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Abstract

Advanced age is associated with reduced within-network functional connectivity, particularly 

within the default mode network. Most studies to date have examined age differences in functional 

connectivity via static indices that are computed over the entire blood-oxygen level dependent 

time-series. Little is known about the effects of age on short-term temporal dynamics of functional 

connectivity. Here we examined age differences in dynamic connectivity as well as associations 

between connectivity, metabolic risk, and cognitive performance in healthy adults (N=168; age 18 

to 83). A sliding-window k-means clustering approach was used to assess dynamic connectivity 

from resting-state fMRI data. Three out of eight dynamic connectivity profiles were associated 

with age. Furthermore, metabolic risk was associated with the relative amount of time allocated to 

two of these profiles. Finally, the relative amount of time allocated to a dynamic connectivity 

profile marked by heightened connectivity between default mode and medial temporal regions was 

positively associated with executive functions. Thus, dynamic connectivity analyses can enrich 

understanding of age-related differences beyond what is revealed by static analyses.
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1. Introduction

Aging affects many aspects of brain structure and function and is associated with cognitive 

decline (see Kennedy & Raz, 2015; Fjell et al., 2014 for recent reviews). Understanding age 

differences in the brain functional organization is an important step in elucidating neural 

mechanisms of cognitive aging, and since its introduction, resting state functional magnetic 
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resonance imaging (rs-fMRI; (Biswal et al., 1995; Raichle et al., 2001), has been applied to 

assess age-related differences in brain network functioning. In rs-fMRI analyses, 

configuration and strength of functional organization is commonly inferred from spatial 

patterns of temporal correlations between low-frequency fluctuations in blood-oxygen-level 

dependent (BOLD) signals of different brain regions, termed “functional connectivity” 

(Biswal et al., 1995; Cordes et al., 2001; Lowe et al., 1998). Many resting state networks 

(RSNs) have been identified (Beckmann et al., 2005; Damoiseaux et al., 2006; De Luca et 

al., 2006; Fox et al., 2005), and the spatial configurations of these RSNs have been 

comparable to spatial configurations of networks observed during task performance 

(Calhoun et al., 2008; Smith et al., 2009).

Of the multiple known RSNs, the Default Mode Network (DMN), which is more active 

during wakeful, task-free rest and less active during overt task engagement, has received 

extensive attention (Buckner et al., 2008; Greicius et al., 2003; Raichle et al., 2001; Shulman 

et al., 1997). DMN activity is associated with episodic memory and future planning 

(Buckner et al., 2008), and DMN connectivity at rest predicts subsequent memory 

performance (Sala-Llonch et al., 2012; Wang et al., 2010). Furthermore, resting DMN 

connectivity is negatively related to age (Andrews-Hanna et al., 2007; Damoiseaux et al., 

2008; Wu et al., 2011), and, in comparison to younger participants, older adults exhibit 

lower task-related deactivation of DMN regions (Grady et al., 2006; Lustig et al., 2003; 

Sambataro et al., 2010). Thus, advanced age may be linked to reduced flexibility in response 

to task demands. Whole-brain functional connectivity analysis has also revealed age-

associated breakdown of communication within RSNs and elevated communication between 
RSNs (Chan et al., 2014), suggesting age-related de-differentiation of brain organization.

An important common feature, and possible limitation, of most rs-fMRI studies in healthy 

adults is reliance on functional connectivity indices calculated from an entire scan session. 

Potentially important information about within-scan temporal changes in functional 

connectivity may be lost in this aggregation (Allen et al., 2014; Chang and Glover, 2010; 

Sakoglu et al., 2010). The assessment of dynamic functional connectivity in rs-fMRI (see 

Hutchinson et al., 2013, for methodological review) has revealed that individuals may 

transition between different dynamic whole-brain connectivity profiles (often called ‘states’) 

characterized by distinct connectivity patterns (Allen et al., 2014). The dynamic connectivity 

profiles reveal variability in functional brain organization over time. This variability may 

reflect changes in neural activity related to cognitive and sensorimotor operations, as well as 

non-neuronal factors such as systemic physiological changes or spontaneous head motion. 

Previous work suggests that variability in hub region multi-network participation is lower 

(Schaefer et al., 2014), and variability within DMN dynamic functional connectivity is 

higher (Madhyastha and Grabowski, 2014) in older compared to younger adults. 

