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Abstract

Identifying regions of the genome that are depleted of mutations can reveal potentially deleterious 

variants. Short tandem repeats (STRs), also known as microsatellites, are among the largest 

contributors of de novo mutations in humans. However, per-locus studies of STR mutations have 

been limited to highly ascertained panels of several dozen loci. Here, we harnessed bioinformatics 
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tools and a novel analytical framework to estimate mutation parameters for each STR in the 

human genome by correlating STR genotypes with local sequence heterozygosity. We applied our 

method to obtain robust estimates of the impact of local sequence features on mutation parameters 

and used this to create a framework for measuring constraint at STRs by comparing observed vs. 

expected mutation rates. Constraint scores identified known pathogenic variants with early onset 

effects. Our metric will provide a valuable tool for prioritizing pathogenic STRs in medical 

genetics studies.

Introduction

Mutations that have negative fitness consequences tend to be eliminated from the population. 

Thus, identifying regions of the genome that are depleted of mutations has proven a useful 

strategy for interpreting the significance of de novo variation in developmental disorders1, 

prioritizing rare disease variants2, and identifying genes or non-coding regions of the 

genome that are under selective constraint3,4. The key idea of these approaches is that 

mutations occurring at sites evolving under a neutral model are likely to have little effect on 

reproductive fitness, whereas mutations at intolerant sites are more likely to be involved in 

severe early-onset disorders.

So far, the genetics community has developed a multitude of methods to assess genetic 

constraint. These studies have highlighted the importance of a carefully calibrated model of 

the background mutation process to establish a neutral expectation. For instance, Samocha et 
al.1 determine the expected number of de novo variants per gene based on a neutral model 

obtained by counting mutations for each possible trinucleotide context in intergenic SNPs. 

In a different approach, fitCons3 aggregates non-coding regions with similar functional 

annotations and compares observed variation in those regions to an expectation obtained 

from presumably neutral flanking regions. Notably, these methods have mainly focused on 

single nucleotide polymorphisms (SNPs) and to a lesser extent on small indels. As of today, 

computational methods to analyze and assess the functional impact of repetitive elements in 

the genome are lacking. Thus, repeat variants are commonly excluded from medical genetics 

analyses.

To expand the range of interpretation tools to repeat elements, we focused on short tandem 

repeats (STRs), also known as microsatellites, in the human genome. STRs consist of 

repeated motifs of 1–6bp and represent about 1.6 million loci5, rendering them one of the 

largest repeat classes. STR mutations are responsible for over 30 Mendelian disorders6, 

many of which are thought to arise spontaneously from de novo mutations7,8. Emerging 

evidence suggests STRs play an important role in complex traits9 such as gene expression10 

and DNA methylation11. In addition, analyses of cancer cell lines have shown that STR 

instability is a chief clinical sign for tumor prognosis12, but the functional impact of these 

instabilities is largely unknown.

Evaluating genetic constraint requires two fundamental components: an accurate mutation 

model and a deep catalog of existing variation. Both of these have been difficult to obtain for 

repetitive regions of the genome. Current knowledge of the STR mutation process is based 

on low-throughput studies focusing on an ascertained panel of loci that are highly 
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polymorphic. These include genealogical STRs on the Y chromosome13,14, approximately a 

dozen autosomal STRs from the CODIS (Combined DNA Index System) set used in 

forensics, and several thousand STRs historically used for linkage analysis15. These studies 

suggest an average mutation rate of approximately 10−3 to 10−4 mutations per 

generation13–17. However, these loci likely have significantly higher mutation rates than 

most STRs. Moreover, well characterized STRs consist almost entirely of tetra- or di-

nucleotide repeats, which may mutate with different rates and processes compared to other 

repeat classes. Finally, STR mutation rate studies have been based on small numbers of 

families and show substantial differences regarding absolute mutation rates and their 

patterns (Supplementary Table 1).

Here, we developed a framework to measure constraint at individual STRs that benefits from 

a novel method to obtain observed and expected mutation rates at each locus. We developed 

a robust quantitative model that harnesses population-scale genomic data to estimate locus-

specific mutation dynamics at each STR by correlating local SNP heterozygosity with STR 

variation. After extensive validation, we applied this model to estimate mutation rates at 

more than one million STRs using whole genome sequencing of 300 unrelated samples from 

diverse populations18. Using these results, we built a model to predict mutation parameters 

from local sequence features and measured constraint at each STR locus. One caveat is that 

our method is primarily applicable to STRs that can be completely spanned by short reads 

and does not accurately describe large expansion mutations observed in conditions such as 

Huntington’s Disease or Fragile X Syndrome. We show that our constraint metric can be 

used to predict clinical relevance of individual STRs, including those in genes with known 

implications in developmental disorders. This framework will likely enable better 

assessment of the role of STRs in human traits and will inform future work incorporating 

STRs into human genetics studies.

