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Abstract

Haptic feedback is a critical but a clinically missing component in robotic Minimally Invasive 

Surgeries. This paper proposes a Gaussian Process Regression(GPR) based scheme to address the 

gripping force estimation problem for clinically commonly used elongated cable-driven surgical 

instruments. Based on the cable-driven mechanism property studies and surgical robotic system 

properties, four different Gaussian Process Regression filters were designed and analyzed, 

including: one GPR filter with 2-dimensional inputs, one GPR filter with 3-dimensional inputs, 

one GPR Unscented Kalman Filter (UKF) with 2-dimensional inputs, and one GPR UKF with 3-

dimensional inputs. The four proposed methods were compared with the dynamic model based 

UKF filter on a 10mm gripper on the Raven-II surgical robot platform. The experimental results 

demonstrated that the four proposed methods outperformed the dynamic model based method on 

precision and reliability without parameter tuning. And surprisingly, among the four methods, the 

simplest GPR Filter with 2-dimensional inputs has the best performance.

Index Terms

Sensorless Grip Force Estimation; Elongated Cable Driven Instrument; Gaussian Process 
Regression; Surgical Robot; Minimally Invasive Surgery

I. INTRODUCTION

SURGICAL robots extended applications of minimally invasive surgery(MIS) by providing 

surgeons with improved freedom of movement, decreased hand tremor, increased 

accessibility and advanced 3-dimensional imaging[1], [2]. Haptic perception is still a 

missing component clinically[3] in robotic MISs, because of the challenge of the problem. 

However, haptic perception is highly desirable, because surgeons rely on it to diagnose and 

to adapt their motion to prevent unintended tissue damage or task failure.
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The most straightforward way to perceive haptic force is to use sensors to directly measure 

the force on instrument tips. For minimally invasive surgery instruments, the stringent size, 

cost, and environmental requirements prevented the application of these techniques. 

Although various sensors broke the size limitation [4], [5], [6], they are still not widely 

available due to the cost, sterilization requirements and other factors. It is also possible to 

“indirectly” measure tip force through novel mechanical designs. For example, Tholey et al. 

designed a novel laparoscopic tool with tri-directional force measurement capability at the 

grasping jaws[7], and the disturbance observer was applied to estimate the force [8]. Zhao et 

al. proposed and developed a novel 3-DoFs robotic surgical tool to estimate tool-tissue 

forces through force-sensitive resistors[9]. These new designs are very useful, but they also 

increased the complexity and the cost, and haven’t been widely adopted clinically. An in-

depth discussion on the advantages and disadvantages of solutions to the force perception 

problem can be found in[3].

It is possible to achieve the active gripping force of a surgical instrument without adding 

sensors, since active gripping forces originate from motor output torques. For some 

deformable instruments, the interaction force can be estimated through measuring the 

instrument deformation. For example, Khoshnam et al. used the shape changes of the 

Steerable Ablation Catheters to estimate the contact forces between the catheter tip and 

cardiac tissue[10]. For rigid instruments, such as elongated grippers, motors drive cables and 

the output energy of motors is partially consumed by friction, converts to kinetic energy and 

forms the gripping force. Although it is clear that dynamic model describes the process of 

energy exchange and conversion, it is not trivial to apply this idea to the force estimation 

problem, as some of the factors mentioned above, such as friction and cable properties, are 

difficult to model. Friction is a phenomenon arising at the contact of surfaces, and 

experiments indicate a functional dependence upon a large variety of parameters, for 

example: sliding speed, acceleration, critical sliding distance, temperature, normal load, 

humidity, surface preparation, and material combination [11]. Anooshahpour et al. proposed 

a smart way to minimize the impact from the friction and from the movement by 

constructing the dynamic model of the da Vinci instrument under the quasi-static 

condition[12]. Research demonstrated that cable stretch and friction depend on cable 

properties[13], [14], [15]. Based on these studies, Li et al. applied the square root Unscented 

Kalman Filter to estimate the gripping force through incorporating cable properties, cable 

friction and cable-pulley friction into the dynamic model[16]. However, it has been found 

that as friction and cable properties have big weights in the model, the method is sensitive to 

the model parameters[16], which depend on both system configuration and environment. For 

example, model parameters change dramatically with instrument type and lubrication 

condition. Manually tuning these parameters for each instrument under various 

environmental conditions is very tedious and undesirable. Moreover, the effort[16] on on-

line parameter estimation was not successful due to the fact that there are dozens of 

parameters and dozens of state variables and only 8 observations are generally available (4 

motor torque outputs and 4 motor encoder readings for a wristed gripper).

