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Summary

Successful regeneration requires that progenitors of different lineages form the appropriate 

missing cell types. However, simply generating lineages is not enough. Cells produced by a 

particular lineage often have distinct functions depending on their position within the organism. 

How this occurs in regeneration is largely unexplored. In planarian regeneration, new cells arise 

from a proliferative cell population (neoblasts). We used the planarian epidermal lineage to study 

how the location of adult progenitor cells results in their acquisition of distinct functional 

identities. Single-cell RNA sequencing of epidermal progenitors revealed the emergence of 

distinct spatial identities as early in the lineage as the epidermal neoblasts, with further pre-

patterning occurring in their post-mitotic migratory progeny. Establishment of dorsal-ventral 

epidermal identities and functions, in response to BMP signaling, required neoblasts. Our work 

identified positional signals that activate regionalized transcriptional programs in the stem cell 

population and subsequently promote cell type diversity in the epidermis.

In-Brief/eToC blurb

Wurtzel et al. examine how in planarian regeneration, adult progenitor cell location contributes to 

acquisition of distinct functional identities. They provide insight for how progenitors in the 

epidermis read their position in the animal to activating region-specific transcription, which is 

ultimately propagated to differentiated progeny generate the required cellular functions.
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Introduction

A major challenge of adult regeneration and tissue turnover is the production of region-

appropriate cell types in the absence of embryonic patterning mechanisms (Sanchez 

Alvarado and Yamanaka, 2014). Progenitors for regeneration, such as stem cells or 

dedifferentiated cells, must be regulated to choose which cell types to make, and these cell 

types must be appropriate for their location (Reddien, 2011). Furthermore, cells of the same 

lineage and cell type often have specialized functions depending on their location (Lavin et 

al., 2014), which requires additional control over their differentiation (Baxendale et al., 

2004; Gautier et al., 2012). Therefore, mechanisms governing lineage choice and the 

regional specialization of cell function are of central importance in regeneration. Here, we 

focus on the questions of how and when region-appropriate specialization occurs within a 

lineage.

Planarians are free-living flatworms that use adult stem cells to maintain tissues and to 

regenerate (Reddien and Sanchez Alvarado, 2004). The only proliferating cell population in 

planarians, neoblasts, contain pluripotent stem cells (Wagner et al., 2011). Many neoblasts 

are specialized towards particular cell types including cells of the protonephridia (Scimone 

et al., 2011), intestine (Forsthoefel et al., 2012), pharynx (Adler et al., 2014; Scimone et al., 

2014a), nervous system (Cowles et al., 2013; Scimone et al., 2014a), eye (Lapan and 

Reddien, 2012), and anterior pole (Scimone et al., 2014b). The location of a neoblast 

(Reddien, 2013) impacts its identity: For example, eye-specialized neoblasts are not found in 

the posterior of the animal (Lapan and Reddien, 2012) and intestinal neoblasts are often in 

proximity to the planarian gut (Wagner et al., 2011). Therefore, spatial information likely 

affects the identity of neoblasts and their progeny (Reddien, 2013).

Conversely, it is unknown how the spatial distribution of neoblasts and progenitors within a 

lineage generates a diversity of cellular identities and functions. The planarian epidermis 

presents an ideal system for studying this question: First, multiple cellular identities with 

specialized functions are found in the epidermis in specific body locations (Glazer et al., 

2010; Tazaki et al., 2002), and these cells appear to emerge from a single specialized 

neoblast lineage (ζneoblasts; Fig 1A) (van Wolfswinkel et al., 2014). Second, there are well-
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established assays for evaluating planarian epidermal integrity and function (Tu et al., 2015; 

van Wolfswinkel et al., 2014; Vij et al., 2012), and the status of the lineage from neoblasts 

(van Wolfswinkel et al., 2014) all the way to mature cells (Tu et al., 2015). Finally, the 

epidermal lineage has well-characterized differentiation stages (Fig 1A) that are both 

spatially and temporally distinct (Eisenhoffer et al., 2008; Tu et al., 2015; van Wolfswinkel 

et al., 2014).

The epidermal lineage is derived from mitotic ζneoblasts that are distributed throughout the 

mesenchyme (van Wolfswinkel et al., 2014). A ζneoblast exits the cell-cycle and progresses 

through a series of defined stages during its differentiation (Fig 1A) (Eisenhoffer et al., 

2008; Tu et al., 2015), a process that takes at least seven days (van Wolfswinkel et al., 2014). 

During differentiation, cells migrate from the mesenchyme outwards to the epidermis, and 

ultimately integrate into the mature epidermis, a single-layered epithelial sheet (Tu et al., 

2015). This is in contrast to other established models used for studying the generation of 

epithelial cell type diversity (Cibois et al., 2015; Dubaissi and Papalopulu, 2011; Quigley et 

al., 2011), such as the Xenopus embryonic epidermis, in which epithelial progenitors 

migrate from an inner monolayer to an outer monolayer. In this case, progenitors can rely on 

physical cell-cell communication to determine cell fates (Cibois et al., 2015; Dubaissi and 

Papalopulu, 2011; Quigley et al., 2011). In planarians, mesenchymal progenitors are 

hypothesized to rely on secreted positional cues (Reddien, 2011), creating different 

challenges for the generation of cell-type diversity. In this process progenitors display a 

stereotyped sequence of gene expression changes, collectively described as maturation (Fig 

1A) (Tu et al., 2015). This apparently homogeneous population of progenitors gives rise to 

spatially distinct mature epidermal cell types (Glazer et al., 2010).

We devised a strategy to determine at which stage in the epidermal lineage cells express 

genes associated with distinct spatial identities. We developed a method for isolating dorsal 

and ventral epidermis, which facilitated the detection of eight spatial mature epidermal 

identities. We asked whether these identities emerge in the differentiated cells, their 

immediate progenitors, or even as early as in the spatially and temporally distant ζneoblasts 

that will produce these cells. The emergence of distinct expression patterns was analyzed by 

single-cell RNA sequencing (SCS) of 303 cells spanning every step of epidermal maturation, 

combined with in situ hybridization (ISH) of over 125 epidermal genes. We found that 

epidermal neoblasts (ζneoblasts) and progenitors from all stages of epidermal maturation 

express genes according to their location within the animal. Analysis of ζneoblasts and 

progenitors across the dorsal-ventral (DV) axis revealed divergent transcriptional programs 

that correlated with the emergence of distinct dorsal or ventral epidermal identities. 

Inhibition of bmp4, a dorsalizing factor (Molina et al., 2007; Orii and Watanabe, 2007; 

Reddien et al., 2007) that is constitutively expressed in dorsal muscle cells (Witchley et al., 

2013), resulted in the rapid dorsal emergence of ventral ζneoblasts and their progeny. This 

lineage ventralization, following bmp4 inhibition, did not occur in the absence of ζneoblasts 

even when their progeny were present. This indicates that ζneoblasts respond to positional 

signals in their environment and activate region-appropriate transcriptional programs. These 

findings demonstrate that single-cell RNA sequencing, from distinct body regions, is a 

powerful method for revealing the spatial identity of progenitors for regeneration and tissue 

maintenance. Our results demonstrate that distinct regional identities are detectable within 
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the neoblast population, and that signals from differentiated cells can be read by neoblasts to 

promote spatial cell-type diversity.

Results

Epidermal genes are expressed in at least eight different spatial patterns

Multiple cellular identities, distinguished by distinct gene expression domains, make the 

planarian epidermis. Our goal was to find how and when, during the formation of new 

epidermal cells, distinct epidermal identities emerge. Previous work identified three 

epidermal identities: ciliated epidermis (Glazer, 2010), non-ciliated epidermis, and dorsal-

ventral (DV) boundary epidermis (Tazaki, 2002). However, other epidermal identities might 

exist. Since our work required a broad classification of epidermal identities, we first 

characterized mature epidermal identities through analysis of epidermal gene expression. We 

implemented an epidermal-enrichment strategy based on ammonium thiocyanate treatment 

(Trost et al., 2007), which allowed for the collection of the epidermis (Fig S1A; STAR 

Methods). Isolated epidermis was used for RNA extractions from six biological replicates 

from the dorsal or ventral epidermal surfaces, separately (Fig S1A–B; STAR Methods), 

which was followed by preparation of RNA sequencing libraries (STAR Methods). 

Comparison of the epidermis-enriched RNAseq libraries with libraries prepared from RNA 

extracted from whole worms identified 3,315 genes that were overexpressed in the epidermis 

(Fig 1C–E; fold-change ≥ 2; FDR < 1E-4; STAR Methods), including 393 and 233 genes 

enriched in either the dorsal or ventral epidermis, respectively (Fig S1D; Table S1).

We characterized the diverse patterns of epidermal gene expression by selecting 125 

epidermis-enriched genes (Fig S1D–E; Table S1) and performing whole-mount in situ 

hybridizations with RNA probes (WISH). WISH analysis revealed that 90% (113/125) of the 

genes were in fact enriched in the epidermis (Fig 1B, S1F; Table S1), which we then 

classified to eight distinct expression patterns (Fig 1B–C; Fig S1F–G; Table S1), 

representing diverse mature epidermal identities (Fig 1C). We subsequently used 

representatives of these patterns to study when, during epidermal differentiation, spatial gene 

expression domains emerge.