Results

A method to estimate local mutation parameters

We first sought to develop a method to estimate mutation parameters at each STR in the 

genome by fitting a model of STR evolution to population-scale data. A primary 

requirement of our method is a model of the STR mutation process that fits observed 

variation patterns. Motivated by the poor fit of the widely used generalized stepwise 

mutation model (GSM) to our data (Supplementary Note), we developed a novel length-

biased version of the GSM that closely recapitulates observed population-wide trends 

(Supplementary Note, Supplementary Figures 1,2), including a saturation of the STR 

molecular clock over time. Our model includes three parameters: μ denotes the per-

generation mutation rate, β describes the strength of the directional bias of mutation, and p 
paramaterizes the geometric mutation step size distribution. Recently, we developed a 

method called MUTEA that employs a similar model to precisely estimate individual 

mutation rates for Y chromosome STRs (Y-STRs) from population-scale sequencing of 

unrelated individuals. MUTEA models STR evolution on the underlying SNP-based Y 

phylogeny19. We found good concordance (r2=0.87) between MUTEA and traditional trio-

based methods and high reproducibility (r2=0.92) across independent datasets. However, the 
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main limitation of this approach is that it requires full knowledge of the underlying 

haplotype genealogy, which is difficult to obtain for autosomal loci.

To analyze the mutation rates of autosomal STRs, we extended MUTEA to analyze pairs of 

haplotypes. The key insight of our mutation rate estimation procedure is that different 

classes of mutations provide orthogonal molecular clocks (Figure 1). Consider a pair of 

haplotypes consisting of an STR and its surrounding sequence. The SNP heterozygosity is a 

function of the time to the most recent common ancestor (TMRCA) of the haplotypes and 

the SNP mutation rate. On the other hand, the squared difference between the numbers of 

repeats of the two STR alleles (allele squared distance, or ASD) is a separate function of the 

TMRCA. The distribution of ASD values observed for a given TMRCA is determined by 

our STR mutation model. Using known parameters of the SNP mutation process, we can 

estimate the local TMRCA and calibrate the STR molecular clock15.

Our method takes as input unphased STR and SNP genotypes and returns maximum 

likelihood estimates of STR mutation parameters. The TMRCA is approximated by local 

SNP heterozygosity using a pairwise sequentially Markovian coalescent model20 

(Methods). ASD is calculated directly from a diploid STR genotype as the squared 

difference in the number of repeats of each allele. Our maximum likelihood framework 

allows us to estimate parameters at a single STR or jointly across many loci. A potential 

caveat is that haplotype pairs may have shared evolutionary history and thus are not 

statistically independent, which is not expected to bias our estimates but will artificially 

shrink standard errors. To account for this non-independence, we adjust standard errors by 

calibrating to ground truth simulated and capillary electrophoresis datasets (Supplementary 

Note, Supplementary Figure 3).

Validating parameter estimates

We first evaluated our estimation procedure on STR and SNP genotypes simulated on 

haplotype trees using a wide range of mutation parameters. To evaluate our method on 

unphased diploid data, we formed a set of 300 “diploids” by randomly selecting leaf pairs 

and recording the TMRCA and STR allele lengths. To test the effects of genotyping errors, 

we simulated “stutter” errors using the model described in Willems et al.19 and used the 

expectation-maximization framework we developed previously21 to estimate per-locus 

stutter noise and correct for STR genotyping errors.

Our method obtained accurate per-locus estimates for μ for most biologically relevant 

parameter ranges (Figure 2a). Notably, estimates for p and β were less precise 

(Supplementary Figure 4) and thus downstream analyses focused on mutation rates. The 

main limitation of our method is an inability to capture low mutation rates. Informative 

estimates could be obtained for rates >10−6. This presumably stems from the low number of 

total mutations observed (median 1 mutation for μ = 10−6 in 300 samples). Aggregating loci 

or analyzing larger sample sizes gives higher power to estimate low mutation rates due to the 

higher number of total mutations observed. By analyzing loci jointly, we could accurately 

estimate mutation rates down to 10−6 with 30 or more loci and 10−7 with 70 or more loci 

