the more stable adult gut community. Stabilization over development appears 

to render GA3 dispensable in certain contexts, for instance within those microbiomes that 

contain lower populations of potential B. fragilis competitors and known targets of the GA3 

pathway, other Bacteroides spp.

T6SS activity typically results in growth arrest or the lysis of competitor cells (Russell et al., 

2014a). Thus, we anticipated that GA3-containing microbiomes would contain lower relative 

abundance of taxa antagonized by B. fragilis than those lacking GA3. Our counterintuitive 

finding that GA3 is enriched in microbiomes containing a large Bacteroides population 

suggests instead that B. fragilis primarily faces selective pressure from closely related 

species. Importantly, B. fragilis abundance is low compared to the Bacteroides consortium as 

a whole. It is therefore likely that the observed association between GA3 and community 

assembly reflects selection on GA3 mediated by community composition, rather than GA3-

mediated impact on overall community assembly. While we do not detect other Gram-

negative genera whose abundance are specifically lowered in GA3+ microbiomes, we cannot 

rule out that competition from less common or low abundance genera that fall below our 

detection limit might also select for the retention of GA3 in adults.

We showed here that a systematic characterization and large-scale computational analysis of 

metagenomic data can provide a means of linking the presence and abundance of T6 genes 

to microbial community composition. A caveat of our approach is that it does not account 

for differences in gene expression that could alter the phenotype elicited by the T6SS. Future 

work that integrates meta-transcriptomic data could provide a more sensitive measure of 

T6SS activity. For contact-dependent pathways like the T6SS, metagenomic analyses can 

provide a unique window into community biogeography. Indeed, Bacteroides spp. are 

thought to occupy a crowded niche proximal to the gut mucosa and our findings herein 

provide evidence of extensive cell–cell contacts between species of the genus (Whitaker et 
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al., 2017). The T6SS is one of many antagonistic pathways whose operation is determined 

by the presence or absence of polymorphic toxins and corresponding antitoxins (Aoki et al., 

2010; Whitney et al., 2017; Zhang et al., 2012). Thus, our study offers an analytical 

framework for more globally deciphering the forces that dictate the establishment and 

maintenance of bacterial communities.

STAR Methods

Contact for Reagent and Resource Sharing

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Elhanan Borenstein (elbo@uw.edu).

Experimental Model and Subject Details

All human studies were conducted with the permission of the Yale Human Investigation 

Committee and informed consent was collected from all volunteers prior to participation. 

Recruitment of healthy human volunteers, sample collection, anaerobic processing, and 

−80°C storage of fecal samples in cryoprotectant under anaerobic conditions was previously 

described (Cullen et al., 2015). Briefly, the sample size of 30 donors (20 male and 10 

female) was selected to represent common microbiome variation among humans. The 

donors were all greater than 18 years of age and were recruited without regard to sex. 

Samples were not assigned into groups. 16S rRNA gene sequencing was performed and used 

to identify samples which were most likely to harbor Bacteroides fragilis. The two samples 

chosen for strain isolation were a 24 year old male and a 54 year old female.

Methods Details

Identifying T6SS effector and immunity genes—We sought to comprehensively 

catalog Bacteroidales T6SS E–I genes from reference genomes. In Bacteroidales, as in other 

bacteria, E–I genes are encoded adjacent to the genes for secreted structural proteins Hcp 

and VgrG. Accordingly, we manually curated genes adjacent to these structural genes across 

all publically available Bacteroidales genomes. Identified genes exhibited reduced GC 

content relative to the rest of the T6SS locus or the genome as a whole, and were encoded in 

bi-cistrons. Putative effectors always lacked characteristic signal peptides, consistent with 

transport via the T6SS apparatus, while putative immunity genes often encoded proteins 

with signal peptides. We used structural homology prediction (Phyre) (Kelley et al., 2015) 

and remote sequence homology search algorithms (Hmmer) (Finn et al., 2015) to predict 

functions for these genes, identifying many genes with functions associated with known 