In order to extend the application of the sensorless gripping force estimation to elongated 

cable driven surgical instrument, in this paper, we propose to simplify the estimation 

algorithm and to further improve estimation precision by learning the model from training 
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data. Gaussian Process Regression was adopted in the paper because of its ability to deal 

with uncertainties and nonlinearity[17]. Four different designs of Gaussian Process 

Regression filters are proposed, and estimation precision will be compared on real surgical 

instruments and surgical robots. To sum up, the core contributions of the paper are:

• We propose four Gaussian Process Regression filters, (which have no free 

parameters), for sensorless gripping force estimation, based on characteristics of 

elongated cable driven surgical instruments.

• We implemented the proposed filters and applied them on a 10mm gripper with 

the Raven-II robot;

• We compared the four proposed methods with the dynamic model based UKF 

estimator on dry lab experiments with the real robot, validated the precision and 

reliability of the proposed methods, and identified the method of the best 

performance.

The paper is organized as follows: Section II presents preliminaries for the proposed 

methods; Section III explains the methods used for sensor-less force estimation in detail; 

Section IV presents and discussed the experiment setup and the experimental results. 

Conclusions are summarized in Section V.

II. Preliminaries

A. Elongated Cable Driven Surgical Instruments

Before presenting the proposed algorithms, we briefly introduce elongated cable-driven 

surgical instruments, discuss their properties, and show the reasons that data driven learning 

algorithms were adopted in the paper.

Motorized surgical instruments adopted the cable driven mechanism because of the 

advantages of easy sterilization, small size and narrow aspect ratio[18]. An example 10mm 

diameter gripper can be seen in reference [16] Fig. 3. These cable-driven surgical 

instruments can be modeled as shown in Fig. 1.

The dynamic model describes how a instrument exerts force on an object and exchanges 

energy. The dynamic model can be mathematically expressed as:

(1)

Where: A is the Inertia matrix of the manipulator; J is the Jacobian projecting external force 

into the reference coordinates; C(·) denotes the vector of Coriolis and centrifugal torques; G 
is the vector of gravitational force; q, ,  are the manipulator position, velocity and 

acceleration, respectively; Fv,Fc are viscous friction and coulomb friction parameters, 
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respectively; and Γ,Fex are joint input torque and external torque (gripping force in our 

application) respectively.

Because of the cable driven mechanism, the relationship between the motor and the joint can 

be described as:

(2)

Where: qm, , : denote motor position, velocity and acceleration, respectively; ql, : 

denote link position and velocity; Am: denote the diagonal motor inertia matrix; Cm(·) 

denotes the vector of Coriolis and centrifugal torques in motor·coordinates; Fvm,Fcm are 

viscous friction and coulomb friction parameters, respectively; rm,rl: are capstan radius of 

motor and link, respectively; γ: is the cable tension. And fcs(·) and fcd(·) are the functions 

that describe the spring and damping effect, respectively. The explicit form of these two 

functions depend on cable properties[16], [14].

From Eqn. 1 and 2 we can easily see that the total number of parameters (6 friction related 

parameters plus 3 cable properties related parameters for each link) is bigger than the total 

number of state variables (6 state space variables for each link). And both of them are much 

bigger than the total number of available observations (2 observations for each link). Given 

the complexity of the dynamic model, it was not trivial to tune these parameters without 

extra sensors. More importantly, our previous research shown that the parameters depend on 

the system configuration and environmental conditions[16]. Therefore, this work was 

inspired by these difficulties and aimed to increase the adoption rate by simplifying the 

technique.