(Figure 2b). As expected, inferring and modeling stutter errors correctly removed biases 

induced by stutter errors (Supplementary Figure 5).
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We next evaluated the ability of our method to obtain mutation rates from population-scale 

sequencing of Y-STRs whose mutation rates have been previously characterized. We 

analyzed 143 males sequenced to 30–50x by the Simons Genome Diversity Project18 

(SGDP) and 1,243 males sequenced to 4–6x by the 1000 Genomes Project22. We used all 

pairs of haploid Y chromosomes as input to our maximum likelihood framework. We 

compared our results to two orthogonal mutation rate estimates: our previous MUTEA 

method19 and a study that examined 2,000 father-son duos13. We found that our mutation 

rate estimates were consistent across sequencing datasets (r=0.90; two-tailed p=1.5×10−18; 

n=48) (Supplementary Figure 6). Encouragingly, our rate estimates were similar to those 

reported by MUTEA on the SGDP dataset (r=0.89; two-tailed p=5.9×10−15; n=41) (Figure 

2c). Furthermore, our estimates were significantly correlated with those reported by 

Ballantyne et al. (r=0.78; two-tailed p=2.0×10−9; n=41) (Supplementary Figure 6), a 

substantial improvement over results obtained using a traditional stepwise mutation model 

(r=0.37; two-tailed p=0.0150; n=41), validating our choice of mutation model.

Finally, we evaluated our method on a subset of well characterized autosomal diploid loci. 

We first analyzed the forensics CODIS markers, which have well-characterized mutation 

rates estimated across more than a million meiosis events (see URLs). Mutation rates were 

concordant with published CODIS rates (r=0.90; two-tailed p=0.00016; n=11) 

(Supplementary Figure 7). We also compared to di- and tetranucleotide mutation rates 

previously estimated by Sun et al. by aggregating data from 1,634 loci in 85,289 

Icelanders15. Mutation rates were in strong agreement (Figure 2d, Supplementary Figure 8), 

which is especially encouraging given that the Sun et al. STR genotypes were obtained using 

an orthogonal capillary electrophoresis method.

Genome-wide characterization of the STR mutation process

Next, we applied our mutation rate estimation method genome-wide. We analyzed 300 

individuals from diverse genetic backgrounds sequenced to 30–50x coverage by the SGDP 

Project18. We aligned reads to the hg19 reference genome using BWA-MEM23 and the 

resulting alignments were used as input to lobSTR24 (Methods). High quality SNP 

genotypes were obtained from our previous study18. We used these as input to PSMC20 to 

estimate the local TMRCA between haplotypes of each diploid individual. For each locus, 

we adjusted genotypes for stutter errors (Supplementary Figure 9, Supplementary Table 2, 

Methods) and used adjusted genotypes as input to our mutation rate estimation technique. 

After filtering (Methods), 1,251,510 STR loci with an average of 249 calls/locus remained 

for analysis. Results were concordant with mutation rates predicted by extrapolating 

MUTEA to autosomal loci (r=0.71; two-tailed p<10−16; n=480,623) (Supplementary Figure 

10), suggesting that our mutation rate estimation is robust even in the case of unphased 

genotype data from modest sample sizes.

Per-locus mutation rates for each repeat motif length varied over several orders of 

magnitude, ranging from 10−8 to 10−2 mutations per locus per generation (Supplementary 

Figure 11, Supplementary Table 3). Median mutation rates were highest for homopolymer 

loci (log10μ = −5.0) and decreased with the length of the repeat motif, with most 

pentanucleotides and hexanucleotides below our detection threshold. Interestingly, 
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homopolymers also showed markedly higher length constraint compared to other loci, 

suggesting an increased pressure to maintain specific lengths. Step size distributions also 

differed by repeat motif length. Homopolymers (median p = 1.00) and to a lesser extent 

repeats with motif lengths 3–6 (median p = 0.95) almost always mutate by a single repeat 

unit. On the other hand, dinucleotides are more likely to mutate by multiple units at once, 

consistent with previous studies15. Overall, our results highlight the diverse set of influences 

on the STR mutation process and suggest there is limited utility to citing a single set of STR 

mutation parameters.

A framework for measuring STR constraint

Encouraged by the accuracy of our per-locus autosomal parameter estimates, we sought to 

create a framework to evaluate genetic constraint at STRs by comparing observed to 

expected mutation rates. Our framework relies on generating robust predictions of per-locus 

mutation rates based on local sequence features and comparing the departure of the observed 

rates from this expectation (Figure 3a). STRs whose observed mutation rates are far lower 

than expected are assumed to be under selective constraint and thus more likely to have 

negative fitness consequences.