T6SS toxin effectors. As in Coyne et al (Coyne et al., 2016), our list included predicted cell-

wall degrading enzymes, lipases, and nucleases as well as putative effector domains fused to 

either PAAR domains (DUF4280) or Hcp (Table S2). We additionally searched for contigs 

assembled from HMP metagenomes that contained subtype-specific T6SS structural gene 

sequences but lacked any E–I gene curated from reference genomes. Gene prediction was 

performed on these contigs using Glimmer within Geneious R10.1.3 and candidate genes 

were defined using the criteria as for reference genomes (Delcher et al., 2007; Kearse et al., 

2012).
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Strain sequencing—Stool samples from four healthy individuals frozen in sterile 

glycerol (Cullen et al., 2015) were plated onto Bacteroides Bile Esculin or Brucella Blood 

Agar plates (BD Biosciences), to select for Bacteroidales colonies. Single colonies were 

picked into Mega Medium (Wu et al., 2015) and grown to stationary phase in anaerobic 

conditions at 37°C before freezing in 10% glycerol in 96-well plates. PCR was performed 

directly from the frozen glycerol stocks using primers to amplify the V1–V4 region of the 

16S rRNA gene. PCR products were then Sanger sequenced. Sanger sequencing reads were 

converted to fastq format and NCBI Blast 2.2.31+ was used to align sequences to the SILVA 

123 and GreenGenes 2011-1 16S rRNA gene databases in order to identify Bacteroides 
fragilis. To verify the B. fragilis-positive colonies, a second round of PCR was performed 

using primers to amplify and sequence the gyrB gene. Two of the four donors were 

confirmed to have B. fragilis. Twenty confirmed colonies from each B. fragilis-positive 

donor were then grown to stationary phase in TYG medium under anaerobic conditions at 

37°C. Genomic DNA was isolated using the Qiagen DNeasy Blood and Tissue Kit and 

prepared for whole genome sequencing using the MiSeq V3 Reagent Kit. Sequencing was 

performed in the Nickerson lab core facility in the UW Department of Genome Sciences. 

Sequencing reads were mapped to the set of B. fragilis-specific marker genes to generate 

alignments. Samples under 10× mean alignment read coverage were then discarded. 

Consensus sequence for each remaining sample was generated using the GATK 

FastaAlternateReferenceMaker. Subsequently, we constructed multi-alignments for all the 

samples using MAFFT 7.237, concatenated them, and then inferred a phylogenetic tree 

using the GTRGAMMAI model from RAxML 8.2.8 (Stamatakis, 2014).

Quantification and Statistical Analysis

Metagenomic and genomic data—Our analysis utilizes short read metagenomic data 

from several large-scale microbiome datasets. For adult microbiomes we downloaded 147 

shotgun samples from HMP (Human Microbiome Project, 2012), and 99 healthy human 

shotgun samples from MetaHIT (Qin et al., 2010). Since an excessive fraction of human 

DNA will likely not markedly impact our ability to quantify B. fragilis abundance, HMP 

samples which failed QC were nonetheless included in our analysis. For infant microbiomes, 

we downloaded 300 samples from a study of development of the microbiome in the first 

year of life (Backhed et al., 2015), 769 samples from a study of autoimmune diseases 

(Vatanen et al., 2016), 237 samples from a study of antibiotic usage (Yassour et al., 2016), 

and 126 samples from a study of the development of Type 1 Diabetes (Kostic et al., 2015). 

Several of these datasets include multiple longitudinal samples from the same individuals, 

which were used for temporal analysis.

We downloaded all available B. fragilis genomes from RefSeq. Sequences from 3 strains 

were found to be contaminated with contigs matching species other than B. fragilis, and 

were discarded. A group of 8 strains appeared to be very distant in sequence homology from 

the rest of the strains, and were also discarded. We additionally downloaded from RefSeq all 

genomes of other Bacteroides species for which at least 5 strain genomes were available.