B. Gaussian Process Regression

Gaussian Process Regression(GPR) is a form of supervised learning[17]. GPR is similar to 

Bayesian Linear Regression(BLR) (see chapter 3.3 in [19]) in the sense that both of them 

aim at probabilistically estimating the expected output Y∗ given input X∗ with respect to the 

training set (X,Y) under the Bayesian framework as: p(Y∗|X*,X,Y) where we denote the 

relationship between the input X and output Y as . According 

to the Bayesian framework, we have p(Y∗|X∗,X,Y) = ∫p(Y∗|X∗, f)p(f|X,Y)df. If we assume 

the prior of the model was p(f), then the posterior of f given training data was 
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, and the likelihood p(Y|X f) can be inferred from the training 

data. For example, in the Bayesian Linear Regression case, since the state space function f 

(X) was linear as f (X) = XT w, we have , where I was an identity 

matrix, X is a n × k design matrix and w is a k × 1 weight vector[19].

In contrast to BLR, Gaussian Process Regression uses kernels to represent the model, 

instead of explicitly adapting specific linear models. This kernel based scheme allows the 

data “speak” for themselves, which leads to the biggest difference between GPR and BLR. 

The power of GPR originates from the concept of Gaussian process and the kernel based 

learning scheme. A Gaussian process is a collection of random variables, any finite number 

of which follows a joint Gaussian distribution. A Gaussian process is completely specified 

by its mean function, m(X), and covariance function K, as f (X) ~ GP(m(X),K). Because of 

the definition of Gaussian Process, we have

. Therefore, the prediction Y∗ given the known data Y is 

, where

K∗ = (k(X∗,X1) ⋯k(X∗,Xn)), and K∗∗ = k(X∗,X∗) are all calculated according to the 

selected Gaussian Kernel. Kernel selection for the GPR will be discussed below. The kernel 

based learning scheme is another important reason that GPR suits nonlinear applications. In 

order to easily understand this difference, we can safely conclude that the advantage of GPR 

over BLR is similar to the advantage of Kernel based methods over the corresponding linear 

methods. However, this kernel based learning scheme limited the ability to “predict” if the 

prediction happens far away from seen data. Consequently, in GPR, it will produce high 

uncertainties with these predictions. In out applications, this can be seen as an advantage, 

because it is easy to achieve training data that covers the entire workspace, and if the 

prediction happens out of the range, it is better to let users know the prediction is not 

confident rather than being overconfident.

C. Unscented Kalman Filter

Unscented Kalman Filter addressed the linearization approximation problem of the Kalman 

Filter with the unscented transformation[20]. For the nonlinear state space function Y = f 
(X), assume X is L dimensional and had mean E(X) and covariance P, a L × (2L + 1)matrix 

composed of 2L + 1 sigma vectors χi formed with corresponding weights Wi:
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(3)

(4)

, and λ = α2(L + κ) − L is a scaling parameter controlled by empirically determined 

parameter α and κ. The sigma points then are propagated through the nonlinear state space 

function to calculate the corresponding outputs γi = f (χi),i = 0, ⋯,2L, which are used to 

recover the posterior estimation.

The Gaussian Process Regression and the Unscented Kalman Filter were adopted in the 

paper because:

• It is easy to get the training data for our application.

• Gaussian Process Regression has outstanding ability to learn models for strongly 

nonlinear applications.

• Gaussian Process Regression naturally estimates uncertainties, which is very 

important to increase the system ability of the teleoperation haptic feedback 

system.

• It is not necessary to manually tune parameters of Gaussian Process Regression 

in our application.

• Unscented Kalman Filter has outstanding ability to handle nonlinearity problem.
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• Unscented Kalman Filter does not require the derivatives of the model, only 

propagating sigma point is needed, therefore, it can be easily combined with 

GPR.

III. Gaussian Process Regression for Sensorless Grip Force Estimation

A. Gaussian Process Regression Force Estimation

Designing Gaussian Process Regression filters depends on the selection of the feature space. 