We began by evaluating whether local sequence features can accurately predict STR 

mutation rates. We examined the relationship between STR mutation rate and a variety of 

features, including total STR length, motif length, replication timing, and motif sequence 

(Supplementary Figure 12). While all features were correlated with mutation rate 

(Supplementary Table 4), total uninterrupted repeat sequence length and motif length were 

by far the strongest predictors, as has been previously reported by many studies15,19. These 

features were combined into a linear regression model to predict per-locus mutation rates. 

We stringently filtered the training data to consist of presumably neutral (intergenic) loci 

with the best model performance. Analysis was restricted to STRs with motif lengths of 2–

4bp with reference length ≥ 20bp and small standard errors (Methods), since this subset 

showed mutation rates primarily in the range that our model can detect. Using this filtered 

set of markers, a linear model explained 65% of variation in mutation rates in an 

independent validation set (Figure 3b).

We next developed a metric to quantify constraint at each STR by comparing observed to 

expected mutation rates. Our constraint metric is calculated as a Z-score, taking into account 

errors in both the predicted and observed values (Methods). Negative Z-scores denote loci 

that are more constrained than expected, and vice versa. Constraint scores for loci with 

detectable mutation rates followed the expected standard normal distribution 

(Supplementary Figure 13). However, loci with mutation rates below our detection threshold 

of 10−6 do not have reliable standard error estimates and had downward biased scores. 

Nevertheless, these loci are informative of a constraint signal in cases where the predicted 

mutation rate is high but the observed rate is below our detection threshold. Thus, rather than 

analyzing distributions of raw constraint scores, we binned scores by deciles and examined 

enrichments for functional annotations in each bin. For comparison, we also calculated 

mutation rates and constraint scores assuming a generalized stepwise model (Methods) and 

found that mutation rates and constraint scores were similar (r=0.88 and r=0.56 for mutation 
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rates and constraint scores, respectively). All constraint scores analyzed below were 

calculated using the length-constrained model.

STR constraint scores give insights into human phenotypes

Observed Z-scores are concordant with biological expectations across genomic features. 

Introns, intergenic, and 3′-UTR regions closely matched neutral expectation (Figure 3c). On 

the other hand, STRs in coding exons showed significantly reduced mutation rates compared 

to the null model. These trends were recapitulated in the expected mutation rates (Figure 

3d), suggesting that STRs under constraint are also under evolutionary pressure to maintain 

sequence features contributing to lower mutability. Additional analysis of STR constraint in 

coding regions is given in Supplementary Note and Supplementary Figure 14. In contrast to 

strong levels of constraint in coding exons, the STRs that we had previously identified to act 

as expression quantitative trait loci (eQTLs)10 showed a marked lack of constraint, 

consistent with observations in the Exome Aggregation Consortium (ExAC) dataset25 

showing highly constrained genes are depleted for eQTLs.

Constraint can provide a useful metric to prioritize potential pathogenic variants and 

interpret the role of individual loci in human conditions. Notably, this metric is most 

sensitive to early-onset disorders, as mutations involved in later onset disorders generally do 

not affect fitness and are thus expected to follow neutral patterns. Additionally, constraint is 

most sensitive to deleterious mutations following dominant inheritance patterns, since 

recessive mutations are eliminated at much slower rates. Consistent with this theory, STRs 

implicated in early onset dominant diseases show significantly higher constraint than 

expected (Figure 4). We focused on STRs that can be genotyped from high throughput 

sequencing data and are involved in congenital disorders. Notably, this excludes most large 

repeat expansions such as those involved in Huntington’s Disease or Fragile X Syndrome. 

First, we examined polyalanine and polyglutamine tracts in RUNX2. Even mild expansion 

of four glutamine residues has been shown to result in congenital cleidocranial dysplasia 

(OMIM: 119600)26,27. Both repeats showed constrained mutation rates, with the 

polyglutamine repeat in the most constrained bin (Z=−11.3). Next, we tested a polyalanine 

expansion in HOXD13, which causes a severe form of synpolydactyly (OMIM: 186000). 

Again, a mild expansion (7 additional residues) has been shown to be pathogenic28. This 

repeat was on the boundary of the most severe constraint bin (Z=−10.9). As a negative 

control, we also tested constraint at the CODIS loci used in forensics, which have been 

specifically ascertained for their high polymorphism rates and are likely neutral. As 

expected, the CODIS markers have weak constraint scores, and exhibit slightly higher 

mutation rates than expected (Z>0) (Figure 4).

More broadly, we found protein-coding STRs are highly enriched in genes that are involved 

in developmental processes (Fisher’s exact test p=1.88×10−36; nfg=1,133; nbg=20,913). 