Furthermore, stability of functional connectivity increases with age in some regions (e.g. 

middle frontal gyrus), while decreasing in others (e.g. supramarginal gyrus) (Yin et al., 

2016). These patterns of age differences suggest that dynamic properties of brain networks 

may reflect neural phenomena relevant to age-related functional declines.

Despite growing interest in connectivity dynamics, investigations of lifespan age differences 

therein remain scarce. Therefore, the present study aimed to determine age-related 
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differences in dynamic functional connectivity and their relation to cognitive performance in 

healthy adults. We hypothesized age differences in patterns of DMN dynamic connectivity 

as static connectivity differences within this network have been previously observed 

(Andrews-Hanna et al., 2007; Damoiseaux et al., 2008; Wu et al., 2011) and increased DMN 

variability has been noted in older adults (Madhyastha and Grabowski, 2014). Specifically, 

we hypothesized that time allocation among specific dynamic connectivity profiles would be 

age dependent and that older adults would devote less time to profiles dominated by strong 

connectivity within DMN, and between DMN and other networks, compared to younger 

counterparts. We also hypothesized that time share of specific profiles would be related to 

cognitive performance, with more “youthful” patterns of dynamic connectivity linked to 

higher cognitive scores, analogous to associations observed in extant studies of static DMN 

connectivity and cognition (Sala-Llonch et al., 2012; Wang et al., 2010). Considering 

reported age-related decreases in dynamic hub-region network variability (Garrett et al., 

2010; Schaefer et al., 2014) and increased variability in DMN component intercorrelation 

(Madhyastha and Grabowski, 2014), we also expected our dynamic analysis to capture age 

differences in the rate of switching between connectivity profiles. Specifically, we 

hypothesized older adults would switch profiles at a lower rate, which might reflect less-

than-optimal cognitive processing.

2. Methods

2.1 Participants

Structural and functional MRI data were available for 168 adults (61 men, 107 women; 18–

83 years, M = 48.8, SD = 18.0), recruited from the Metro Detroit, Michigan area through 

advertisements in newspapers and flyers. Participants were enrolled in an ongoing 

longitudinal study, in which the resting state sequence was introduced after some had 

undergone more than one wave of testing. Therefore, complete baseline cognitive testing 

data corresponding to the time of baseline resting state functional MRI acquisition were 

available only for a subsample of 91 participants (33 men, 58 women) with age range 18–78 

years (M = 42.2, SD = 17.6). The Wayne State University Institutional Review Board 

approved the study and signed informed consent was obtained from all participants. 

Debriefing followed the experiment. Participants spoke English as their first language and 

were deemed right-hand dominant after scoring over 75% on the Edinburgh Inventory 

(Oldfield, 1971). They were screened for neurological, psychiatric, cardiovascular, and 

endocrine diseases, diabetes, cancer, and a history of loss of consciousness greater than 5 

minutes. Participants were also screened for dementia (Mini-Mental State Exam, MMSE ≥ 

26; (Folstein et al., 1975) and depression (Center for Epidemiological Study Depression 

questionnaire, CES-D ≤16; (Radloff, 1977). A metabolic risk score was computed as the 

sum of standardized indicators of metabolic syndrome (Grundy et al., 2004): waist-hip-ratio, 

blood triglycerides, systolic blood pressure, fasting blood glucose and high-density 

lipoprotein (reverse-coded). See previous report for details (Damoiseaux et al., 2016). 

Metabolic health indicators were available for 151 of the 168 participants, and 84 of the 91 

participants with cognitive data.
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2.2 Assessment of Cognitive Performance

Cognitive tests, described in previous publications (e.g., Raz et al., 2009), were administered 

across four sessions within a three-month window around the MRI session. We performed 

confirmatory factor analysis (CFA) to determine the main cognitive constructs. The CFA 

model consisted of three latent factors: processing speed, with letter comparison and pattern 

comparison scores as indicators; memory, with Woodcock-Johnson-R Memory for Names 

(WJR memory, immediate and delayed) scores as indicators; and executive functioning, with 

the following indicators: Stroop, Wisconsin Card Sorting Test, size judgment span, listening 

span, spatial recall, and Cattell Culture Fair Test (form 3B, tests 1, 2, 3, 4). Analyses were 

conducted with Mplus 6.0 (Muthén and Muthén), and composite factor scores were 

calculated for each latent factor (see Damoiseaux et.al., 2016 for a detailed description of the 

CFA).