Identifying species-specific marker genes—We compiled a list of marker genes that 

could be used for strain-level inference. Our marker gene approach is similar to that used by 
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MetaPhlAn (Truong et al., 2015), but relies on a more stringent selection of marker genes, 

supporting a more robust comparison at the strain level. Specifically, for our analysis, we 

identified a subset of the MetaPhlAn marker genes that are found in the genome of every 
sequenced strain in a single copy. To this end, for each of the MetaPhlAn marker genes 

associated with a given species, we used BLASTn to find every homolog (>60% identity) in 

all the strains of that species. We used Usearch (Edgar, 2010) to cluster this larger set of 

genes into groups with >90% identity and if a cluster with exactly one gene in each strain 

could be found, the marker gene was included in our list.

Estimating gene abundance in microbiomes—We aligned shotgun reads single end 

using Bowtie2 (using parameters –a –N 1) to the set of genes of interest. Alignments with 

less than 97% identity, a quality score below 20, or multiple hits were discarded. To quantify 

the abundance of each gene, the number of reads aligned to this gene was normalized by the 

length of the gene and the total number of reads in the sample.

The average abundance of species-specific marker genes identified above was used as a 

proxy for the abundance of that species in the sample. We defined samples as having B. 
fragilis present if at least 100 reads could be aligned to B. fragilis-specific marker genes. 

When characterizing strain replacement, for which higher coverage of B. fragilis genes is 

required, we used instead a threshold of 500 reads. Because GA1 and GA2 are not restricted 

to a single species, and because Bacteroidales composition can vary dramatically, we 

considered samples with 100 reads mapping to the GA1 and GA2 E–I genes. GA1 and GA2 

effector sequences contain repeats in the Rhs repeats which could interfere with read 

mapping, and therefore, we only used the toxin region (450bp from the C terminus) when 

quantifying GA1 or GA2 effector gene abundance. For GA3 we defined vgrG, TssP, TssN, 

TssK, TssB, TssO, TssG, TssF, and TssR as the Type VI structural genes, for GA1 we used 

TagB and for GA2 we used TagA. We selected these structural genes because based on 

reference genomes it was clear that a 97% identity similarity would unambiguously 

distinguish between subtypes.

Nucleotide diversity calculation—To estimate nucleotide diversity across species-

specific marker genes, we again aligned all short reads in each sample to these genes. The 

obtained alignments were converted into a pileup using mpileup from samtools (parameters 

–excl-flags UNMAP,QCFAIL,DUP -A -q0 -C0 –B), and finally into an allele count matrix. 

The first and last 10 bases of each gene were discarded from the allele count matrix as we 

found they contained many poor quality alignments. We focused on high-coverage loci only, 

ignoring all loci where the coverage was less than 5×. If the number of high coverage sites 

was <10% of the total length of the sequence, the sample was excluded from further 

consideration. Variable sites were defined as those having at least 2 counts of the minor 

allele. Nucleotide diversity was then calculated at these variant sites according to:
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Where n is the total length of the genes, i corresponds to the variable sites, and p and q 
correspond to the frequency of the major and minor allele at site i.

Inferring B. fragilis strains—To infer strain diversity in each sample, we used 

StrainFinder (https://github.com/cssmillie/fmt), a previously introduced method for inferring 

the most likely set of strains in metagenomic samples based on nucleotide variants. To this 

end, we again aligned the short read in each sample to the set of B. fragilis-specific marker 

genes identified above, and converted the alignment to a count matrix describing the number 

of counts of each nucleotide at every position along the genes. As when calculating 

nucleotide diversity, we discarded the first and last 10 bases and only considered sites with 

at least 5 counts. We also discarded samples where the high coverage sites were less than 

10% of the total length as they resulted in poor quality trees. When running StrainFinder we 

reduced the data to only those sites with population variability, defined, as above, as sites 

with at least 2 counts of the minor allele. As noted above, we only considered samples with 

a sufficient coverage on the B. fragilis marker genes to enable robust strain inference.