Consistent with this result, three of the ten most highly constrained coding STRs in our 

dataset are in genes with previously reported developmental disorders following autosomal 

dominant inheritance patterns that have yet to be associated with pathogenic STRs: GATA6 
(congenital heart defects, OMIM: 600001), SOX11 (mental retardation, OMIM: 615866), 

and BCL11B (Immunodeficiency 49, OMIM: 617237) (Supplementary Table 5). On the 
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other hand, we found that pathogenic STRs of late onset STR expansions disorders such as 

spinocerebellar ataxias were not highly constrained and showed mutation rates very close to 

predicted values (Figure 4). These disorders often do not occur until the fourth or fifth 

decade of life29, and thus are not expected to be under strong purifying selection. Taken 

together, these results suggest STR constraint scores will provide a useful metric by which to 

prioritize rare pathogenic variants involved in severe developmental disorders.

To facilitate use by the genomics community, genome-wide results of our mutational 

constraint analysis are provided in BED format (see Data Availability), which can be 

analyzed with standard genomics tools such as BEDtools30.

Discussion

Metrics for quantifying genetic constraint by comparing observed to expected variation have 

provided a valuable lens to interpret the impact of de novo SNP variants. These have been 

widely used for applications including quantifying the burden of de novo variation in 

neurodevelopmental disorders1,31, identifying individual genes constrained for missense or 

loss of function variation25, and more recently to measure constraint in non-coding 

elements4,32. However, the mutation rate at SNPs is sufficiently low that any given 

nucleotide has a low probability of being covered by a polymorphism even in very large 

datasets of human variation (e.g. a dataset of more than 60,000 exomes contained about 1 

polymorphism per 8 nucleotides25). Thus, the information provided by SNP variation is 

never sufficient to provide a direct measurement of the likely evolutionary constraint on a 

particular mutation. In contrast, the much higher mutation rate at STRs makes it possible to 

precisely measure constraint on a per-locus basis even with as few as 300 whole genomes.

We combined a deep catalog of STR variation18 with a novel model of the STR mutation 

process to develop an accurate method for measuring per-locus STR mutation parameters. 

We used this method to estimate individual mutation rates for more than 1 million STRs in 

the genome. Observed STR mutation rates vary over several orders of magnitude, suggesting 

it is not useful to cite a single mutation rate for all STRs. Median genome-wide mutation 

rates were far lower than previously reported15–17,33. This is consistent with the fact that 

most well studied STR panels were specifically ascertained for their high heterozygosity, 

needed for traditional STR applications such as forensics or genetic linkage analysis. Our 

estimates confirm many known trends in STR mutation, such as the dependence of mutation 

rate on total STR length and the tendency of dinucleotide repeats to mutate in larger units 

than tetranucleotides15. Moreover, this large dataset allows us to exclude the possibility that 

certain sequence features such as local GC content play a strong role in determining STR 

mutation rates.

By comparing observed to expected mutation rates, we showed that we can measure genetic 

constraint at individual loci and use our constraint metric to prioritize potentially pathogenic 

variants. Importantly, our approach provides a biologically agnostic approach to assessing 

the importance of individual loci, as it relies entirely on observed genetic variation. While 

our analyses focused on STRs, the framework developed here can be easily extended to any 

class of repetitive variation for which accurate genotype panels are available. In future 
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studies, we envision this work will provide a much needed framework to interpret the dozens 

of de novo variants at STRs and other repeats arising in each individual, especially in the 

context of severe early onset disorders. Beyond analyzing de novo variation, accurate models 

of STR mutation will enable scans for STRs under selection34, help identify rapidly 

mutating markers for forensics or genetic genealogy19,35, and improve statistical methods 

for incorporating STRs into quantitative genetics studies.

Our mutation rate estimation method and constraint metric face several limitations. First, 

estimating mutation rates in several hundred samples is only accurate for mutation rates 

down to approximately 10−6. Loci with slower mutation rates produce biased results, 

limiting our ability to predict and measure mutation rates at a large number of loci, including 

the majority of protein coding STRs. While we can detect general signals of constraint for 

slowly mutating STRs, larger sample sizes will allow for more accurate constraint scores 

and thus more informative prioritization. Second, our method analyzes pairs of haplotypes 

rather than the entire evolutionary history of a locus. While this has the advantage of 

allowing estimation across unphased data, it discards valuable information present in the full 

haplotype tree and limits the scope of models that can be considered. For example, it 

precludes modeling allele length-specific mutation rates, which requires estimating ancestral 

states on the full haplotype tree. Finally, there are additional aspects of the STR mutation 

process not modeled here. Our method focuses on short stepwise mutations occurring at 

relatively stable STRs. Unstable expansions, such as those occurring in trinucleotide repeat 

disorders, likely mutate by different models. Our model also ignores the effect of sequence 

interruptions and putative interactions between alleles, both of which have been 

hypothesized to influence STR mutation patterns19,36.