2.3 MRI Data Acquisition

Imaging was performed at the Wayne State University MRI research facility on a 3-Tesla 

Siemens Verio (Siemens Medical AG, Erlangen, Germany) full-body magnet with a 12-

channel head coil. For the resting-state functional scan, 200 volumes of 43 axial slices were 

acquired using a T2*-weighted echo planar sequence: repetition time (TR) = 2500 ms, echo 

time (TE) = 30 ms, flip angle = 90°, pixel bandwidth = 2298 Hz/pixel, GRAPPA accele 

ration factor PE = 2, field-of-view = 210 mm, matrix size = 64 × 64, voxel size = 3.3 × 3.3 × 

3.3 mm. Participants were instructed to remain still with eyes open. For the anatomical scan, 

a 3D T1-weighted magnetization-prepared rapid gradient-echo (MPRAGE) sequence was 

acquired: TR = 1680 ms; TE = 3.51 ms; inversion time (TI) = 900 ms; flip angle = 9.0°, 

pixel bandwidth = 180 Hz/pixel, GRAPP A = 2; field-of-view = 256 mm, matrix size = 384 

× 384, voxel size 0.67 × 0.67 × 1.34 mm.

2.4 Preprocessing

Image preprocessing was carried out with the FMRIB Software Library (FSL, version 5.0; 

(Smith et al., 2004). Resting state processing included removal of the first four image 

volumes, motion correction (Jenkinson et al., 2002), removal of non-brain structures (Smith, 

2002), spatial smoothing (6 mm FWHM), 4D grand-mean scaling, and high-pass temporal 

filtering (Gaussian-weighted least-squares straight line fitting, sigma=150.0 s). The scan was 

then aligned with the corresponding high resolution T1 and subsequently registered to 3 mm 

isotropic MNI152 space with affine linear registration (Jenkinson et al., 2002). Translation 

and rotation time courses were regressed from the images to attenuate the influence of head 

motion on results. Participants with more than 3 mm absolute head displacement during the 

scan were not included in the analysis. Global signal contribution was removed.

2.5 ROI Generation and Organization

175 ROIs were defined from a group-level parcellation generated with spatially-constrained 

normalized-cut spectral clustering (Craddock et al., 2012) restricted to a gray matter mask 

segmented from an MNI image using FSL’s FAST (Zhang et al., 2001). Of the available 

ROIs, 172 were used for subsequent analysis after removal of brain stem ROIs. Mean ROI 
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time-series were calculated and assigned a unit variance before covariance estimations. 

Therefore, subsequent covariance calculations were tantamount to correlation.

Static whole-brain covariance matrices were computed for all participants, Fisher z-

transformed, and averaged. A weighted, undirected graph was constructed with ROIs as 

nodes and the top 10% of positive connections, in terms of strength, as edges. ROIs were 

organized into non-overlapping communities with Infomap to define network structure 

(Lancichinetti and Fortunato, 2009; Rosvall and Bergstrom, 2008). To ensure that the 

network structure was derived from reliable, strong connectivity, only the top 10% of 

positive connections were included in the Infomap community detection. Global signal 

regression, which was applied as a preprocessing step, may induce anti-correlation between 

networks (Murphy et al., 2009), rendering the interpretation of negative correlations 

difficult. The Infomap analysis converged on eight communities (further referred to as 

RSNs), which after visual inspection were labeled as DMN, Sensorimotor (SM), Visual 

(Vis.), Dorsal/Lateral Temporal (dLTL), Ventral/Medial Temporal (vMTL), Cerebellar (CB), 

Subcortical (SC), and Orbitofrontal (OF) (Figure 1). DMN included medial prefrontal, 

posterior & anterior cingulate, precuneus, inferior parietal, dorsolateral prefrontal, and 

rostro-lateral prefrontal cortex. SM included premotor, primary motor, and primary 

somatosensory cortex. dLTL included Wernicke’s area, Broca’s area, superior & middle 

temporal, auditory, parietal, and secondary somatosensory cortex. vMTL included inferior 

temporal, fusiform, and parahippocampal cortex, hippocampus, and amygdala. SC included 

thalamus, basal ganglia, and mammillary bodies. CB corresponded to the cerebellum, OF to 

the orbitofrontal cortex, and Vis. to the occipital cortex.

2.6 Static Connectivity Analysis

Average static within- and between-network connectivity, calculated as average covariance 

between ROIs in the same RSN or between ROIs in different RSNs, was computed for each 

participant. In addition, connectivity within the DMN and between the DMN and other 

networks was assessed. Multiple linear regression was used to evaluate possible 

relationships between static network connectivity and age, gender, and metabolic risk. Based 

on previous findings (La Joie et al., 2014; Wang et al., 2010), we also evaluated the 

associations of within-DMN connectivity and DMN-vMTL connectivity with cognitive 

performance, while controlling for age, gender, and metabolic risk.