Reconstructing the epidermal lineage by single-cell sequencing

The expression of epidermal genes can emerge before differentiation is complete (Tu et al., 

2015). For example, vim-1 was expressed in epidermal cells that were not yet integrated into 

the epidermis (Fig S1G), in contrast to PRSS12 and laminB (Fig S1G), which were 

expressed only in the mature epidermis. However, it is unclear how early in differentiation 

mature epidermal gene expression can initiate. To determine the stage of epidermal 

differentiation at which epidermal identities emerge, we characterized the transcriptomes of 

epidermal progenitors with single cell resolution. We dissected different body regions, 

including dorsal, ventral, or lateral tissues (Fig 1D; STAR Methods) and, following 

maceration of the fragments, we isolated cells by fluorescence-activated cell sorting (FACS; 

STAR Methods). Then, we selected cells for sequencing by quantitative PCR (qPCR) for the 

expression of an epidermal progenitor marker, agat-1, which we found to be expressed in all 

post-mitotic epidermal progenitors both by SCS (Wurtzel et al., 2015) and FISH (Fig S2A–
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B; STAR Methods). In addition, we isolated lateral tissues and selected cells expressing an 

epidermal boundary marker (laminB; Fig 1B, S1G; (Tazaki et al., 2002)). In total, we 

collected 205 epidermal progenitors (agat-1+) and 6 epidermal boundary cells (laminB+). 

We used these cells for SCS (Picelli et al., 2014), and the data that was generated was 

analyzed in combination with published epidermal lineage SCS data (98 cells; (Wurtzel et 

al., 2015)). SCS gene expression data was visualized by t-distributed stochastic neighbor 

embedding (tSNE) (van der Maaten and Hinton, 2008), and the data was clustered using the 

Seurat package (Satija et al., 2015) (Fig 1E; Table S2; STAR Methods). The clustering 

analysis recapitulated known epidermal lineage cell states (Tu et al., 2015), here defined as: 

“ζNeoblast”, “Early Stage”, “Late Stage”, “Later Stage”, and 3 mature cell types (Fig 1E–F; 

S2C–F). Gene expression comparison between clusters identified 1,452 genes enriched in 

particular clusters (Table S3; FDR < 0.001, fold-change > 4; STAR Methods). We selected 

highly specific gene markers to each maturation state based on this analysis (AUC range 

0.81–1; Fig 1F–G; S2C–D), and used them for FISH (Fig 1H). These data represent 

comprehensive gene expression profiles of every stage of planarian epidermal 

differentiation.

Many mature epidermal genes are expressed in Early Stage progenitors

The SCS data we collected spanned every stage of epidermal maturation, which allowed 

determination of whether genes expressed in the mature epidermis (Table S1), were also 

expressed in progenitors and at what stage. We found that 24% of these genes (Fig 2A) were 

expressed in at least 30% of the Early Stage or Late Stage progenitors (Table S1; STAR 

Methods). Interestingly, some of these genes encode proteins that are associated with mature 

epidermal functions, such as ciliogenesis (Fig 2B, S3A). This raised the possibility that 

progenitor populations display distinct epidermal identities despite having at least four days 

to complete their maturation (van Wolfswinkel et al., 2014). We tested these results by FISH 

on whole animals (Fig 2B–D; S3A–C) or by FISH on FACS-sorted cells (cell FISH; Fig 

S3D; STAR Methods). Expression of tested genes encoding cilia components (e.g. BBS1 

and ift88-like) was detectable in Early Stage progenitors and mature epidermis (Fig 2B–D, 

S3A–D), but not in dividing neoblasts (Fig S3E). SCS, however, predicted that 23% of the 

centriole-associated genes (Azimzadeh et al., 2012) were also expressed in neoblasts (Table 

S4). This observation is consistent with the recent report by Duncan et al. on the expression 

of cilia components in neoblasts (Duncan et al., 2015). Furthermore, transcripts for 75% 

(20/27) of centriole-associated genes (Azimzadeh et al., 2012), which are expressed in 

ciliated cells (Azimzadeh et al., 2012; Wurtzel et al., 2015) were detectable in Early Stage or 

Late Stage progenitors (Table S4), despite the fact that cilia were restricted to the mature 

epidermis (Fig S3F). Therefore, cilia appeared to only be assembled in mature epidermal 

cells despite transcription of genes encoding cilia components in progenitors. The 

correlation of co-expression of multiple structural cilia genes in single cells was much 

higher in Later Stage progenitors compared to Early Stage or Late Stage progenitors 

(Average Pearson correlation r=0.08, 0.1, 0.43 for Early Stage, Late Stage, and Later Stage, 

respectively; STAR Methods). However, expression of cilia-encoding genes was unlikely 

non-specific even in Early Stage progenitors, because expression of genes encoding cilia 

components was completely undetectable in non-ciliated cell types, such as muscle or gut 

(STAR Methods; (Wurtzel et al., 2015)). These results suggest that epidermal cells can adopt 
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a distinct functional identity (becoming ciliated or not) early during differentiation, rather 

than acquiring an identity only after integration into the mature epidermis.

RNAi identifies transcription factors required for spatially-restricted epidermal identity

We observed that a number of genes with spatially-restricted expression patterns in the 

epidermis encode predicted transcription factors, raising the possibility that multiple 

transcription factors (TF) regulate epidermal spatial patterning. For instance, eight TFs were 

predicted to be expressed in the DV epidermal boundary cells in our SCS data (Fig 2E; 

STAR Methods). We validated the DV-boundary epidermis expression for seven of eight by 

FISH (Fig 2F, S3G). We inhibited these genes by RNAi (Fig 2G; STAR Methods) and 

performed FISH on regenerating heads or tails for a DV epidermal marker (laminB). RNAi 

of three genes, Post-2a, Post-2b, and BARHL1, resulted in a striking reduction of epidermal 

DV boundary expression (laminB; Fig 2G), and in addition BARHL1 RNAi also resulted in 

lesions around the pharyngeal cavity (Fig S3H), a region in which BARHL1 is expressed 

(Fig S3I). In contrast, these three TFs did not affect other mature epidermal cell types, as 

tested by FISH, indicating their specific requirement for activation of DV-boundary 

epidermis gene expression (Fig S3J). These results demonstrate that certain TFs specifically 

drive gene expression of epidermal subpopulations and that TFs are good subjects for study 

of the acquisition of spatial identity within the epidermal lineage.

Spatially-restricted epidermal identities emerge in progenitors

Mature epidermal identities have distinct spatial distributions across the different body axes 

(Fig 1B–C). These distinct patterns of gene expression might (1) emerge in progenitors, or 

(2) might only be present after cells have been incorporated into the mature epidermis. We 

selected epidermal TFs, which are expressed in a spatially restricted manner in the mature 

epidermis (Fig 1B–C, 2F, S3G), and analyzed their expression in epidermal progenitors. In 

the mature epidermis, ovo-2 (Fig 1B–C, Fig 3A–B, S4A–B) was expressed in the dorsal 

midline and the lateral edges. Imaging a plane of internal tissues (Fig 3A–B, Fig S4B; STAR 

Methods) showed spatially restricted expression in immature epidermal progenitors 

(agat-3+) that was highly reminiscent of the pattern of ovo-2 expression in the mature 

epidermis (Fig 1B–C, 3A). Inhibition of wnt5, which causes expansion of the planarian 

midline (Adell et al., 2009; Gurley et al., 2010), resulted in expansion of the ovo-2 
expression domain (Student’s unpaired t-test p < 0.02; Fig S4C). In a similar fashion to 

ovo-2, tlx-1, which is specifically expressed in the DV boundary (Fig 2E–F, S3G), was 

expressed in epidermal progenitors (agat-3+) only next to the DV boundary and not in 

epidermal progenitors further away (Fig 3C–D). Furthermore, foxJ1-4, which is expressed in 

ciliated epidermis (Fig S3K), was abundantly expressed in agat-3+ cells near ciliated 

epidermal regions, such as on the ventral surface (Fig 3E), but not in the vicinity of non-

ciliated areas, such as the dorsal midline region (Fig 3E). Finally, we examined the spatially 

restricted expression of the gene DCLK2, which encodes a doublecortin protein kinase 

rather than a TF, and which is expressed in the ventral epidermis (Fig 1B–C). DCLK2 was 

expressed in multiple ventral epidermal progenitors, but not in any dorsal progenitors (Fig 

3F). By contrast, the expression of DYRK4 (Fig 1B–C) was not detectable in epidermal 

progenitors (Fig S4D), despite having a spatially restricted expression pattern in mature 

cells. These results demonstrate that gene expression in immature epidermal progenitors is 
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pre-patterned in a manner that reflects some of the spatial identities that are found in the 

mature epidermis. This suggests that migratory epidermal progenitors detect their position in 

the animal to activate regionallyappropriate transcriptional programs that will reflect the 

pattern of gene expression in the mature epidermis.

Dorsal and ventral gene expression distinguishes Early Stage post-mitotic progenitors

The results above demonstrated that some genes are expressed in epidermal progenitors 

based on their location in the animal (Fig 3, S4B). Because the dorsal and ventral epidermis 

display strikingly different expression patterns (Fig 1B–C), we sought to elucidate how early 

during maturation dorsal and ventral identities emerge. Approaches for identifying genes 

that are expressed in a spatially restricted pattern within a lineage are challenging because 

they require comparing cells from a similar maturation stage, but from different locations. 