Future bioinformatic advances will likely overcome many of these issues and improve the 

precision of our estimates. In particular, while our method works on unphased data, phased 

STR and SNP haplotypes would allow analysis of the entire haplotype tree at a given locus 

as is done by MUTEA, improving our accuracy and allowing us to consider a broader range 

of mutation models. Additionally, our current tools are limited to STRs that can be spanned 

by short reads, and thus exclude many well known pathogenic loci such as those involved in 

trinucleotide repeat expansion disorders. We envision that long read and synthetic long read 

technologies will both enable analysis of a broader class of repeats and provide an additional 

layer of phase information. Finally, larger sample sizes will allow more accurate analysis of 

constraint for slow-mutating loci. Taken together, these advances will provide a valuable 

framework for interpreting mutation and selection at hundreds of thousands of STRs in the 

genome and will help prioritize STR mutations in clinical studies.

Online Methods

STR mutation model

We model STR mutation using a discrete version of the Ornstein-Uhlenbeck process 

described in detail in the Supplementary Note. Our model assumes STR mutations occur at a 

rate of μ mutations per locus per generation according to a step-size distribution with first 

and second moments:
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where ai is the length of the STR allele after mutation i and ai+1 is the length after mutation i 
+1. This implies that long alleles (>0) tend to decrease back toward 0 and short alleles (<0) 

tend to increase toward 0. For all analyses, all alleles are assumed to be relative to the major 

allele, which is set to 0.

Mutation parameter estimation

We extended the MUTEA framework to estimate parameters at diploid loci for which the 

underlying haplotype tree is unknown. For each sample genotyped at locus j, we obtain tij, 
the TMRCA between the two haplotypes of sample i, and a distribution Gij, where Gij(a,b) 

gives the posterior probability that sample i has genotype (a,b). We initially assume that 

haplotype pairs are independent and maximize the following likelihood function at locus j:

Where θ = {μ, β, p}, Dj = {(G1j, t1j), (G2j, t2j)...(Gnj, tnj)}, n is the number of samples, and 

A(x|t) gives the probability of observing a squared distance of x between alleles on 

haplotypes with a TMRCA of t. We used the Nelder-Mead algorithm to minimize the 

negative of the log-likelihood and imposed boundaries of μ ∈ [10−8, 0.05], β ∈ [0,0.9], p ∈ 
[0.7, 1.0].

To compute the function A, we first build a transition matrix M of size L × L, where L is the 

number of allowed alleles. M[a,b] gives the probability that allele a mutates to allele b in a 

single generation. Step sizes were set based on the model described in Supplementary Note:

where  and .

M represents a stochastic process, and thus MT gives transition probabilities along a branch 

T generations long. A single row MT[a,:] gives the expected allele frequency spectrum of a 

locus for which the ancestral allele was a and the MRCA was T generations ago. We can use 

this to derive the probability of observing a given squared distance between two alleles 

separated by t generations:
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In our data, we do not know the ancestral allele a for each pair of haplotypes. However, 

under our model of STR evolution, A does not depend on the ancestral allele and so we 

assume 0 as the ancestral allele for simplicity. Notably, we have assumed haplotype pairs are 

statistically independent. While this does not bias our results, standard errors must be 

adjusted as described in the Supplementary Note.

Estimating mutation parameters using a generalized stepwise model

Under a generalized stepwise model (GSM), the ASD should be linearly related to the 

TMRCA between a pair of haplotypes37:

Where ai and aj are the repeat lengths of STR alleles on two haplotypes i and j, tij is the 

TMRCA between that pair of haplotypes, and μeff is the effective mutation rate. The 

effective mutation rate is defined as , where μ is the per-generation mutation rate 

of the locus and step sizes are drawn from a distribution with mean 0 and variance .

For each locus, we calculated μeff by regressing ASD on TMRCA and dividing the resulting 

slope by 2.