2.7 Dynamic Covariance Calculation

Dynamic connectivity was assessed via sliding-window k-means clustering, after Allen et al. 

(2014). Covariance matrices were estimated from regularized precision matrices (Smith et 

al., 2011; Varoquaux et al., 2010) computed from windowed segments of the mean ROI 

time-series (Tukey window; width = 28 TR or 70 seconds, alpha = 0.2, step-size = 7 TR). 

Window width and step-size were chosen based on published research (Hutchison et al., 

2013b; Shirer et al., 2012), with the aim of reducing autocorrelation between successive 

windows, and retaining adequate power to detect dynamic connectivity patterns. 

Regularization was carried out via group sparse covariance estimation (Varoquaux et al., 

2010) with NiLearn (based on the scikit-learn package; (Abraham et al., 2014; Pedregosa et 

al., 2011). Regularization was optimized for each participant independently; the estimator 
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was fit on a participant’s set of covariance matrices by assessing the likelihood of unseen 

matrices through leave-one-out cross-validation. Matrices were Fisher z-transformed after 

estimation.

We applied k-means clustering (Lloyd, 1982), using L1 distance (Aggarwal et al., 2001), to 

the set of all dynamic covariance matrices to identify consistent and differing dynamic 

connectivity patterns. K-means analysis was repeated with the number of clusters (k) 

ranging from 2 to 9, and run 500 times at each level of k to escape local minima. The final 

number of clusters, k = 8, was determined by the gap statistic (Tibshirani et al., 2001) with 

50 generated reference samples. After determining k, the data were bootstrap-resampled 50 

times and clustered the same way as the original data to assess stability of clusters via 

Jaccard similarity (Hennig, 2007). For each cluster in the original set, the similarity value 

between that cluster and the most similar cluster in the bootstrapped set was recorded. 

Maximum similarities over all 50 resampling rounds were averaged for each cluster (Table 

S1).

2.8 Dynamic Connectivity Profile Quantification

Modularity was calculated twice for each dynamic connectivity profile (Rubinov and 

Sporns, 2011): once using the static network definition, and once with a network structure 

determined by applying Infomap to the dynamic centroid. Modularity of a profile given the 

static network definition was interpreted as representing proximity of the modular structure 

of the dynamic profile to static structure. Modularity given dynamic network structure was 

interpreted as indication that a modular structure was present even if dynamic and static 

structures did not correspond.

Average whole-brain within- and between-network connectivity, as well as average 

connectivity within the DMN and between the DMN and the rest of the brain, were 

compared between each dynamic connectivity profile and the static profile with independent 

samples t-tests (Table 1). Independent samples t-tests were also used to compare each 

connection in the dynamic connectivity profiles to the corresponding connection in the static 

profile to assess individual ROI pairing connectivity differences (Figure S1). Dynamic 

connectivity profiles were also assessed qualitatively by plotting radial tree graphs of the top 

10% of positive connections of the centroids (Figure 2).

2.9 Associating Dynamic Connectivity with Age, Gender, and Metabolic Risk

Having a portion of a scan allocated to a dynamic connectivity profile was treated for each 

participant as a binary outcome – 1 for having and 0 for not having. We used logistic 

regression to investigate the impact of age, gender, and metabolic risk on that outcome for 

each profile. The number of unique connectivity profiles and transitions between profiles per 

participant was also noted. Linear regression assessed the associations between age and 

metabolic risk with the number of unique dynamic profiles and the relationship between age 

and number of transitions.

Vectors indicating to which dynamic connectivity profile each windowed covariance matrix 

belonged were created for each participant. The amount of time allocated to each dynamic 

connectivity profile was then calculated and multiple linear regression was performed to 
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examine the influences of age, gender, and metabolic risk on the relative amount of time 

allocated to a profile. Participants who did not have a portion of their scan correspond to a 

profile were not included in that regression; therefore, each analysis drew a different 

subsample of the participant pool.