The single cells we sequenced were isolated from physically separated dorsal or ventral 

regions in the animal (Fig 4A), and through SCS clustering (Fig 1E–F; STAR Methods), 

they were assigned to a maturation stage (Fig 1E, 4A; Table S2). Therefore, this approach 

allows for the systematic identification of genes with spatially restricted expression in 

epidermal progenitors. To find the earliest differences in gene expression across epidermal 

populations we compared gene expression of Early Stage progenitors from dorsal and 

ventral regions (Fig 4A). In total, we found 23 genes that were significantly enriched (Fig 

4B; Fold-change > 4; FDR < 0.1; Power > 0.4; Table S5) in dorsal or ventral progenitors, a 

finding that was supported by bulk RNA sequencing from dorsal or ventral animal fragments 

for 19/23 genes (Fig 4B). Remarkably, the expression of two genes strongly predicted 

whether a cell is dorsal (PRDM1-1; AUC = 0.85; Fig S5A; Table S5) or ventral (kal1; AUC 

= 0.9; Fig S5B; Table S5), a finding that is consistent with the whole-mount expression 

patterns for these genes (Fig 4C). FISH analysis validated that prog-2+/PRDM1-1+ cells 

were restricted dorsally and that prog-2+/kal1+ were exclusively ventral (Fig 4D). 

Importantly, whereas PRDM1-1 expression appeared exclusively in dorsal epidermal 

progenitors, kal1 was expressed in other cell types in ventral tissues, including neural and 

muscle cells (Fig S5C–D), suggesting it is a broader ventral marker. The expression of 

PRDM1-1 and kal1 strongly correlated with other DV-biased identities: the majority of cells 

expressing ovo-2 (log2(CPM) > 5), which is expressed only dorsally (Fig 1B–C, 3A–B), also 

expressed PRDM1-1 in SCS data (Fig S5E; overlap = 67%; percentile rank of fraction 

overlap = 0.98; STAR Methods), but none expressed kal1 (Fig S5E). Similarly, the 

expression of DCLK2 overlapped with the expression of kal1 (Fig S5F; overlap = 35%; 

percentile rank of overlap = 0.84), a gene that is expressed specifically in the ventral 

epidermis (Fig 1B–C, 3F), but not with the expression of PRDM1-1 (0%). These results 

indicate that the DV-bias observed in Early Stage gene expression is correlated with 

subsequent spatially restricted epidermal identities.

Epidermal neoblasts express dorsal and ventral markers

Epidermal progenitors are the product of mitotic ζneoblasts (van Wolfswinkel et al., 2014). 

The expression of DV-biased genes in epidermal progenitors raised the question of whether 

DV identities exist as early in the lineage as the ζneoblasts. We tested this possibility by 

analyzing the expression of DV-biased epidermal progenitor genes in neoblasts. PRDM1-1 
and kal1 expression was highly specific to ζneoblasts in SCS data (Fig S6A), and was 
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detectable in 68% of the cells (Fig 5A). In addition, we used cell FISH to quantify the 

fraction of dividing neoblasts expressing PRDM1-1 or kal1, and found that 6.7% and 9.7% 

of the neoblasts expressed PRDM1-1 or kal1, respectively (Fig 5B). Similarly, we quantified 

the proportion of ζneoblasts in the dividing neoblast pool by cell FISH and found that they 

comprised 31% of dividing neoblasts (Fig S6B). Therefore, we estimated that ~53% of 

ζneoblasts express either PRDM1-1 or kal1 using cell FISH. Strikingly, the expression of 

PRDM1-1 and kal1 in SCS was mutually exclusive in ζneoblasts (Fig 5A), a finding we 

corroborated with cell FISH on dividing neoblasts (Fig S6C; number of cells counted = 

1061).

We examined the spatial distribution of PRDM1-1+ ζneoblasts by whole-mount FISH, and 

detected them only on the dorsal side (Fig 5C). Conversely, kal1+ ζneoblasts were found 

only ventrally (Fig 5C, S6D). We quantified the positions of kal1+ neoblasts along the DV 

axis by imaging transverse sections (Fig 5D, S6E), which were labeled for major anatomical 

structures (intestine, madt (Wenemoser and Reddien, 2010); and DV-boundary epidermis, 

laminB). kal1+ cells were always ventral to the intestine or next to the DV-boundary 

epidermis (Fig 5D–E). We divided each transverse section into 10 regions along the DV axis 

and counted the number of kal1+ neoblasts in each region (Fig 5E; STAR Methods). The 

majority (79%) of the kal1+ neoblasts were found in the two regions above the ventral 

epidermis (Fig 5E), and notably kal1+ neoblasts were not found in any of the dorsal regions. 

Utilizing ζneoblast markers, we found that kal1+ ζneoblasts were closer to the ventral 

epidermis, and that ζneoblasts more internally did not express kal1 (Fig 5F, S6F). These 

findings show that kal1 expression in neoblasts is correlated to the position of the cells 

across the DV axis. To further confirm these results, we isolated groups of 500 dividing 

neoblasts by FACS from either dorsal or ventral planarian fragments. We performed qPCR 

analysis on eight dorsal and six ventral neoblast groups (STAR Methods) and found that in 

dividing neoblasts, PRDM1-1 was significantly overexpressed on the dorsal side, and by 

contrast, kal1 was significantly overexpressed on the ventral side (Fig 5F). These findings 

demonstrate that gene expression in neoblasts within a lineage reflects their position in the 

animal. This positional identity is likely subsequently propagated to the spatially divergent 

epidermal progenitors, which ultimately generate regionally appropriate mature epidermal 

cells.

The BMP signaling gradient affects the DV identity of ζneoblasts and epidermal 
progenitors

The dorsal and ventral identities found in ζneoblasts raised the possibility that ζneoblasts 

respond to an extracellular signal to activate position-specific transcriptional programs. In 

planarians, many genes regulating adult patterning are expressed in muscle cells (Witchley et 

al., 2013), but the connection between patterning gene expression in muscle and neoblast 

states is poorly understood. bmp4 expression from dorsal muscle cells (Witchley et al., 

2013) regulates the polarization of the DV axis (Molina et al., 2007; Orii and Watanabe, 

2007; Reddien et al., 2007), and thus it is an attractive candidate for regulating the 

emergence of DV identities in ζneoblasts. Importantly, the expression of kal1 was spatially 

opposed to bmp4 expression (Fig 5D). bmp4 inhibition leads to progressive ventralization of 

the animals (Molina et al., 2007; Orii and Watanabe, 2007; Reddien et al., 2007), resulting in 
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ventral features appearing dorsally. We assessed if BMP signaling actively represses the 

expression of ventral epidermal genes in dorsal epidermal lineage cells. We inhibited bmp4 
and examined kal1 expression in two scenarios (Fig 6A; STAR Methods). First, in intact 

animals, 10 days following bmp4 inhibition, a time-point at which animals appeared 

indistinguishable from controls (Fig 6A) and; second, in regenerating animals, 10 days 

following amputation, and a total of 20 days after initiating bmp4 inhibition. In this 

condition, the animals displayed major morphological defects reflecting ventralization of the 

regenerating tissue (Fig 6A). Following RNAi, kal1+ cells were found dorsally in bmp4 
RNAi animals (Fig 6B), but never dorsally in controls (Fig 6B). Importantly, kal1+ Early 

Stage progenitors (prog-2+) were present dorsally in both intact and regenerating bmp4 
RNAi animals (Fig 6B). Furthermore, kal1+ ζneoblasts were detectable in bmp4 RNAi 

animals dorsally (Fig 6C) 10 days from the beginning of the experiment, suggesting that 

proximity to a BMP source represses the ventral ζneoblast identity.

Neoblasts are required for responding to changes in BMP signaling

The outcome of bmp4 RNAi on epidermal lineage cells at their various stages, 

ventralization, could result from a response only in neoblasts, which produce the lineage, or 

a response in neoblasts and post-mitotic cells of the lineage. To distinguish between these 

possibilities, we tested whether ventralization of the epidermal lineage following bmp4 
RNAi required neoblasts. Animals were split into two groups (Fig 6D), with the first group 

lethally irradiated on day zero and the second unirradiated. Lethal irradiation ablates all 

neoblasts by 24 hours post-irradiation but post-mitotic epidermal progenitors persist for up 

to 6 days as they transit towards differentiation (Eisenhoffer et al., 2008). At 24 hours post-

irradiation, half of each group was injected with bmp4 or control dsRNA. At four, six, or 

eight days following injection animals were fixed and analyzed for the expression of kal1 by 

FISH (Fig 6E–I). Numerous ectopic kal1+ progenitors were present in unirradiated bmp4 
RNAi animals, at all time points examined (Fig 6E–F, S7A). Moreover, kal1 expression in 

the mature dorsal epidermis was detected eight days following injection (Fig 6G). By 

contrast, we did not detect kal1 expression in progenitors or mature epidermal cells on the 

dorsal side of animals that were irradiated prior to bmp4 inhibition (Fig 6E–I). Next, we 

examined the expression of rootletin, which is normally spatially restricted to dorsal 

epidermis and expressed ubiquitously in ventral epidermis (Fig S7B). Dorsal expression of 

rootletin was expanded and resembled the ventral side in 3/8 unirradiated bmp4 injected 

animals (Fig 6G). This transformation did not occur in animals that were irradiated prior to 

the injection (100%; Fig 6G). Finally, we quantified the number of dorsal kal1+ cells, and 

confirmed our observations that ectopic kal1 expression was only present in unirradiated 

animals following bmp4 inhibition (Fig 6H–I). These findings suggest that within the 

epidermal lineage, it is primarily ζneoblasts that respond to BMP signaling. Finally, we 

examined the spatial distribution of the ectopic kal1+ cells following bmp4 RNAi by 

imaging transverse sections of unirradiated bmp4 and control RNAi animals (Fig 6J). We 

found, in all affected animals, that ectopic kal1+ cells appeared only near the dorsal 

epidermis, and not in the interior of the animal (Fig 6J). Since we observed (Fig 5F, S6F) 

that kal1+ ζneoblasts are generally closer to the epidermal surface than kal1-ζneoblasts, this 

result indicates that kal1 expression is dependent not only on DV position, but also on 

proximity to the periphery of the animal, which might indicate a more mature cell state that 

Wurtzel et al. Page 9

Dev Cell. Author manuscript; available in PMC 2018 March 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



responds to BMP levels. Therefore, we suggest that ζneoblasts sense the BMP levels in their 

environment and obtain a DV spatial identity, promoting cell type diversity to form region-

appropriate epidermis.