For motorized surgical instruments, motor encoder readings and motor output torques 

approximated by current sensing are always available. Therefore, naturally, encoder readings 

and output torque could be the inputs to the Gaussian Process Regression filter, and the 

gripping force should be the output. Mathematically, by following the denotations in Section 

II-B, we have X = {qm,Γ} as the training input data and Y = {Fex} as the output data. qm, Γ 
and Fex are explained in Eqn. 1 and 2. D = {X,Y} then is the training data.

The dynamic model of the elongated surgical instrument, which was mathematically 

explained in Eqn. 1 and 2, suggests that the gripping force not only depends on motor 

position and motor output torque, but also depends on motor velocity , joint position ql, 

and joint velocity . Therefore, the feature space formed by these variables should be better 

than the space formed only by qm and Γ. Consequently, the estimation precision should be 

improved[17], [21]. However, the joint position and velocity are not observed in the process 

due to the lack of external sensors, and their estimation depend on cable properties[14], [22]. 

As one of the goals of this work is to explore the possibility of avoiding manually tuning 

cable parameters, we consider ql and  as unavailable. On the other hand, the motor velocity 

 could be considered as available, because the motor encoders of our surgical robot 

produce high precision output, and with a simple filter, such as a Kalman Filter, the velocity 

can be easily estimated, as shown in Fig. 2. From the figure we can see that the raw 

observation and the integration of estimated velocity are almost identical (approximately 

delayed for one sampling period), which suggests we achieved desirable estimation 

precision. However, we know the velocity estimation directly depends on the position 

observations. Therefore, theoretically, the position observations have been used twice and 

may cause the overconfidence problem.

The next step of the proposed methods was to select the proper kernel function and the 

corresponding parameters. In the proposed methods, the popular widely used squared 

exponential kernel was adopted, because clear physical meanings for each parameter can be 

found in our application. The kernel is defined as: 

, where δ(X,X′) is the 

Dirac delta function defined as: . And M = l−2I, where l is a vector of 

positive values. In the model, l is the characteristic length-scale. In the proposed methods, l 
is small (l = 1.2 in the experiments) because it is easy to get training data and we have high 

resolution in the range of workspace. And σf and σn correspond to the process noise and the 

observation noise, respectively. In the proposed methods, σf and σn are selected bigger than 
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the real dynamic model noises, (σf = 0.3, σn = 0.6 in the experiments) in order to safely 

“learn” from the training data. The process noise model depends on the system properties. 

For the gripper controlled by Raven II robot, from reference [14] we know 0.3×3 radian is 

far bigger than the true process noise. The observation noise model depends on the 

measurement sensor property, and the measurement noise of the sensor we adopted can be 

found in reference [16] Fig. 11. Please notice GPR does require normalizing features into 

similar ranges, just like other learning algorithms do, therefore, if the range of features 

change dramatically, these values should be changed accordingly. The experiments shown 

both the adopted kernel and the initial parameters worked well, mainly due to the good 

continuity.

B. UKF and Gaussian Process Regression Force Estimation

In Section II-C we mentioned that UKF avoids explicitly linearizing the state space function 

through the introduction of the concept of sigma points. This new feature increases its 

robustness against strong nonlinearity and the poor priors. It has been reported that UKF can 

be combined with GPR, and the results outperformed the classical dynamic model based 

UKF in blimp tracking[23]. It was interesting to test if the combination of UKF and GPR 

can outperform GPR on precision for the gripping force estimation problem.

Applying GPR to UKF was simple. In the training phase, there is no difference between the 

GPR and the GPR based UKF, they share the same GPR and use the exactly same learning 

scheme. In the estimation phase, the GPR based UKF produce 2L+1 sigma points according 

to Eqn. 4. And 2L+1 estimations, denoted as γi, are generated through passing the sigma 

points through the trained GPR. The posterior of estimation can be recovered from γi as:

, where the weights Wm and Wc are calculated according to Eqn. 4, and the covariance P is 

calculated for generating sigma points at the next time point. The pseudocode of the GPR 

based UKF was listed in Algorithm.1.