2.10 Associating Dynamic Connectivity with Cognitive Performance

The event of allocating any time to a particular profile was related to cognitive performance 

in the subset of 91 participants while controlling for age, gender, and metabolic risk via 

ANCOVA. For participants who had some portion of their scan correspond to a profile, the 

relative amount of time allocated to that profile was related to cognitive performance 

constructs via general linear models with age, gender, and metabolic risk included. Only 

connectivity profiles 2, 3, and 7 were evaluated because too few participants with metabolic 

and cognitive data had connectivity patterns related to the other profiles (n ≪ 40).

2.11 Packages, Visualizations, and Multiple Comparison Correction

In-house Python (2.7.6) and R (3.3.1) scripts, and SPSS (23.0), were used for statistical 

analyses, FSLVIEW was used for ROI RSN structure visualization, graph-tool (Peixoto, 

2014) was used for radial tree graph visualization, and matplotlib (Hunter, 2007) was used 

for all other visualizations. Experiment-wise False Discovery Rate correction (q=5%) was 

applied. Matrices comparing each static connection to the corresponding dynamic 

connections were not included in this FDR correction, and were instead Bonferroni 

corrected (α = 3.39E-6) on a per-matrix basis.

3. Results

3.1 Static Functional Connectivity

Advanced age was associated with lower functional connectivity between DMN and vMTL 

(β = −0.282, p = 0.001), and greater connectivity between DMN and SM (β = 0.222, p = 

0.01), while controlling for metabolic risk and gender. Women, regardless of age or network 

type, had lower average within (β = −0.239, p = 0.008) and between (β = −0.233, p = 0.01) 

network connectivity compared to men.

3.2 Dynamic Functional Connectivity and its Correlates

3.2.1 Connectivity profiles—Eight dynamic connectivity profiles identified in these data 

are depicted in Figure 2. Not every participant entered each profile, and the mean number of 

profiles per person was 3.12 (SD = 1.00). Dynamic connectivity profiles 2, 3, and 7 had high 

membership, whereas the rest had moderate to low membership, particularly profile 4 (Table 

S1). All connectivity profiles, except profile 5, exhibited moderate (greater than 0.5) to high 

(greater than 0.7) average Jaccard values, indicating cluster stability (Table S1). Less stable 

profiles could reflect important between-subject variability, but also intermediate transitional 

states between more stable profiles. No profile represented a dissolved network 

configuration as all had moderate modularity given a network structure optimized for the 

profile centroid (Table S1). Because of low membership and low stability, profiles 4 and 5 

were removed from further analyses. Differences between the remaining dynamic 
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connectivity profiles and the static profile in whole brain and DMN-specific within- and 

between-network connectivity are detailed in Table 1 and depicted in Figure S1.

3.2.2 Predictors of connectivity profile presence—Differences in presence or 

absence of a connectivity profile may indicate differences in brain network organization and 

efficiency. We therefore applied logistic regression to test age, gender, and metabolic risk as 

predictors of individual dynamic connectivity profile membership (Table S2). Older age was 

associated with lower odds of having profiles 2 (OR = .957, p = .005) and 7 (OR = .953, p 
< .0001), and higher odds of having profile 3 (OR = 1.028, p =.008). Neither metabolic risk 

nor gender were associated with any of the dynamic profiles. The age difference in odds of 

having profiles 3 and 7 is in accord with our finding of lower DMN-vMTL connectivity in 

older adults in the static functional connectivity analysis, because profiles 3 has low whereas 

profile 7 has high DMN-vMTL between-network connectivity (Figure 2). Since the 

connectivity pattern of profile 2 is most similar to the static connectivity pattern (Figure S1), 

lower odds of the observing profile 2 could be interpreted as an age-related deviation from 

typical brain integration.

3.2.3 Number of unique connectivity profiles and profile transitions—The 

number of unique dynamic connectivity profiles per individual was unrelated to age or 

metabolic risk (R2 = .004, p = .72; age β = −.07, p = .43; metabolic risk β = .006, p = .94). 

Moreover, we observed no association between the number of profile transitions and age (R2 

= .005, age β = −.07, p = .35). This was contrary to our expectations that older adults would 

have lower transition rates.

3.2.4 Age, Gender, Metabolic Risk, and Relative Time Allocated to Dynamic 
Connectivity Profiles—Older age was associated with more time allocated to profile 8 (β 
= .357, p = .009), that evidenced lesser connectivity between DMN and SM, Vis., and dLTL, 

and greater DMN-CB and DMN-SC connectivity compared to the static profile (Figure S1). 

Furthermore, greater metabolic risk score was associated with more time allocated to profile 

2 (β = .278, p = .007) and less time to profile 7 (β = −.350, p = .003). None of the other 

tested associations reached significance (see Table S3).