Discussion

The body plan of even relatively simple animals is constructed of diverse, spatially arranged 

cell types. Adult planarians can replace all cell types during tissue turnover or regeneration 

through neoblast differentiation and integration of their progeny into organs and tissues 

(Reddien and Sanchez Alvarado, 2004). Therefore, the molecular signals that specify 

neoblasts and their descendants towards the appropriate cell types are important for 

understanding tissue turnover and regeneration. Equally important is understanding how 

cells within a particular lineage acquire unique functions based on their position in the 

animal (Lavin et al., 2014). These functions are often essential for basic activities. For 

example, the production of spatially arranged ciliated epidermis is essential for normal 

planarian motility (Glazer et al., 2010). A major challenge in identifying regulators of this 

process is that cell population-scale analyses often utilize cells that are heterogeneous with 

regards to cell type, differentiation state, and location within the animal. Therefore, single-

cell analyses are highly advantageous for studying where, when, and how specialization 

emerges within a cell population.

Expression of spatially restricted epidermal identities in the epidermal lineage

We used the planarian epidermis to study the location, timing, and mechanism of spatially 

restricted epidermal identity acquisition during differentiation (Fig 7). We first characterized 

the different spatiallyrestricted identities that are found in the epidermis and then analyzed, 

using SCS and FISH, the transcriptomes of epidermal progenitors from throughout the 

lineage. We identified transcriptional programs that were dependent on the position of the 

cell within the animal (Fig 7A–B). Importantly, position-specific gene expression for 

different identities emerged at different stages of maturation. For example, the spatially 

restricted expression of DYRK4 (Fig 1B–C, S4D) was detectable only in the mature 

epidermis. The expression of ovo-2, on the other hand, could be found both in the mature 

epidermis and in a pattern similar to its ultimate epidermal pattern in migratory, 

mesenchymal, Late Stage progenitors (Fig 1B–C, Fig 3E). The expression of genes encoding 

cilia components was observed by FISH in Early Stage progenitors (Fig 2B–C, Table S4), 

and SCS suggested that some cilia components were already expressed in neoblasts (Table 

S4). In fact, Duncan et al. reported recently that some cilia components, such as cfap53 and 

rsph6A, are expressed in neoblasts, suggesting that cilia specification might occur in mitotic 

cells (Duncan et al., 2015). Importantly, DV-restricted gene expression was found even at the 

top of the epidermal lineage, in ζneoblasts (Fig 7C), which have at least eight days and 

multiple stages to transit before they have fully matured and migrated to their final 

destination (van Wolfswinkel et al., 2014).

The epidermis is a model for generation of regionally appropriate cell types

Planarian epidermal progenitors have been studied in multiple reports, with findings 

focusing on phases of epidermal maturation (Eisenhoffer et al., 2008; Tu et al., 2015; van 
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Wolfswinkel et al., 2014; Zhu et al., 2015). Less emphasis has been given to the distinct 

cellular identities individual cells can acquire, and the spatiotemporal regulation of these 

distinct identities.

The emergence of distinct gene expression domains in the planarian epidermis (e.g. ovo-2 
and DYRK4 at the dorsal epidermis; laminB in the DV boundary; DCLK2 at the ventral 

epidermis; Fig 1B–C) is very likely regulated by multiple mechanisms. Our analysis 

demonstrated that patterning molecules, such as BMP (Molina et al., 2011; Reddien et al., 

2007) and Wnt5 (Adell et al., 2009) were essential for the normal formation of some of 

these patterns. Interestingly, the major source of these factors is muscle cells at distinct 

regions of the animal (Witchley et al., 2013). We hypothesize that progenitors for 

regeneration and tissue-maintenance sense the levels of patterning factors at their location, 

and respond by activating a region-appropriate transcriptional program. This hypothesis is 

consistent with several observations made on regional gene expression in planarians: First, 

patterning molecules are constitutively expressed in planarians (Reddien, 2011); second, 

RNAi of these molecules leads to patterning defects in intact and regenerating animals 

(Reddien, 2011), and finally, with the rapid establishment of regionally-appropriate gene 

expression of patterning factors following injuries, prior to the generation of regionally-

appropriate cell types (Gurley et al., 2010; Petersen and Reddien, 2009; Witchley et al., 

2013; Wurtzel et al., 2015). Importantly, it has been unclear at what stage of differentiation 

cells respond to these signals, and in particular whether it is mature cell types, post-mitotic 

progenitors, and/or neoblasts that respond.

DV gene expression distinguishes populations of epidermal progenitors and ζneoblasts

To identify the cells that respond to positional cues, we first searched for the earliest 

discernable transcriptional differences between spatially distinct epidermal lineage cells. 

Using SCS on samples obtained from dorsal or ventral regions, we identified 23 genes that 

were potentially expressed in a regionally restricted manner at a very early stage of 

differentiation. Remarkably, the expression of two genes was sufficient to identify the DV-

location of the vast majority of Early Progenitors (PRDM1-1 for dorsal cells and kal1 for 

ventral cells). Furthermore, these genes were expressed in spatially divergent epidermal 

neoblast populations, as observed by FISH, SCS, and qPCR analysis. These results 

demonstrated that ζneoblasts are heterogeneous in a manner that is explained best by their 

position within the animal (Fig 7C–D), which suggests that ζneoblasts can respond to 

positional cues.

Neoblasts respond to BMP levels by acquiring a DV-positional identity

One positional cue, bmp4, is expressed from dorsal muscle cells (Witchley et al., 2013) in a 

gradient that is strongest at the midline. It promotes acquisition of dorsal tissue identities, 

and its inhibition causes progressive ventralization of the animal (Molina et al., 2007; Orii 

and Watanabe, 2007; Reddien et al., 2007). Strikingly, following a short bmp4 RNAi 

treatment, expression of a ventral gene (kal1) appeared dorsally in epidermal neoblasts and 

their progeny. Regions in the dorsal epidermis, normally devoid of cilia, co-expressed kal1 
and rootletin in these bmp4(RNAi) animals, indicating that some ectopic kal1+ cells adopted 

a ventral functional identity. Importantly, kal1+ ζneoblasts were largely found closer to the 
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epidermal surface than kal1-ζneoblasts, indicating that kal1 expression is dependent not 

only on DV position but also on proximity to the periphery of the animal. This might 

indicate that as ζneoblasts move peripherally, they mature to a cell state that responds to 

patterning signals.

Following ablation of neoblasts by lethal irradiation, however, bmp4 inhibition did not result 

in dorsal expression of kal1 or in ectopic rootletin expression. Therefore, our data suggest 

that it is the neoblasts that are primarily capable of adopting ectopic ventral identities in 

response to BMP inhibition, which were then propagated to their progeny. Furthermore, this 

suggests that mature epidermal identities are not plastic even in response to changes in the 

BMP signaling environment.

Because bmp4 is expressed largely exclusively in dorsal muscle cells (Witchley et al., 2013), 

we suggest that neoblasts read a BMP gradient established by dorsal muscle, and respond by 

activating a DV-appropriate transcriptional program, which subsequently generates the 

correct types of epidermis (Fig 7B–D). Planarian regeneration requires two components: 

collectively pluripotent neoblasts (Adler and Sanchez Alvarado, 2015; Reddien, 2013), 

which are the cellular source for all new tissues, and a set of positional signals (Reddien, 

2011), which are expressed from muscle cells (Witchley et al., 2013), that provide the 

patterning information required for regeneration. Our results support a model in which 

neoblasts, within a lineage, respond directly to the muscle-derived positional signals in order 

to produce the required regionally appropriate cell types. This model helps explain how 

planarians maintain a complex body plan during tissue turnover and in response to injury.