Algorithm 1

UKF&GPR for Grip Force Estimation

Train GPR with training data (X,Y)

Calculate sigma points χt−1 = {χt−1,i},i = 0, ⋯, 2L of X* according to Eqn. 4

Pt|t−1 = Pt−1 + Qt

for i = 0, ⋯,2L do
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 Calculate γt−1,i = GP(χt−1,i)

end for

Through the discussion we know that because of the selection of different learning scheme 

and feature spaces, we have four GPR based filters for the sensorless gripping force 

estimation problem. Firstly, we can use two types of inputs. One is two dimensional and is 

composed of motor torque and motor encoder, and the other one is 3-dimensional and is 

composed of motor torque, motor encoder and motor velocity. Secondly, we have two types 

of estimator architectures. One is the classical GPR and the other one is the GPR based 

UKF. The difference between the two is the GPR based UKF uses GPR as the dynamic 

model. The combination of two input types and two architectures leads us to four estimators. 

For simplicity, we refer to the GPR with two dimensional inputs as GP2, the GPR with three 

dimensional inputs as GP3, and the GPR based UKF with two dimensional inputs as 

GP2UKF, the GPR based UKF with the three dimensional inputs as GP3UKF. For clarity, 

the differences among the four types of estimators are also visualized in Fig. 3.

IV. Experimental Result and Discussion

The four proposed methods were implemented and compared with the dynamic model based 

estimator on a 10mm diameter, cable-driven surgical gripper (can be seen in reference [16] 

Fig. 3) on the Raven-II surgical robot. The Raven-II robot was also fully driven by cables. 

This paper focused on the instrument gripping force estimation. Therefore, in the 

experiments reported here, the Raven manipulator held still and only the instrument moved. 

The experimental platform can be seen in Fig. 4

Two force sensors (FSS015WNSB, Honeywell) were mounted on the tip of the gripper to 

directly measure forces, as shown in reference [16] Fig. 3. Two aprons that rotated with 

respect to the jaw joint were added to the gripper in order to eliminate uncertainties from 

movable contact position. The gripper was statically calibrated with weights that range from 

0N to 2N, and linear fit results were:

(5)

Detailed calibration information and usage can be found in [24], [16]. The gripping force 

was defined as the contact force between the object and the gripper jaw, which matches the 

sensor measurements. Given the definition, we know that the two forces on the left jaw and 

the right jaw are not equal, because of gravity, unsymmetrical contacting position and other 

factors.
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A. Zero Grip Force Estimation Study

The proposed method was first verified with zero gripping force: the jaws repeatedly opened 

and closed, without touching each other or any other objects. Sensor measurements were 

compared with estimation results, while we know the true ground truth was nearly zero 

everywhere. The results are visualized in Fig. 5. The statistical results are compared in Table 

I. The results clearly show that estimations from both the four proposed methods and the 

dynamic model based method were smoother than sensor measurements, and the mean, the 

standard deviation, the threshold of 99% of data and the maximum error of the four 

proposed methods were very close to each other and outperformed the dynamic model based 

method. The results also shown the sensor measurements were noisy. A commercial force 

sensing unit, such as ATI Nano, are less noisy, but as we need to verify the proposed method 

in real movements, the instrument tips can be be fixed to a sensing unit. An alternative way 

is to estimate contacting position on-line, and convert torque to contact force. The current 

setup is chosen because: 1, the precision of estimating contacting point; 2, gripping a non-

rigid object (rubber tube in our experiments) is preferable, as it better simulates real 

surgeries; 3, measurement error is high spikes and can be easily filtered out. An uncertainty 

based smoothing method was adopted to remove error spikes[25].