3.2.5 Cognitive Performance and Functional Connectivity—Whether an individual 

exhibited a specific dynamic profile or not was unrelated to cognitive performance after 

controlling for age, gender, and metabolic risk. However, the relative amount of time 

allocated to profile 7 was positively associated with executive functions score (β = .297, p 
= .013) for participants who had that pattern of connectivity. Thus, the more time 

participants allocated to a dynamic connectivity pattern with high DMN connectivity, the 

better their performance was on tasks of executive functioning outside of the scanner. None 

of the other tested associations between time allocated to a profile and cognitive function 

reached significance (Table S4). Furthermore, static DMN connectivity was unrelated to 

cognitive performance beyond age, gender, and metabolic risk (Tables S5 and S6).

3.2.6 Effect of Motion on Dynamic Functional Connectivity—Motion artifacts can 

remain in the signal time series after motion regression (Power et al., 2012), and dynamic 

connectivity could be influenced by head motion (Laumann et al., 2016). Assessment of the 
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association between head motion and dynamic functional connectivity in our data revealed 

that mean framewise displacement (FD) was associated with odds of demonstrating any 

profile except profile 8, and with time allocated to profile 2 (Tables S7 & S8). Mean FD was 

unrelated to rate of switching between profiles (r =.14, p = .06). The observed age, gender, 

and metabolic risk effects remained largely the same after including mean FD into the 

models. Only the age-related odds of demonstrating profile 2 were reduced to a trend level 

and age-related odds of demonstrating profile 3 were no longer significant (Table S7).

4. Discussion

We examined age-related differences in dynamic functional connectivity, and contrasted the 

results to findings obtained from a static connectivity analysis. In line with previous 

research, we found lower static functional connectivity between default mode regions and 

ventral and medial regions of the temporal lobe in older participants (Andrews-Hanna et al., 

2007; Damoiseaux et al., 2016). This lower static DMN-vMTL connectivity may represent 

an age-related reduction in communication within putative memory systems (Ranganath and 

Ritchey, 2012). Projections from MTL regions to posterior DMN regions are part of a 

presumed posterior memory system, which is thought to be involved in episodic memory 

function (Kahn et al., 2008; Ranganath and Ritchey, 2012). Our finding of gender 

differences in static whole brain within- and between-network connectivity is in accord with 

previous reports of gender differences across functional connectivity measures (Gong et al., 

2011; Tomasi and Volkow, 2012). Because of the association between gender and functional 

connectivity, we included gender in the models but the results remained significant after this 

control. No gender differences were observed in the dynamic connectivity measures.

4.1 Dynamic Resting Functional Connectivity

After partitioning the total BOLD time series into discrete segments, we found that older 

participants were less likely to allocate windowed time segments to a dynamic connectivity 

profile similar to the static state (profile 2) and a profile with high DMN-vMTL connectivity 

(profile 7) but more likely to allocate them to a profile with low DMN-vMTL connectivity 

(profile 3). These findings suggest that the lower connectivity observed in the static state can 

be explained by both lower and higher odds of having certain transient connectivity profiles.

Connectivity profile 2 has the highest membership of all profiles (i.e. present in 132 

participants and accounted for 31.4% of all windows; Table S1) and is most similar to the 

static state (Figure S1). Therefore, this connectivity pattern may reflect a kind of “ground 

state” with other profiles possibly reflecting deviations from it that arise due to cognition, 

movement in the scanner (Laumann et al., 2016; Power et al., 2012; Van Dijk et al., 2012), 

sleep (Allen et al., 2014), or respiration and variations in arterial blood flow (Chang and 

Glover, 2010; Wise et al., 2004). The lower odds of having certain profiles in older adults 

could reflect known age-related differences observed using static connectivity approaches 

(Andrews-Hanna et al., 2007; Campbell et al., 2013; Damoiseaux et al., 2008; Damoiseaux 

et al., 2016), with the age differences observed in profile 3 and 7 providing additional 

information. The lower DMN-vMTL connectivity of profile 3 could indicate disconnection 

of posterior memory regions, which appears more prevalent in older adults. Conversely, 
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connectivity in profile 7 possibly represents a strengthening or integration of anterior and 

posterior memory regions as it exhibits greater connectivity between not just DMN and 

vMTL, but also between DMN and OF, and vMTL and OF regions (Figure S1). Projections 

from MTL to OF regions are considered part of an anterior memory system (Ranganath and 

Ritchey, 2012).