STAR Methods

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Anti-Digoxigenin-AP, Fab fragments Sigma Aldrich Cat#11093274910

Anti-Digoxigenin-POD (poly), Fab fragments Sigma Aldrich Cat#11633716001

Anti-Fluorescein-AP, Fab fragments Sigma Aldrich Cat#11426338910

Anti-DNP HRP Conjugate Sigma Aldrich Cat#FP1129

Mouse monoclonal anti-acetylated Tubulin Sigma Aldrich Cat#T7451

Goat Anti-Mouse IgG H&L (HRP) Abcam Cat#ab6789

Bacterial and Virus Strains

Escherichia coli DH10B Invitrogen Cat#18297010

Biological Samples

N/A N/A N/A

Chemicals, Peptides, and Recombinant Proteins

Ammonium thiocyanate Sigma Aldrich Cat#221988

TRIzol ThermoFisher Scientific, Inc. Cat#15596018

Buffer TCL QIAGEN, inc. Cat#1031576
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REAGENT or RESOURCE SOURCE IDENTIFIER

Western Blocking Reagent Roche Cat#11921673001

Critical Commercial Assays

TruSeq RNA library prep kit V2 Illumina, Inc. Cat#RS-122-2001/2

Nextera XT Illumina, Inc. Cat#FC-131-1096

KAPA HiFi HotStart PCR ReadyMix Kapa Biosystems Cat#KK2602

High Sensitivity DNA Qubit kit Life Technologies Cat#Q32854

Deposited Data

Sequencing data (single-cell RNA sequencing 
and RNA sequencing); Accession 
PRJNA353867

This paper http://www.ncbi.nlm.nih.gov/bioproject/353867

S. mediterranea transcriptome assembly 
(dd_v4)

Liu et al., 2013 http://planmine.mpi-cbg.de/

Experimental Models: Cell Lines

N/A N/A N/A

Experimental Models: Organisms/Strains

Schmidtea mediterranea, asexual Reddien lab N/A

Oligonucleotides

Primer for qPCR for agat-1 (fw): 
CCTAAAAGGCGAAGGTGTGACT

This paper N/A

Primer for qPCR for agat-1 (rev): 
TGCAACATCCAAACCGACAGA

This paper N/A

Primer for qPCR for laminB (fw): 
TGTGGGTAGCCTTTTCTTCTCCC

This paper N/A

Primer for qPCR for laminB (rev): 
CGCAAGGTTCAGGTGATCCG

This paper N/A

Primer for qPCR for kal1 (fw): 
TCTGTGTGCCCTCTTGTACG

This paper N/A

Primer for qPCR for kal1 (rev): 
CAGATTTTCCGGCTGAGAAG

This paper N/A

Primer for qPCR for PRDM1-1 (fw): 
CGGTGAACGACCTTTCAAGT

This paper N/A

Primer for qPCR for PRDM1-1 (rev): 
TCAAACAAACCGAACACTCG

This paper N/A

Primer for qPCR for smedwi-1 (fw): 
GTCTCAGAAAACAACTAAAGGTACAGCA

van Wolfswinkel et al., 2014 N/A

Primer for qPCR for smedwi-1 (rev): 
TGCTGCAATACACTCGGAGACA

van Wolfswinkel et al., 2014 N/A

Recombinant DNA

pGEM-T easy vector system Promega https://www.promega.com/products/pcr/pcr-cloning/pgem_t-easy-vector-systems/

Software and Algorithms

R v3.2.3 The R Foundation https://www.r-project.org/

edgeR v3.6.8 Robinson et al., 2010 https://bioconductor.org/packages/release/bioc/html/edgeR.html

bedtools v2.20.1 Quinlan and Hall, 2010 http://quinlanlab.org/tutorials/bedtools/bedtools.html

novoalign v2.08.02 NovoCraft Technologies http://www.novocraft.com/products/novoalign/

mafft v7.017b Katoh et al., 2009 http://mafft.cbrc.jp/alignment/software/
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REAGENT or RESOURCE SOURCE IDENTIFIER

Seurat v1.2 Satija et al., 2015 http://satijalab.org/seurat/

RaXMLv7.2.6 Stamatakis. 2006 http://sco.h-its.org/exelixis/software.html

PANTHER v11 Mi et al., 2016 http://www.pantherdb.org/tools/hmmScoreForm.jsp

BLAST+ v2.4.0 Camacho et al., 2009 https://blast.ncbi.nlm.nih.gov

FIJI/ImageJ v1.51d Schindelin et al., 2012 http://imagej.net/Fiji

Other

Planarian Single cell RNA sequencing resource Wurtzel et al., 2015 https://radiant.wi.mit.edu/

Mapping of labels in figure to contig IDs in 
transcriptome assembly

This paper, Table S6 N/A

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to the Lead 

Contact, Peter W. Reddien (reddien@wi.mit.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

For all experiments, a clonal strain of asexual Schmidtea mediterranea was used. Animals 

were cultured at 20°C in the dark and were fed weekly with beef liver. Prior to gene 

inhibition experiments animals were starved for 7 days.

METHOD DETAILS

Gene labeling and nomenclature—Previously published planarian genes, and genes 

for which we performed phylogenetic (PRDM1-1, ovo-2, ovo-3) or domain-structure 

analysis (kal1) appear in italics throughout the text and the figures. Uppercase labels are the 

human best-blast hits (blastx; E-value < 10−5; (Camacho et al., 2009)), or genes not named 

with detailed analysis (such as phylogenetic analysis). Numeric labels with “dd_” prefix are 

shown for genes without human best-blast hit; instead the contig id in the dd_v4 

transcriptome assembly was used (Liu et al., 2013). Mapping of gene labels in figures to 

contig ids is found in Table S6.

Planarian epidermis isolation and RNAseq library preparation—Uninjured and 

injured (3 hours post amputation) animals were used for epidermis extraction separately. 

Epidermal cells were isolated by incubating planarians in a solution of 3.8% Ammonium 

Thiocyanate [Sigma-Aldrich 221988-100G] as previously described (Trost et al, 2007) in 

phosphate-buffered saline (PBS) for 20 minutes. The dorsal or ventral epidermal cells were 

scraped off the worms, separately, with a needle pulled from a borosilicate glass capillary 

[Sutter Instrument Co. B100-75-15]. Epidermal cells were transferred into a collection tube 

on ice. Cells were spun down at 300G for 5 minutes at 4°C, resuspended in PBS, and spun 

down again. Cells were resuspended in 0.25 mL of TRIzol (ThermoFisher Scientific Inc. 

#15596018) and stored at −80°C. In parallel, whole animal controls were put in TRIzol. 

RNA extraction for samples in TRIzol was performed according to manufacturer’s protocol. 

For each sample, 1 μg of RNA was used for RNA sequencing library preparation using the 
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TruSeq RNA library prep kit V2 (Illumina, Inc., Cat#RS-122-2001/2) following the 

manufacturer’s protocol. Libraries were sequenced on Illumina HiSeq.

Differential expression analysis of epidermis-enriched RNAseq libraries—
Sequenced RNA-seq libraries were mapped as recently described (Wurtzel et al., 2015) 

using Novoalign v2.08.02 with parameters [-o SAM -r Random] to the S. mediterranea 
dd_Smed_v4 transcriptome assembly (Liu et al., 2013). Read count per contig was 

calculated with bedtools v2.20.1 (Quinlan and Hall, 2010) for each library. Short contigs 

(<350) were removed from further analysis, and reads mapped to different contig isoforms 

summed to represent a single contig. Differentially expressed genes were called using 

EdgeR v3.6.8 (Robinson et al., 2010), requiring minimal fold-change of 2 and FDR smaller 

than 1E-4.

Single-cell collection by FACS and qPCR—Animals were subjected to 2 transverse 

amputations to generate pre-pharyngeal fragments. The fragments were further dissected 

into dorsal, ventral, and lateral fragments (Fig 2A). Samples were macerated, stained with 

Hoechst (1:25) and propidium iodide (1:500), and 2C cells were sorted to plates containing 

lysis buffer (TCL buffer; QIAgen, inc.), as recently described (Wurtzel et al., 2015). 

Following reverse transcription and cDNA amplification (Picelli et al., 2013; Wurtzel et al., 

2015), qPCR was performed on plates (total 1,096 cells) to identify and isolate agat-1 
expressing cells (forward and reverse sequences, CCTAAAAGGCGAAGGTGTGACT and 

TGCAACATCCAAACCGACAGA, respectively), with the following program [95°C (30s), 

40 cycles (95°C 3s, 60°C 30s)]. Similarly, cells from the lateral region were also screened 

for the expression of the dorsal-ventral (DV) epidermal boundary marker laminB (forward 

and reverse sequences, TGTGGGTAGCCTTTTCTTCTCCC and 

CGCAAGGTTCAGGTGATCCG, respectively). Cells displaying Ct value of 25 or less were 

considered as expressing the assayed gene and were selected for single-cell RNA sequencing 

(SCS) library preparation.

Single-cell RNA sequencing library preparation—Libraries were prepared following 

a published protocol (Picelli et al., 2014) with previously described modifications (Wurtzel 

et al., 2015).

In Situ Hybridizations—Nitroblue tetrazolium/5-bromo-4-chloro-3-indolyl phosphate 

(NBT/BCIP) colorimetric whole-mount in situ hybridizations (ISH) were performed as 

previously described (Pearson et al. 2009). Fluorescence in situ hybridizations (FISH) were 

performed as previously described (King and Newmark 2013) with minor modifications. 

Briefly, animals were killed in 5% NAC and treated with proteinase K (2 μg/ml). Following 

overnight hybridizations, samples were washed twice in each of pre-hybridization buffer, 1:1 

pre-hybridization-2X SSC, 2X SSC, 0.2X SSC, PBS with Triton-X (PBST). Subsequently, 

blocking was performed in 0.5% Western Blocking Reagent (Roche, 11921673001) and 5% 

inactivated horse serum PBST solution when anti-DIG or anti-DNP antibodies were used, 

and in in 1% Western Blocking Reagent PBST solution when an anti-FITC antibody was 

used. Post-antibody binding washes and tyramide development were performed as described 
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(King and Newmark 2013). Peroxidase inactivation with 1% sodium azide was done for 90 

minutes at room temperature.