Joint estimation of mutation parameters across multiple loci

The MUTEA approach can be easily extended to estimate mutation parameters in aggregate 

by jointly maximizing the likelihood across multiple loci at once:

To minimize computation and because β and p tended to be less consistent across loci, we 

first perform per-locus analyses to obtain individual estimates for β and p. We then hold 

these parameters constant at the mean value across all loci and only maximize the joint 

likelihood across μ

Simulating SNP-STR haplotypes

We used fastsimcoal38 to simulate coalescent trees for 600 haplotypes using an effective 

population size of 100,000. We then forward-simulated a single STR starting with a root 

allele of 0 using specified values of μ, β, and . Mutations were generated according 

to a Poisson process with rate  and following the model described above. We chose 300 

random pairs of haplotypes to form “diploid” individuals to use as input to our estimation 

method. We simulated reads for each locus assuming 5x sequencing coverage, with each 

read equally likely to originate from each allele. Stutter errors were simulated using the 

model described in Willems et al.19 with u = 0.1, d = 0.05, and ρs = 0.9. This indicates that 

stutter noise causes the true allele to expand or contract with 10% or 5% frequency, 

respectively, and that error sizes are geometrically distributed with 10% probability of 
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mutating by more than one repeat unit. For estimating per-locus parameters, we performed 

10 simulations with each set of parameters.

Datasets

Previously published mutation rate estimates—MUTEA mutation rate and length 

bias estimates for the 1000 Genomes dataset were obtained from Table S1 in Willems et 
al.19 De novo Y-STR mutation rate estimates were obtained from Table S1 of Ballantyne et 
al.13 CODIS mutation rates were obtained from NIST (see URLs).

Annotations—Local GC content and sequence entropy were obtained from the “strinfo” 

file included in the lobSTR hg19 reference bundle. Missense constraint scores were 

downloaded from the ExAC website (see URLs).

STR genotyping

Profiling STRs from short reads—Raw sequencing reads for the SGDP dataset were 

aligned using BWA-MEM23. Alignments were used as input to the allelotype tool packaged 

with lobSTR24 version 4.0.2 with non-default flags “—filter-mapq0 –filter-clipped –max-

repeats-in-ends 3 –min-read-end-match 10 –dont-include-pl –min-het-freq 0.2 –noweb”. 

STR genotypes are available on dbVar under accession nstd128. Y-STRs for the 1000 

Genomes data were previously profiled24 and were preprocessed as described in19.

Filtering to obtain high quality STR calls—Y-STR calls for SGDP were filtered using 

the lobSTR_filter_vcf.py script available in the lobSTR download with arguments “--loc-

max-ref-length 80 --loc-call-rate 0.8 --loc-log-score 0.8 --loc-cov 3 --call-cov 3 --call-dist-

end 20 --call-log-score 0.8” and ignoring female samples. Autosomal samples were filtered 

using “--loc-max-ref-length 80 --loc-call-rate 0.8 --loc-log-score 0.8 --loc-cov 5 --call-cov 5 

--call-dist-end 20 --call-log-score 0.8”.

Calculating local TMRCA

As described in Mallick et al.18, we used the pairwise sequential Markovian coalescent 

(PSMC)20 to infer local TMRCAs across the genome in each sample. For each region 

overlapping an STR, we calculated the geometric mean of the upper and lower 

heterozygosity estimates returned by PSMC. We scaled heterozygosity to TMRCA based on 

the genome-wide average PSMC estimate (0.00057) of a French sample with a previously 

estimated genome-wide average TMRCA of 21,000 generations15. To accommodate errors 

in this scaling process, final mutation rate estimates were scaled to match the mean values of 

published de novo rates (see below).

Pairwise Y chromosome analysis

For each pair of SGDP Y-chromosomes, we first calculated the pairwise sequence 

heterozygosity. We then scaled this to TMRCA using the relationship ti = hi/2μYSNP, where 

hi is the heterozygosity of pair i and μYSNP is the Y-chromosome SNP mutation rate. μYSNP 

was set to 2.1775×10−8 as reported by Helgason et al.39 For the 1000 Genomes set, we 

obtained a Y-phylogeny that was built by the 1000Y analysis group40. We scaled the tree 
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using a method described previously19. For each dataset, we used pairwise TMRCA and 

allele squared distance estimates as input to our maximum likelihood procedure.

Scaling mutation parameters

Our TMRCA estimates, and thus mutation rate estimates, scale linearly with the choice of 

SNP mutation rate. To account for this and to compare estimates between datasets, we scaled 

our mutation rates by a constant factor such that the mean STR mutation rates between 

datasets were identical. Genome-wide estimates are scaled based on the comparison with 

CODIS rates.

Measuring STR constraint

Predicting mutation rates from local sequence features—We trained a linear 

model to predict log10 mutation rates from local sequence features including GC content, 

replication timing, sequence entropy, motif sequence, motif length, total STR length, and 

uninterrupted STR length. The model was built using presumably neutral intergenic loci, 

with 75% of the loci reserved for training and 25% for testing. While all features were 

correlated with mutation rates, the best test performance was achieved using only motif 

length and uninterrupted STR length. Models were built using the python statsmodels 

package (see URLs).