StrainFinder determines the relative strain abundance and genotypes at variable sites by 

considering the likelihood of the observed allele counts and using an expectation 

maximization approach. An optimal number of strains between 1 and 10 was determined 

using AIC. For each run of StrainFinder we used 5 independent runs of 200 expectation 

maximization iterations and selected the best fit; these parameters yield reproducible 

inference of strains. When analyzing temporal data with StrainFinder, we combined allele 

counts from all samples of an individual into a single 3-dimensional matrix. Using the 

genotypes from StrainFinder we then reconstructed strain-specific versions of each marker 

gene and then created subsequences consisting of only the high coverage sites we used in the 

analysis. Inferred strains were then further examined using a phylogenetic analysis as 

described below.

Phylogenetic analysis—A phylogenetic tree of the reference B. fragilis strains was 

constructed based on their species-specific marker genes. Specifically, we aligned the 

strains’ versions of each marker gene using MAFFT, concatenated the alignments of all 

genes, and then constructed a tree using the GTRGAMMAI model from RAxML 

(Stamatakis, 2014), as has been done previously (Wexler et al., 2016).

To determine whether the strains inferred by StrainFinder are monophlyletic, we combined 

the sequences from the inferred strains (as determined by StrainFinder), with the sequences 

from the available reference B. fragilis genomes, and recreated the strain phylogeny using 

the same method as described above. We defined inferred strains as monophyletic if their 

common ancestor does not have any descendent outside the set of inferred strains or if the 

distance was less than 0.001 substitutions per site.

Predicting E–I genes of inferred B. fragilis—We predicted the E–I gene content of an 

inferred B. fragilis strain by examining the E–I content in the genome of its nearest 

neighbors on a phylogenetic tree that contains the inferred strains from a given sample and 

the reference strains (as described above). Specifically, for every strain identified from 

StrainFinder, we identified the most recent ancestor that have both the inferred strain and at 
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least one reference strain as descendants. We then used the average E–I content of all 

reference strains descendant from this ancestor as the predicted E–I content of the inferred 

strain. To then estimate the predicted E–I content in the sample, we combined the predicted 

E–I content of each inferred strain weighted by their relative abundance. To determine the 

confidence of the predicted E–I content we determined the average phylogenetic distance of 

these reference strains to the ancestor identified above.

Identifying T6SS in microbiome samples—For every sample, we estimated the 

number of reads expected to map to the B. fragilis GA3 T6SS structural genes based on the 

number of reads mapped to B. fragilis-specific marker genes in that sample and the ratio 

between the total length of B. fragilis-specific marker genes and B. fragilis T6SS structural 

genes. We define samples to be T6SS+ if B. fragilis was present (as defined above) and the 

number of reads mapped to T6SS structural genes was more than 10% of the expected 

number (and see Figure S4A). We define samples to be T6SS− if B. fragilis was present and 

the number of reads mapped to T6SS structural genes was less than 10% of the expected 

number.

Community composition analysis—To obtained independent estimate community 

composition in each sample, we downloaded the v35 16S OTU abundance table for human 

gut microbiomes from HMP (ftp://public-ftp.hmpdacc.org/HMQCP/

otu_table_psn_v35.txt.gz), summed the counts from all OTUs in the same genus, and 

calculated the relative abundance of each genus. Importantly, because 16S sequencing depth 

is independent from the depth of shotgun samples used to determine T6SS+ vs. T6SS− 

classification, using these 16S-based data allows us to compare T6SS presence with 

community taxonomic profiles without potential coverage-related biases. Samples were 

classified into T6SS+ and T6SS− as described above. GA1 and GA2 lack uniquely 

identifying structural genes so we defined T6SS+ vs. T6SS− as samples with vs. without 

100 counts mapping to the GA1 or GA2 E–I genes respectively. The distance between 

samples was defined by the Bray-Curtis distance at the genus level, and significance of 

separation between T6SS+ and T6SS− samples was evaluated using PERMANOVA. For the 

subset of genera whose average abundance across samples was > 0.1%, we used a Wilcoxon 

rank sum test to compare their abundance in T6SS+ vs. T6SS− samples using a 5% FDR.