B. Non-zero Grip Force Estimation Study

The proposed method was verified while the gripper actually grasped an object in the 

teleoperation mode, as shown in Fig. 4. The gripper repeatedly gripped a 10mm diameter 

flexible latex rubber tube, simulating the common blood vessel gripping operation. The 

entire gripping process runs at 10Hz and continuous 50 seconds of data was used to train the 

proposed methods. The proposed methods were verified with about 40,000 data points, in 

which the gripper jaws moved between −0.87 ~ 1.39 radian at angular speed up to 0.57 

radian/sec, and the wrist moved between −0.87 ~ 0.87 radian at angular speed up to 0.75 

radian/sec.

The comparison among the sensor measurements and the estimation results from the four 

proposed methods and the dynamic model based method was shown in Fig. 6. The results 

shown all four proposed methods outperformed the dynamic model based method on 

precision.

The difference between the sensor measurements and the estimation results from the four 

proposed methods and the dynamic model based method were compared with measured 

gripping force (red line) in Fig. 7. This was to show if the proposed filters caused delay on 

estimation results and to visualize where the maximum estimation error occurred. Unlike the 

dynamic model based method, GPR based methods did not have clear delay, even when 

UKF was adopted. But GPR based UKF (GP2UKF and GP3UKF) were conservative on 

estimation in the sense that the maximum estimation errors were always around the peak of 

measured forces. Please notice as the sensor measurements were compared with estimation 

errors, the y-axis in Fig. 6 and Fig. 7 share the same order.

The statistical results, including averaged, 99th percentile, and maximum differences, as 

well as the standard deviation, are shown in Table II. These results shown that the proposed 
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methods had good precision of gripping force estimation and outperformed the dynamic 

model based method[16], even though no extra sensor or equipment was used.

One of the advantages of Gaussian Process Regression is it naturally generates uncertainty 

estimation. This is especially important to surgical force estimation since safety is the top 

priority in surgeries. All estimation results and uncertainties were compared with sensor 

measurements in Fig. 8 and Fig. 9. In the figures, the gray area shown the 99% confidence 

(3×standard deviation) and the green lines shown the estimation. The uncertainties estimated 

by the proposed methods are comparatively high, which suggested that in our experiments, 

the data repeatability is low. In another word, different gripping forces are associated with 

similar input torque, motor position and velocity. This indicates the selected feature spaces 

do not have enough resolution for pattern recognition. Fine tuning the robot to make sure its 

tension, friction condition and other factors may decrease the uncertainties, however, it is 

difficult.

The histograms of χ2 errors of the four proposed methods were compared with the χ2 

distribution to show if the mean and uncertainty really follow the normal distribution or not, 

and also to show how the errors are distributed (Fig. 10 and 11). From these figure we can 

see the estimation results from the four proposed method follow the corresponding χ2, 

which is a sign indicating good robustness. The numerical difference between the χ2 errors 

and the corresponding χ2 distribution were compared in Table. III. From the table we can 

see, agreeing with the precision results, the GP2 has the best similarity between the 

histogram and the distribution.

C. Analysis and Discussion

The experimental results demonstrated that the Gaussian Process Regression estimators 

outperformed the dynamic model base UKF estimator on precision for the sensorless 

gripping force estimation problem, which suggests that GPR suits our application. The GPR 

estimators proposed in the paper also provided uncertainty estimation as a side product, 

which would be useful because we will fuse force estimation results from multiple sources 

to further improve estimation precision and stability in our future work.

Table II indicated that among all four estimators, GP2 had the best force and uncertainty 

estimation. If we take a closer look at Fig. 6, 7, 8 and 9 we can find that GPR based UKF 

estimators tended to be more “conservative” than the GPR estimators, as they generated 

smoother estimations, which also caused the force peak values to be far away from the 

sensor measurements. In teleoperated surgical systems, the smoothness may be preferable 

because it increases the systematic stability. However, Fig. 10 and 11 demonstrated that the 

smooth estimations from GP2UKF and GP3UKF have less similarity to the χ2 distribution, 

which indicated the inconsistency between the mean and uncertainty estimation.