Immunostainings—Immunostainings for acetylated-tubulin were performed as 

previously described (Reddien et al., 2007). Immunofluorescence (IF) and fluorescent in situ 

hybridization (FISH) signals were developed using tyramide conjugated fluorophores 

generated from AMCA, fluorescein, rhodamine (Pierce), and Cy5 (GE Healthcare) N-

hydroxysuccinimide (NHS) esters as previously reported (Hopman et al., 1998).

Irradiation—Animals were irradiated using Gammacell 40 dual 137cesium sources (6000 

rads) and were used for experiments 24 hours following irradiation, when all neoblasts are 

ablated (Eisenhoffer et al., 2008).

Gene cloning and transformation—Genes were cloned as previously described 

(Wurtzel et al., 2015). Briefly, gene-specific primers were used to amplify gene sequences of 

planarian cDNA. Amplified sequences were cloned into pGEM vectors following the 

manufacturer’s protocol (Promega), and transformed to E. coli DH10B by heat-shock. 

Bacteria were plated on agarose plates containing 1:500 carbenicillin, 1:200 Isopropylthio-b-

D-galactoside (IPTG), and 1:625 5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside (X-

gal) for overnight growth. Colonies were screened by colony PCR and gel electrophoresis. 

Plasmids were extracted from positive colonies and subsequently validated by Sanger-

sequencing (Genewiz, Inc.).

Double-stranded RNA synthesis and RNAi experiments—Gene inhibition was 

done by feeding the animals with dsRNA corresponding to the target gene. dsRNA was 

synthesized as previously described (Wurtzel et al., 2015) following a published protocol 

(Rouhana et al., 2013). Animals were starved for 7 days prior to experiments and were kept 

in the dark for at least 2 hours before each feeding. Animals were fed 6 times, unless stated 

otherwise, every 3 days by mixing the dsRNA with homogenized beef liver (1:3). Following 

the RNAi feedings, animals were cut and allowed to regenerate for 8 days, while being 

monitored for defects. Following the 8-day recovery period, animals were fixed and 

analyzed by FISH. dsRNA injections, using Drummond Nanoject II, were performed in the 

prepharyngeal region. bmp4 inhibition by injection was performed using a single injection.

Isolation of cells by FACS for Cell FISH—Cell suspension was prepared from whole 

animals or from fragments as recently described (Wurtzel et al., 2015). FACS gating was 

performed for previously described cell populations (Hayashi et al., 2006).

qPCR of dividing neoblasts isolated from dorsal or ventral regions—Animals 

were cut transversely and then dorsal and ventral fragments were isolated. Fragments from 

different animals were pooled (>20) and macerated to a single cell suspension, as recently 

described (Wurtzel et al., 2015). Groups of 500 dividing neoblasts, from the dorsal and 

ventral samples, were sorted using a flow cytometer, separately (dorsal replicates: n = 8; 

ventral replicates: n = 6) into plates containing 30 μl of lysis buffer (TCL buffer; QIAgen, 

inc.). RNA from samples was converted to cDNA and amplified using the Smart-seq V2 

(Picelli et al., 2013) protocol with minor modifications (Wurtzel et al., 2015). The amplified 
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cDNA library concentrations were measured using Qubit fluorometer (Life Technologies; 

Q32854) and sample concentrations were normalized to 5 ng/μl. Expression of the target 

genes was measured in each sample using qPCR. qPCR was performed using the Applied 

Biosystems 7500-fast RT-PCR machine for smedwi-1 (forward and reverse primer 

sequences: GTCTCAGAAAACAACTAAAGGTACAGCA and 

TGCTGCAATACACTCGGAGACA, respectively), PRDM1-1 (forward and reverse primer 

sequences: CGGTGAACGACCTTTCAAGT and TCAAACAAACCGAACACTCG, 

respectively), and kal1 (forward and reverse primer sequences: 

TCTGTGTGCCCTCTTGTACG and CAGATTTTCCGGCTGAGAAG, respectively) with 

the following program [95°C (30s), 40 cycles (95°C 3s, 60°C 30s)], with at least two 

technical replicates per sample. The measured Ct values of either kal1 or PRDM1-1 were 

normalized by the sample expression of smedwi-1, a pan-expressed neoblast gene (Reddien 

et al., 2005). Student t-test was used for differential expression analysis of between dorsal- 

and ventral-isolated samples, and p values were corrected for multiple hypothesis testing 

using the Bonferroni correction.

Analysis of single cell RNA sequencing data—Gene expression data were mapped 

to the dd_Smed_v4 assembly (Liu et al., 2013) as previously described (Wurtzel et al., 

2015). Recently published SCS data (Wurtzel et al., 2015) prepared using the same protocol 

and equipment, was combined if the cells were from the epidermal lineage. Gene expression 

data for all cells were processed together as follows: Following mapping using Novoalign 

v2.08.02, a raw expression matrix was generated using custom Perl script, and expression 

matrix was normalized using edgeR v3.6.8 (Robinson et al., 2010). Contigs shorter than 450 

nt were removed. Cells expressing less than 1000 or more than 7800 genes were removed 

from further analysis to ensure low-quality cells, or potentially contaminated samples were 

not included in the analysis (Wurtzel et al., 2015). Initial determination of significant 

principal components was performed by calling function mean.var.plot with parameters 

[y.cutoff = 2.5, x.low.cutoff = 2, fxn.x = expMean,fxn.y = logVarDivMean], which found 

267 genes meeting these criteria. The jackstraw function [num.replicate = 200] determined 

principal components 1–12 as significantly contributing to cell-to-cell gene expression 

variance. The function pca.sig.genes was called with parameters [pcs.use = 1:12, pval.cut = 

1e-5, max.per.pc = 300] and the resultant list was used for a second principal component 

analysis (PCA) analysis. Then, four cells were removed from the dataset 

[“D15.101224_DMX”, “D15.101225_DMX”, “D15.101162_DLX”, “D15.101359_L0X”], 

as they expressed multiple neural genes (including PC2, synapsin, and synaptotagmin), and 

were unlikely to be part of the epidermal lineage. tSNE was performed using the function 

run_tsne [dims.use = c(1:18), perplexity = 20, do.fast = T]. Next, data was clustered by 

DBclust_dimension [reduction.use = “tsne”, G.use = 2, set.ident = TRUE, MinPts = 3] and 

clusters were sorted by the buildClusterTree function [do.reorder = TRUE, reorder.numeric 

= TRUE, pcs.use = 1:18]. Following gene expression analysis, cluster 3 was determined to 

represent muscle cells, based on expression of multiple muscle markers, and was removed. 

Clusters 8, 11 and 12 included small number of low complexity cells and were removed as 

well.
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Contig selection for calculating gene expression correlation—The transcriptome 

assembly was searched for contigs with best-blast hit description including the keywords 

IFT or “intraflagellar transport”. The expression of all contigs was visualized using the SCS 

resource (Wurtzel et al., 2015) and genes that were not exclusively expressed in ciliated cells 

(e.g. epidermal cells, protonephridia, ciliated neurons) were discarded. For each gene pair, 

Pearson correlation (r) was calculated, per cluster, and then z-transformed using Fisher z-

transformation. Average was calculated on z-transformed values, per cluster, and then 

transformed to r.

Contig Best Blast hit description ID E-value Organism

dd_Smed_v4_10638_0_1 IFT172-like protein GQ337484.1 0 Smed

dd_Smed_v4_11300_0_1
intraflagellar transport 140 homolog 
(Chlamydomonas) (IFT140) uc002cmb.3 0 Human

dd_Smed_v4_5043_0_1 IFT52-like protein GQ337481.1 0 Smed

dd_Smed_v4_5484_0_1 IFT88-like protein GQ337482.1 0 Smed

dd_Smed_v4_7099_0_1
intraflagellar transport 57 homolog 
(Chlamydomonas) (IFT57) uc003dwx.4 3.00E-91 Human

dd_Smed_v4_7533_0_1
intraflagellar transport 172 homolog 
(Chlamydomonas) (IFT172) uc002rku.3 1.00E-53 Human

dd_Smed_v4_8803_0_1
intraflagellar transport 81 homolog 
(Chlamydomonas) (IFT81) uc001tqh.3 0 Human

dd_Smed_v4_9110_0_1
intraflagellar transport 80 homolog 
(Chlamydomonas) (IFT80) uc021xgr.1 0 Human

Identification of DV-boundary epidermis transcription factors—TFs that were 

overexpressed in the epidermal lineage were collected from three datasets: (1) TFs enriched 

in one or more epidermal progenitor or mature epidermis cluster when compared to 

previously published SCS gene expression of other cell types (Wurtzel et al., 2015), using 

the Seurat v1.2 package (Satija et al., 2015) find.markers function with thresholds: [FDR < 

1E-3, FC > 2]; (2) TFs that were overexpressed in bulk epidermal RNA-seq compared to 

whole-worm controls [FDR < 0.01, FC > 2]; or (3) that were downregulated in animals with 

depleted epidermal lineage (zfp-1 RNAi) using recently published RNAseq data (van 

Wolfswinkel et al., 2014) that were mapped to the dd transcriptome (Liu et al., 2013) and 

analyzed using the same approach described for the bulk epidermal RNAseq libraries data 

analysis with the following thresholds for significance (FDR < 0.01, FC > 2). TFs enriched 

in the DV boundary epidermis SCS data (Table S3) or expressed in at least half of the DV-

boundary epidermis cells but in none of the other mature cell types (Fig 2E) were further 

analyzed by FISH and RNAi.