Data and Software Availability

All sequences were deposited into NCBI SRA under BioProject ID PRJNA375094.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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• Comprehensive metagenomic mapping of Bacteroidales T6SS genes in the 

gut microbiome

• Evidence for selection for T6SS compatibility at the species and strain levels

• Bacteroides fragilis strains compete for dominance in the infant microbiome

• B. fragilis T6SS provides a selective advantage in Bacteroides-rich 

microbiomes

Verster et al. Page 17

Cell Host Microbe. Author manuscript; available in PMC 2018 September 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. Bacteroides T6SS E–I genes are abundant in human gut microbiome samples
(A) A maximum likelihood phylogeny of B. fragilis reference strains constructed from 

concatenated marker genes. Phylogenetic distance is measured as substitutions per site on 

the marker genes. GA3 effector genes are represented as colored squares (using the same 

color coding as in panel D). (B–D) Each heatmap illustrates the abundance of E–I genes for 

one of the T6SS subsystems. Each row corresponds to a different E–I pair (effector, top; 

immunity, bottom). Columns represent the samples analyzed (HMP, purple; MetaHIT, gray). 

For GA1 and GA2, only samples in which at least 100 reads mapped to the E–I genes of a 

given subsystem are included, and abundance is measured as fraction of the total abundance 

of E–I genes in a given sample. For GA3, only samples in which B. fragilis is present are 

included and E–I abundance is normalized by the abundance of B. fragilis-specific marker 

genes, hence measuring the average number of copies per B. fragilis genome. (E) 
Histograms showing the number of effector genes detected (at >10% of the most abundant 

effector gene) in each sample.
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Figure 2. Differential associations between T6SS and Bacteroides spp
(A) Scatter plot of the average abundance of detected effector genes vs. the average 

abundance of T6SS structural genes for different subtypes. We have restricted our analysis to 

samples with at least 25 reads mapping to a given subtype. The strong correlation observed, 

and the very few samples in which structural genes but no effector genes can be found, 

testify to the completeness of our E–I pairs catalog. (B) Density plots showing the 

distribution across samples of the ratio between the average abundance of detected effector 

genes from each T6SS subsystem and the average abundance of species-specific marker 

genes for different Bacteroides spp. Only samples in which at least 100 reads mapped to the 

E–I genes of a given subsystem and only species for which at least 5 genomes were available 

(and therefore marker genes can be robustly inferred) are included. (C) A boxplot showing 

the minimal relative error in effector abundance assuming that the T6SS is encoded by a 

single species. The relative error is defined as the relative difference between the average 

abundance of detectable effector genes in a sample and the abundance of species with the 

closest abundance. The color of each point represents the species for which the minimal 
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relative error was obtained. (D) Scatter plot of the average abundance of detected GA3 

effector genes vs. the average abundance of B. fragilis-specific marker genes. Only samples 

in which B. fragilis is present are included. As in (A) each abundance was increased by 

10−11. See also Figures S2 and S3.
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Figure 3. E–I turnover and strain replacement in infant microbiomes
(A) The percentage of individuals of those harboring B. fragilis, that lack the GA3 T6SS 

across adult and infant datasets. (B) The minimal similarity (measured by the Jaccard 

similarity coefficient) in GA3 E–I gene content between the first time point and every 

subsequent time point in adults and infants. (C) Examples of E–I turnover events and 

corresponding strain replacement events are shown. The plots on the upper and bottom left 

in each panel illustrate the estimated abundance of GA3 effector genes (measured as copies 

per B. fragilis genome) over time, with the plot on the upper right illustrating the estimated 

frequency of inferred strains in these samples. Only samples in which B. fragilis is present 

are shown. The bottom right plot illustrates the expected abundance of the various effector 

genes based on the effector genes encoded by reference strains that are phylogenetically 

close to the inferred strains. See also Figure S4.
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Figure 4. Differentially abundant genera between T6SS+ and T6SS− HMP samples
Abundances are based on a 16S rRNA survey and only genera whose abundances are 

significantly different in T6SS+ vs. T6SS− samples (at FDR < 0.05) are plotted. See also 

Table S1.
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