Experimental results also shown that, although the precision difference between GP2 and 

GP3, and between GP2UKF and GP3UKF are not huge, GP2 and GP2UKF were still 

slightly better. It is possible that this is due to the fact that the velocity estimation from 

position observations not only probabilistically depended on the position observation, but 
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also introduced extra delay since we adopted a causal low pass filter. However, it may also 

suggest that GPR had very strong power to overcome the nonlinearity.

The computational complexity of GPR was thoroughly analyzed in [17]. In the proposed 

methods, the estimators trained with hundreds of data points, which made the computational 

complexity trivial to modern computers. As for the proposed estimators, it was clear 

GP3UKF had highest computational complexity, and GP2UKF was higher than GP3, while 

GP2 had the lowest complexity.

V. Conclusion

GPR based estimators were proposed to address the sensorless gripping force estimation 

problem for elongated cable driven surgical instruments. Compared to explicitly modeling 

the system, GPR has the advantages that it learns from data, is simple, and naturally 

generates estimation uncertainties. The four estimators were proposed and designed based 

on our study of surgical instrument properties and cable characterization. The proposed 

methods were compared with the dynamic model based estimator on a 10mm gripper on the 

Raven II surgical robot. Experimental results demonstrated that the GPR estimators 

outperformed the dynamic model based estimator in the application, and among the four 

estimators, the simplest, GP2, had the best estimation precision and reliability. The results 

suggested that the proposed GPR with 2-dimensional inputs best fitted our application.

Next, the proposed method needs to be combined with teleoperation consoles to close the 

haptic feedback loop and to verify that the technique meets clinical needs. We also need to 

explore the usage of long-term learning[26] to improve the adaptiveness of the proposed 

method. Moreover, combining the GP2 estimator with other force estimation techniques, 

such as estimations of contacted tissue deformation, also attracts us. These extra information 

may be able to form a better feature space and achieve higher estimation precision and 

reliability. We also have the option to directly combine the GPR estimation results with 

those estimation techniques, through utilizing the uncertainty estimation of GPR and further 

improve estimation precision and reliability.
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Fig. 1. 
Elongated Cable Driven Surgical Instrument Model.
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Fig. 2. 
Motor Velocity Estimated with Kalman Filter based on Position Observation.
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Fig. 3. 
Gaussian Process Regression for Elongated Cable-driven Surgical Instrument Sensorless 

Grip Force Estimation.
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Fig. 4. 
Sensorless Force Estimation Experiment Setup. A 10mm diameter, cable-driven surgical 

gripper was equipped with two force sensors (FSS015WNSB, Honeywell) on each of the 

two jaws. The gripper was driven by Raven II surgical robot and moved repeatedly and 

grasped a flexible latex rubber tube, which simulates blood vessel.
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Fig. 5. 
Non-gripping Sensor Measurement and Estimation Results Comparison. The jaws move 

without touching any objects, therefore, the gripping force should be very close to zero.

Li and Hannaford Page 19

IEEE Robot Autom Lett. Author manuscript; available in PMC 2018 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 6. 
Comparison among Sensor Measured Force and estimation results from the four proposed 

method and the dynamic model based method.
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Fig. 7. 
Sensor Measurement and Estimation Error Comparison. Ground truth (sensor 

measurements) is shown with force estimation errors. Vertical axis label for the red line is 

Grip Force and for rest of the lines, vertical axis is force error.
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Fig. 8. 
Sensor Measurement and GPR Mean and Uncertainty Comparison for Left Jaw.
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Fig. 9. 
Sensor Measurement and GPR Mean and Uncertainty Comparison for Right Jaw.
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Fig. 10. 
χ2 Error and Distribution Comparison for Left Jaw Force Estimation. The similarity 

between the histogram and the curve showd the precision of uncertainty estimation.
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Fig. 11. 
χ2 Error and Distribution Comparison for Right Jaw Force Estimation.
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Table III

χ2 ERROR AND DISTRIBUTION NUMERICAL COMPARISON.

GP2 GP3 GP2UKF GP3UKF

left 0.02 0.02 0.02 0.02

right 0.02 0.02 0.02 0.03
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