Profile 7 is of interest in the context of cognitive aging. Association of the profile with lesser 

metabolic risk and better performance on executive functions suggests that modulation of 

the DMN by vMTL activity may be important in mitigating decline in typical age-sensitive 

cognitive domains (Yuan and Raz, 2014) and resisting negative influence of metabolic risk 

on cognition (Dahle et al., 2009). Both are aspects of aging that are increasingly viewed as 

mutually related determinants of late-life development (Allan et al., 2016). This is in accord 

with the extant reports that age-related DMN alterations at rest may be related to age-

sensitive cognitive skills (Andrews-Hanna et al., 2007; Damoiseaux et al., 2008). Low 

membership of profile 7, therefore, may represent a marker for cognitive impairment. An 

unknown mechanism related to aging or metabolic risk might be preventing maintenance of 

this connectivity pattern at rest. Conversely, time allocation to profile 7 could be an indicator 

of cognitive reserve (Stern, 2002). Either way, longitudinal analysis is necessary to 

determine the relationship between change in cognitive performance and maintenance of 

dynamic connectivity patterns like profile 7.

Our results indicate that although individuals, regardless of age, can traverse multiple 

dynamic connectivity profiles, the odds of allocating time to a specific connectivity pattern 

vary with age. However, contrary to our expectations, we did not observe any association 

between older age and rate of switching between dynamic connectivity profiles. Because 

dynamic hub-region network variability decreases with age (Garrett et al., 2010; Schaefer et 

al., 2014), we hypothesized that functional connectivity patterns would be more similar 

across shorter periods for older adults. Contrary to this expectation, we found no association 

between age and the rate of profile switching. Possible explanations for this discrepancy 

may include differences in analysis approach and sample characteristics, such as exact age 

range and participant health, between the studies. It is also important to note that, regardless 

of the observed age-related differences, most of the associations tested did not reveal 

significant differences. Therefore, the stability of age differences in dynamic functional 

connectivity remains unclear and their magnitude may be relatively modest.

4.2 Limitations

Some of the identified connectivity profiles (e.g., profile 4) had low membership, a fact that 

may confound interpretation. It is possible that clusters with low membership are 

generalizable and that scanning conditions could be keeping most participants from entering 

those profiles. Those profiles, however, may also reflect artifacts that confound individual 

variability in connectivity.

One of the limitations of k-means clustering is the “curse of dimensionality.” As clustering 

algorithms are forced to classify a vast number of connections associated with whole-brain 

connectivity, dimensionality of a space grows, and empty space between data points 

increases exponentially. Such disproportionate increase in sparsity can jeopardize the 
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effectiveness of k-means analysis, thus casting doubt on whether obtained clusters optimally 

represent a true configuration. Most clusters in the present analysis were stable and can 

therefore be interpreted as meaningful even if not representative of the “true” dynamic 

connectivity. Still, future analyses could assess dynamic interactions between select regions 

rather than attempting to quantify the whole brain to overcome dimensionality woes.

Furthermore, the use of group LASSO regression (Varoquaux et al., 2010) to enforce 

covariance sparsity on participants individually comes with caveats. Group LASSO forces 

the same sparsity structure on the set of input covariance matrices. Each participant therefore 

is assigned their own sparsity structure. Because we expect dynamic connectivity profiles to 

reveal different connectivity patterns, the “true” underlying sparsity structure between 

windows may differ. Therefore, applying LASSO is associated with a trade-off: attenuation 

of covariance estimation error comes with reduction of differences between connectivity 

profiles – i.e., LASSO might artificially make dynamic profiles more similar.

Simulation studies have raised concerns regarding the utility of sliding window approaches 

to assessing dynamic functional connectivity (Hindriks et al., 2016; Shakil et al., 2016). 

Future analysis is needed to establish optimal parameters and use of this approach. Dynamic 

patterns could also be contaminated by head motion (Laumann et al., 2016), and motion 

artifacts remain in the signal time course even after adjustment via motion regression (Power 

et al., 2012), therefore it is possible that static age-related connectivity differences and the 

age-related odds of having a specific dynamic connectivity profile could be related to the 

same motion artifacts. To address this possibility, we assessed the association between mean 

FD and odds of demonstrating a profile, time allocated to a profile, and rate of switching 

between profiles. We found that motion was associated with the odds of demonstrating, and 

the time allocated to, certain profiles. However, observed age, gender, and metabolic risk 

effects remained largely the same. Thus, although motion is associated with dynamic FC, it 

does not fully explain the relationship between dynamic FC, age, and metabolic risk.