Microscopy and image analysis—FISH and IF images were collected using a confocal 

microscope (Zeiss LSM 700). Cell counting was performed using FIJI/ImageJ v1.51d 

(Schindelin et al., 2012) by cropping images to a set size and counting cells using the “Cell 

Counter” component. The same region was used to count cells for both the controls and the 

experiment. Transverse sections were generated by using a scalpel and generating two 

transverse cuts. Measurement of spatial distribution of kal1+ neoblasts (Fig 5D) was done by 

imaging transverse sections, dividing each section into 10 segments of half concentric 
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ellipses, and counting the number of kal1+ neoblasts in each section. Sections were 

evaluated according to their position compared to major landmarks (bmp4 expressing 

muscle cells, DV boundary epidermal cells, and the intestine). The number of kal1+ cells in 

irradiated and unirradiated bmp4 RNAi animals and controls was quantified by taking 

prepharyngeal images (400 μm2, 10 confocal slices, Fig 6H–I) for all animals in four groups 

(irradiated control, unirradiated control, irradiated bmp4 RNAi, unirradiated bmp4 RNAi). 

Then the file names of the images were randomized and the images were analyzed by a 

different researcher. Positive cells were counted using the “Cell Counter” component in 

ImageJ, and documented for each file. Following measurements, the file names were 

derandomized, and data of different groups were compared.

Calculation of the overlap fraction in epidermal progenitors—Overlap fraction 

was calculated for ovo-2 as follows: [Number of ovo-2+ cells expressing gene X/Number of 

ovo-2+ cells], where gene X represents any gene in the transcriptome for which gene 

expression was greater than log2(CPM+1) of 5. Overlap fraction for DCLK2 was calculated 

similarly. Genes expressed in a small fraction of the entire cell population (<25%) were 

removed as their overlap fraction was minor. Genes expressed throughout the cell population 

(> 66%) were also removed, to avoid confounding the results with genes expressed 

abundantly, such as housekeeping genes.

Phylogenetic analysis of epidermal genes—Phylogenetic analysis of PRDM1-1, 

ovo-2, and ovo-3 was done by multiple alignment of the protein sequences with known 

sequences from representative model organisms using mafft v7.017b (Katoh et al., 2009) 

with flag [--auto]. Then gap sequences were trimmed, and trees resolved using RAxML 

(Stamatakis, 2006) with flags [Substitution model: PROTCAT DAYHOFF; Matrix name: 

DAYHOFF; Bootstrap: 100]. kal-1 analysis was done using multiple methods: (1) 

Reciprocal BLASTP search [e-value < 1E-30) against the human proteome resulted in best 

similarity with KAL1; (2) Conserved protein domain analysis using CDART (Geer et al., 

2002) and InterProScan v5.18-57.0 (Jones et al., 2014) of domain structure in model 

organisms and S. mediterranea; and (3) Classification based on the PANTHER database 

prediction using the protein sequence of the predicted planarian kal1 (Mi et al., 2016).

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis was performed using R v3.2.3. Unless stated otherwise, Student’s t-test 

was used followed by Bonferroni correction for multiple hypothesis testing where 

applicable.

DATA AND SOFTWARE AVAILABILITY

RNA sequencing data generated in this study were deposited to SRA and is available under 

accession PRJNA353867 (http://www.ncbi.nlm.nih.gov/bioproject/353867).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Single-cell RNA sequencing reveals spatial patterning in a progenitor pool.

• Planarian epidermal neoblasts read their position in the animal.

• Position-specific transcriptional programs in progenitors generate cell-type 

diversity.

• Patterning signals from muscle regulate epidermal neoblast positional 

identity.

Wurtzel et al. Page 23

Dev Cell. Author manuscript; available in PMC 2018 March 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. Mature epidermal identities revealed by RNA-seq
(A) A model for planarian epidermal maturation. Epidermal progenitors have 

spatiotemporally distinct stages (Eisenhoffer et al., 2008; Tu et al., 2015). Stage-specific 

gene expression markers distinguish different maturation stages. Epidermal progenitors 

generate multiple epidermal cell types characterized by different spatial distribution and 

gene expression. (B) Different epidermal gene expression patterns were detected by WISH. 

Shown are eight representative expression patterns (blue) in dorsal (left column) and ventral 

(right column) views. As animals are semitransparent, following bleaching (Pearson et al., 

2009), assessing domains of expression requires examination from multiple viewpoints 

(scale bar = 100 μm). (C) Cartoon of the expression patterns reported in Fig 1B. Blue color 

represents region of epidermal expression. (D) Analysis of the epidermal lineage by SCS. 

Isolation of epidermal progenitors; pre-pharyngeal fragments were dissected to isolate 

dorsal, ventral, or lateral fragments, separately (STAR Methods). Tissues were disassociated 

and individual cells were sorted to plates by FACS. agat-1 expression (Eisenhoffer et al., 

2008) was measured by qPCR and cells expressing agat-1 were sequenced and used for 

analysis, in combination with previously published SCS of the epidermal lineage (Wurtzel et 

al., 2015). (E) t-distributed stochastic neighbor embedding (tSNE) representation of 
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epidermal cells (dots) is shown (STAR Methods). Colors represent different clusters, with 

labels for cluster identities based on gene expression markers for epidermal maturation 

stages (Tu et al., 2015). (F) Gene expression in single cells (columns) of previously 

described epidermal genes (rows). Gene expression is represented by color (blue to red, low 

to high expression; counts per million, CPM; Hierarchal clustering was used to order cells 

within a cluster). Red labels denote genes that were subsequently used for FISH 

experiments, because of their power to discriminate between clusters, and their low 

background expression in FISH (Table S3). (G) Upper panel: Cluster-specific gene 

expression markers that were used for evaluating the distribution of epidermal lineage 

progenitors in situ. Markers were selected based on their fold-enrichment and power to 

discriminate between clusters. Lower panel: tSNE plot of cells (dots) colored by the ranked 

expression of the gene markers we selected across all sequenced cells (blue to red, low to 

high gene expression, respectively; dotted black line highlights cell clusters). (H) The 

selected gene expression markers were assessed by co-expression FISH analysis (scale bar = 

20 μm). The markers had a nearly complete lack of co-expression, therefore permitting the 

analysis of distinct maturation stages.
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Figure 2. Mature epidermal gene expression is abundant in epidermal progenitors
(A) Expression of validated epidermal genes in SCS data across epidermal clusters. Shown 

are genes that were expressed only in the epidermal lineage. Color coding corresponds to the 

maturation stage in which the gene was initially expressed. (B) tSNE plots of two epidermal 

genes validated by WISH (BBS1 and TRAF3), that were found to be expressed in Early 

Stage progenitor cells (expression low to high, blue to red, respectively). (C–D) FISH 

validation of epidermal gene expression in Early Stage and Late Stage progenitors (C) and in 

mature epidermis (D), taken in different focal planes in the same animals (see schematic) by 

confocal microscopy (scale bar = 20 μm). White arrows indicate co-expression. Early Stage 

(prog-2) and Late Stage (agat-3) progenitor markers are not expressed in the mature 

epidermis. (E) Violin plots of the eight TFs that were enriched in the DV boundary 

epidermal cells are shown. Black dots represent expression of a single cell. (F) FISH 

validation of DV-boundary epidermis TFs, including co-expression with laminB. The 

expression of the TFs is shown in higher magnification at a DV region corresponding to the 

white-dashed box in the overview (left) image. See also Fig S3G. Scale bar = 20 μm. (G) 

Inhibition of three of the DV epidermal boundary TFs led to a reduction in DV epidermal 

boundary gene expression in regenerating animals 10 days following amputation, as 
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observed by FISH for laminB expression. Top panels: The expression of laminB is greatly 

reduced in the perturbed animals. Scale bar = 100 μm. Bottom panels: Higher magnification 

of the DV boundary in the different RNAi conditions. Scale bar = 20 μm.
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Figure 3. Expression of spatially-restricted mature epidermal identities is pre-patterned in 
epidermal progenitors
(A) ovo-2 expression in the head is restricted to the midline (Scale bar = 100 μm; schematic 

shows spatial expression restriction in blue). (B) In the focal plane of the progenitors, ovo-2 
expression is limited to progenitors in the midline (upper panel), and is not found in 

progenitors immediately lateral to the midline (lower panel). Blue dotted lines indicate 

higher magnification area. Scale bar = 20 μm. (C) tlx-1 expression in mature epidermis is 

found in DV epidermal cells (left schematic), however, tlx-1 expression was also detectable 

in epidermal progenitors in proximity to the DV boundary, but not detected in progenitors in 

other parts of the animal (scale bar = 20 μm). (E–F) Shown are confocal images at different 

focal planes of dorsal or ventral regions of the animal. See key (left panel). Scale bar = 20 

μm. (E) foxJ1-4, an essential gene for ciliogenesis (Vij et al., 2012) is expressed in ventral 

epidermis (top-left), and the lateral flanks the dorsal epidermis, but not in the dorsal-medial 

part (bottom-left; See schematic). The expression of foxJ1-4 is present in epidermal 

progenitors at the ventral region (top-right), but not in the dorsal region (bottom-right). (F) 

The expression of DCLK2 is detectable in ventral but not dorsal epidermis (Fig 1B; left 

schematic). Similarly, ventral epidermal progenitors, but not dorsal progenitors already 

displayed DCLK2 expression, demonstrating that epidermal progenitors activate region-

appropriate transcriptional program according to their DV position.
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Figure 4. Early Stage progenitors activate divergent transcriptional programs based on their DV 
location
(A) Left: Tissues were dissected from dorsal and ventral regions and epidermal progenitors 

were isolated by FACS and qPCR (Fig 1D; STAR Methods). Early Stage progenitors were 

identified computationally (STAR Methods), and gene expression of dorsal and ventral Early 

Stage progenitor samples was compared. Right: tSNE plot of Early Stage progenitors from 

dorsal and ventral regions (green and blue dots, dorsal and ventral cells, respectively). (B) 

Right: Differentially expressed genes (rows) in dorsal and ventral Early Stage progenitors 

(columns) demonstrate differences between cells that differ in their position across the 

boundary. Dendrogram was generated by hierarchical clustering of the gene expression. 