Model training was restricted to STRs whose mutation rates could be reliably estimated. We 

filtered STRs with total reference length <20bp, since the majority of shorter STRs returned 

biased mutation rates at the optimization boundary of 10−8. We further filtered STRs with 

standard errors equal to 0, >0.1, or undefined (usually indicating the lower optimization 

boundary of 10−8 was reached). However, these loci were included in testing and in 

downstream analysis as the majority of coding STRs fell into this category.

Calculating Z-scores—Constraint scores are calculated for each locus i as:

Where μi is the observed mutation rate, SE[μi] is the standard error of the observed mutation 

rate, E[μi] is the predicted mutation rate, and Var[μi] is the variance of the prediction. In all 

cases, μi refers to the log10 mutation rate, with the log10 notation omitted for simplicity.

Constraint score analysis—GO analysis was performed using goatools (see URLs). 

OMIM disease annotations were accessed on December 8, 2016.

Data availability

Per-locus mutation parameters are available at https://s3-us-west-2.amazonaws.com/

strconstraint/Gymrek_etal_SupplementalData1_v2.bed.gz. The file format is described in 

https://s3-us-west-2.amazonaws.com/strconstraint/readme_v2.txt.
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Code availability

Code used in this study is available at https://github.com/gymreklab/mutea-autosomal.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Estimating STR mutation parameters from diploid data
(a) SNPs and STRs give orthogonal molecular clocks. The tree represents an example 

evolutionary history of an STR locus. Red dots denote STR mutation events. Blue dots 

represent SNP mutation events. Black branches denote an observed diploid locus, consisting 

of two haplotypes from the tree. Bolded nucleotides represent sequence differences between 

the two haplotypes. (b) Correlating local TMRCA with STR genotypes allows per-locus 
mutation rate estimation. For each diploid STR call, we use SNP heterozygosity to 

estimate the TMRCA of the surrounding region and we compute the squared difference 
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between the two STR alleles. Our STR mutation model describes the expected ASD for a 

given TMRCA (solid black line).
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Figure 2. Accurate estimation of STR mutation parameters from simulated data
(a) Per-locus estimates of mutation rate. Dashed gray lines give boundaries enforced 

during numerical optimization. (b) Jointly estimating parameters across loci allows 
inference of low mutation rates. Black lines give joint estimates for different simulated 

mutation rates. Dashed gray lines give simulated values. (c) Y-STR mutation rate 
parameters are concordant across estimation methods. Mutation rate estimates from this 

study compared to those generated by MUTEA. Gray dashed lines denote the diagonal 

(N=41). (d) Autosomal mutation rate estimates are concordant with de novo studies. 
Histograms gives the distribution of per-locus mutation rates estimated by this study. Dashed 

lines give median estimates across loci. Solid lines give empirical mutation rates from trio 

data analyzed by Sun et al.15
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Figure 3. A framework for measuring STR constraint
(a) Schematic of constraint framework. In the model training phase, a linear model is 

trained to predict mutation rates from local sequence features. In the estimation phase, 

constraint is measured by comparing predicted mutation rates to observed rates. (b) 
Sequence features are predictive of mutation rate. Comparison of predicted vs. observed 

mutation rates for a held out test set of intergenic loci. Gray dots denote loci with high or 

undefined standard errors that were excluded from model training. (c) Enrichment of gene 
annotations by constraint bin. X-axis gives bins defined by Z-score deciles. Y-axis gives 
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the fold enrichment of each annotation in each bin. The dashed line gives the boundary 

between constrained (Z<0) and non-constrained (Z>=0) scores. (d) Predicted mutation 
rates by annotation. Center lines denote medians, boxes span the interquartile range, and 

whiskers extend beyond the box limits by 1.5 times the interquartile range. For (c) and (d), 
constrained denotes STRs in genes with missense constraint score >3 as reported by ExAC.
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Figure 4. Constraint scores can be used for STR prioritization
(a) Z-scores for example loci. Black indicates CODIS forensics markers. Blue indicates 

known pathogenic STRs. For each STR, the CODIS marker or gene name is given and the 

chromosomal location (GRCh37) is indicated in parentheses. (b) Example distributions of 
estimated vs. expected mutation rates. The left panel shows a CODIS STR (D19S433), a 

presumably neutral STR. The middle panel shows a highly constrained polyglutamine repeat 

in RUNX2 for which a mild expansion is implicated in cleidocranial dysplasia, an early 

onset disorder. The right panel shows a polyglutamine repeat in ATXN7, implicated in 

spinocerebellar ataxia type 7, a late onset disorder and accordingly not highly constrained.
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