It is also suggested that dynamic connectivity reflects systematic and reoccurring patterns of 

cerebral blood flow that might represent optimized global metabolic processing (Zalesky et 

al., 2014). However, given that machine learning classifiers can reliably discern between 

connectivity profiles that arise due to different task demands (Shirer et al., 2012), it is likely 

that unsupervised algorithms produce meaningful connectivity clusters that provide 

interesting information about the brain at rest that relates to cognitive functioning.

In this study, we used resting state functional MRI data to assess the effect of age on 

dynamic functional connectivity. It is possible that dynamic functional connectivity assessed 

during task-evoked functional MRI could yield slightly different results. As observed in the 

extant literature, static functional connectivity differences exist across different conditions 

(Shirer et al., 2012) although network connectivity structure remains similar (Smith et al., 

2009). Therefore, our prediction regarding the effect of age on DMN connectivity would 

hold for task-evoked MRI data, even though specific profiles may look different. 

Nevertheless, more research comparing functional MRI data acquired under different 

conditions is needed to examine the effect of behavioral context.
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5. Conclusion

We observed age-related differences in configuration of dynamic whole-brain functional 

connectivity patterns at rest. Advanced age, elevated metabolic risk, and low executive 

function scores were associated with lesser likelihood of a dynamic profile that is 

characterized by heightened functional connectivity between DMN and vMTL. Lower 

membership in specific dynamic profiles may denote a potential marker for age-related 

cognitive decline. Our results indicate that dynamic analysis can capture nuanced differential 

age-related FC patterns that are obscured by aggregation of BOLD data over the whole time-

series.
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Abbreviations

DMN Default Mode Network

SM Sensorimotor Network

Vis. Visual Network

dLTL Dorsal Lateral Temporal Network

vMTL Ventral Medial Temporal Network

CB Cerebellum

SC Subcortical Network
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Highlights

• Age differences in dynamic connectivity profiles were found in healthy 

adults.

• Dynamic profile with high DMN connectivity was linked to executive 

functions.

• Dynamic connectivity was associated with metabolic risk factors.
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Figure 1. 
ROI network structure after running Infomap on the static FC graph of the 90th percentile of 

positive connections. Eight ROI subgraphs were detected by Infomap. Coordinates are in 

MNI space.
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Figure 2. 
Functional connectivity for the static connectivity profile and each dynamic connectivity 

profile. Matrices represent average positive and negative connectivity between ROIs for all 

participants (static only) or average positive and negative connectivity between ROIs for all 

windows that correspond to a dynamic profile. Radial tree graphs represent the 90th 

percentile of positive connections.
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Table 1

Within- and between-network average connectivity differences between the static connectivity profile and 

dynamic connectivity profiles. Two-tailed independent samples t-tests. Negative t values indicate that the 

average connectivity was greater in the dynamic profile.

Overall Within Overall Between DMN Within DMN Between

Static Average Connectivity 0.2601 −0.0265 0.2074 −0.0293

Profile 1 Average Connectivity 0.4205 −0.0332 0.3199 −0.0575

t(410) −15.12 4.9274 −8.3144 7.7877

p **<.0001 **<.0001 **<.0001 **<.0001

Profile 2 Average Connectivity 0.2371 −0.0234 0.1786 −0.0261

t(1485) 4.5141 −5.1539 4.7751 −1.9272

p **<.0001 **<.0001 **<.0001 0.0549

Profile 3 Average Connectivity 0.3048 −0.0278 0.2417 −0.0395

t(775) −6.8210 1.6469 −4.2732 4.2302

p **<.0001 0.1008 **<.0001 **<.0001

Profile 6 Average Connectivity 0.3582 −0.0298 0.3123 −0.0262

t(417) −10.4580 3.0395 −9.4912 −1.0227

p **<.0001 **0.0026 **<.0001 0.3076

Profile 7 Average Connectivity 0.2668 −0.0252 0.2492 −0.0224

t(984) −1.1698 −2.0326 −6.0450 −3.7135

p 0.2431 *0.0430 **<.0001 **0.0002

Profile 8 Average Connectivity 0.3011 −0.0277 0.2624 −0.0220

t(627) −5.7559 1.3968 −5.9295 −3.1728

p **<.0001 0.1638 **<.0001 **0.0017

*
Significant at α = 0.05

**
Significant after experiment-wise FDR correction
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