Many of the genes that have a biased DV-expression in the progenitors also display biased 

expression in the mature epidermis-enriched samples (left heat map; shown is the average 

expression across replicates from the same sample type). (C) WISH analyses of the dorsal-

specific gene marker (PRDM1-1) and the ventral-specific gene marker (kal1) demonstrate 

distinct regionalized expression (scale bar = 100 μm). (D) Expression of PRDM1-1 and kal1 
is found in Early Stage progenitors and is restricted to the dorsal or ventral regions, 

respectively. Shown is co-expression of either PRDM1-1 or kal1 with an Early Stage marker 

(prog-2; white arrow).
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Figure 5. Spatially opposed expression of PRDM1-1 and kal1 in neoblasts
(A) ζneoblasts express PRDM1-1 or kal1 in mutually exclusive single ζneoblasts (dots; blue 

to red, low to high gene expression, respectively). (B) The fraction of neoblasts expressing 

dorsal (PRDM1-1) or ventral (kal1) markers was estimated by co-expression analysis of 

FACS-isolated dividing neoblasts, and co-staining with a neoblast marker (smedwi-1). (C) 

FISH showing PRDM1-1 expression in dorsal neoblasts (left), and kal1 is found only in 

ventral neoblasts (right). kal1 was not expressed in dorsal neoblasts in at least 10 animals; 

PRDM1-1 was not expressed in ventral neoblasts in at least 10 animals. (D) Shown is a 

transverse section (see cartoon) labeled for kal1 (red), madt (green; intestinal marker; green 

arrows), bmp4 (green; orange arrow), smedwi-1 (yellow; neoblast marker), and laminB 
(yellow; DV-boundary epidermis). Scale bar = 100 μm. kal1+/smedwi-1+ cells were counted 

(bottom panel, white arrows) and their position in the animal was documented (STAR 

Methods). Scale bar = 20 μm. See also Fig S6E. (E) Summary of the location of kal1+/

smedwi-1+ cells in 24 transverse sections (magenta circles). Sections were divided to 10 

regions (bounded by black lines) and the number of kal1+/smedwi-1+ cells was counted in 

each region (STAR Methods). The medial-lateral position of the cells was not measured and 

the medial-lateral spread is for clarity, except for cells next to the DV-boundary epidermis 

(yellow cartoon), which represent the approximate distance of these cells from the boundary. 

All kal1+/smedwi-1+ cells were ventral to the intestine (green cartoon), except for those 

next to the DV-boundary epidermis. (F) FISH on animals labeled for ζneoblasts markers 

(pool of soxP-3 and zfp-1) and kal1 shows that kal1-ζneoblasts extends more internally than 

kal1 expression (white arrow), suggesting that ventral ζneoblasts express kal1 when they are 

only near the epidermal surface. Top panel shows all channels; bottom panel shows kal1 
expression and DAPI. Scale Bar = 100 μm. See Figure S6F for single channel images. (G) 

Top panel: Schematic of dividing neoblast isolation by FACS (STAR Methods). Pre-

pharyngeal segments were isolated and were dissected into dorsal and ventral fragments. 

The fragments were macerated, separately, and cells (green and blue dots, dorsal and ventral 
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cells, respectively) were isolated by FACS into groups of 500 cells (STAR Methods; eight 

dorsal samples and six ventral samples). The samples were processed (STAR Methods) and; 

bottom panel: tested by qPCR for the expression of PRDM1-1 and kal1, with their 

expression normalized by smedwi-1 expression (green and blue squares represent 500-cell 

samples, dorsal or ventral, respectively). Significance of difference in expression was tested 

by Student’s t-test and corrected for multiple hypothesis testing using Bonferroni correction. 

Overlaid are 95% bootstrap-calculated confidence intervals.

Wurtzel et al. Page 31

Dev Cell. Author manuscript; available in PMC 2018 March 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. Planarian ζneoblast gene expression is regulated by extracellular positional signaling
(A) bmp4 was inhibited by RNAi (STAR Methods), and 10 days following the first feeding 

of three, animals were either fixed or cut and allowed to regenerate for 10 days (upper 

panel). Animals did not have any visible defects prior to cutting (bottom panel), but 

following cutting and regeneration, they displayed major morphological defects, as 

previously reported (Molina et al., 2007; Reddien et al., 2007). (B) kal1 expression was 

observed 10 days following bmp4 RNAi on the dorsal surface, but never in control animals. 

Shown are animals before cutting (top) and animals at 10 day following regeneration 

(labeled reg 10d). Insets show a dorsal cell in bmp4 RNAi animal that co-expresses an Early 

Stage marker (prog-2) and kal1, demonstrating that reduction in BMP expression is 

sufficient for the appearance of ventral markers dorsally. Inset scale bar = 10 μm. (C) kal1 
expression is observed in dorsal ζneoblasts, suggesting that ζneoblasts sense bmp4 
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expression in their environment and specify their positional gene expression accordingly. At 

day 10 following bmp4 inhibition animals displayed kal1 expression dorsally (left panel). 

Middle panel: In bmp4 RNAi animals, we detected dorsal kal1+ cells that also express 

smedwi-1 (a pan-neoblast marker), and ζneoblast markers (combination of soxP-3 and 

zfp-1, (van Wolfswinkel et al., 2014)), indicating that they were indeed epidermal neoblasts 

(white arrow). Right panel: In addition, we identified kal1+/ζneoblast+ cells that did not 

express smedwi-1, suggesting that they are more differentiated epidermal progenitors. Scale 

bar = 20 μm. (D) Animals were divided into two cohorts, one of which was lethally 

irradiated on day zero; the other was unperturbed. Half of the animals each cohort received a 

single injection of either bmp4 dsRNA or a control dsRNA. Animals were fixed and 

analyzed at day four, day six and day eight following injection. (E–F) At days four and eight 

following bmp4 dsRNA injections, epidermal progenitors on the dorsal side (prog-2+ or 

agat-3+ cells, top and middle panels, respectively), which expressed kal1, were detectable. 

Conversely, kal1+ dorsal epidermal progenitors were not detected in irradiated animals. At 

day eight following irradiation, epidermal progenitors are completely ablated. See also Fig 

S7A. Scale bar = 20 μm. (G) The dorsal expression of rootletin in the irradiated bmp4 
animals is indistinguishable from control animals. Conversely, in three of eight unirradiated 

bmp4 RNAi animals, the dorsal rootletin expression resembled the ventral surface of the 

animal. See Fig S7B. Scale bar = 100 μm. Inset shows rootletin+ cells expressing kal1. Inset 

scale bar = 20 μm. (H) Expression of kal1 in dorsal pre-pharyngeal regions. Only 

unirradiated bmp4 RNAi had dorsal expression. Scale bar = 20 μm. (I) Quantification of the 

number of kal1+ cells on the pre-pharyngeal dorsal region of each animal (black dot) 

analyzed. Significance was assessed using Student’s t-test. Groups labeled Irr and Unirr 

represent irradiated and unirradiated groups, respectively. (J) Transverse section showing the 

spatial distribution of kal1+ cells in control and bmp4 RNAi animals. kal1+ cells were never 

found in the middle of the animal, despite ectopic expression in all bmp4 RNAi sections 

analyzed (white arrows). Scale bar = 100 μm.
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Figure 7. Model for planarian epidermal differentiation
(A) Top panel: Planarian epidermal cells mature in a spatiotemporally defined sequence, in 

which progenitors go through several transitions defined by cellular morphology and spatial 

distribution. Bottom panel: Genes that are associated with distinct epidermal identities are 

expressed in all stages of the epidermal maturation, in a spatially-defined manner. Some of 

these genes are already expressed in ζneoblasts suggesting that ζneoblasts sense their 

position in the animal. (B) Some spatially-restricted epidermal identities are pre-patterned in 

epidermal progenitors. The model presents a view of a transverse cross-section. Dorsal is up. 

Medial mature epidermal cells (M; Large shapes) express ovo-2 (yellow nuclei), whereas 

lateral cells do not (L; purple nuclei). FISH analysis of epidermal progenitors determined 

that epidermal progenitors near the midline already express ovo-2 (yellow), whereas lateral 

epidermal progenitors do not (purple). (C) The specification of ζneoblasts to ventral (kal1+) 

identities is repressed by bmp4 expression from dorsal muscle cells (red elongated cells). 

ζneoblasts, which are in proximity to the BMP source, can express dorsal markers 

(PRDM1-1+; green circles), which is correlated with the emergence of additional dorsal 

epidermal identities. By contrast, cells that are far from the BMP source can specialize to 

ventral progenitors (kal1+; blue circles), which are associated with ventral epidermal 

identities. Inhibition of BMP signaling results in the emergence of kal1+ ζneoblasts dorsally. 

(D) BMP inhibits the expression of genes associated with a ventral identity in dorsal 

ζneoblasts. Inhibition of BMP leads to emergence of ventral identities dorsally.
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