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Abstract

Background: Minimally invasive specific biomarkers of neurodegenerative diseases (NDs) would facilitate patient
selection and disease progression monitoring. We describe the assessment of circulating brain-enriched microRNAs
as potential biomarkers for Alzheimer’s disease (AD), frontotemporal dementia (FTD), Parkinson’s disease (PD), and
amyotrophic lateral sclerosis (ALS).

Methods: In this case-control study, the plasma samples were collected from 250 research participants with a
clinical diagnosis of AD, FTD, PD, and ALS, as well as from age- and sex-matched control subjects (n = 50 for each
group), recruited from 2003 to 2015 at the University of Pennsylvania Health System, including the Alzheimer’s
Disease Center, the Parkinson’s Disease and Movement Disorders Center, the Frontotemporal Degeneration Center,
and the Amyotrophic Lateral Sclerosis Clinic. Each group was randomly divided into training and confirmation sets
of equal size. To evaluate the potential of circulating microRNAs enriched in specific brain regions affected by
NDs and present in synapses as biomarkers of NDs, the levels of 37 brain-enriched and inflammation-associated
microRNAs in the plasma of all participants were measured using individual qRT-PCR. A “microRNA pair” approach
was used for data normalization.

Results: MicroRNA pairs and their combinations (classifiers) capable of differentiating NDs from control and from
each other were defined using independently and jointly analyzed training and confirmation datasets. AD, PD, FTD,
and ALS are differentiated from control with accuracy of 0.89, 0.90, 0.88, and 0.83 (AUCs, 0.96, 0.96, 0.94, and 0.93),
respectively; NDs are differentiated from each other with accuracy ranging from 0.77 (AUC, 0.87) for AD vs. FTD to
0.93 (AUC, 0.98) for AD vs. ALS. The data further indicate sex dependence of some microRNA markers. The average
increase in accuracy in distinguishing ND from control for all and male/female groups is 0.06; the largest increase is
for ALS, from 0.83 for all participants to 0.92/0.98 for male/female participants.

Conclusions: The work presented here suggests the possibility of developing microRNA-based diagnostics for
detection and differentiation of NDs. Larger multicenter clinical studies are needed to further evaluate circulating
brain-enriched microRNAs as biomarkers for NDs and to investigate their association with other ND biomarkers in
clinical trial settings.
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Background
Neurodegenerative diseases (NDs) have become a ser-
ious medical and social problem in developed countries,
owing to significantly increased lifespans. For example,
Alzheimer’s disease (AD) is now the fifth leading cause
of death for those aged 65 years and older in the United
States [1]. Despite intense research and numerous clin-
ical trials, no effective treatments are currently available
for NDs. One key element in the development of new
therapies is the availability of diagnostic tools to help
identify disease early, stratify patients for clinical trials,
and monitor disease progression during treatment. In
this respect, the most advanced diagnostic approaches
for NDs, such as analysis of proteins in cerebrospinal
fluid (CSF) and various imaging techniques [2, 3], are
highly promising but not suitable for primary screening
and monitoring purposes, owing to their invasiveness
and high cost. Minimally invasive, cost-effective bio-
markers of NDs would be very helpful in the advance-
ment of ND diagnosis and treatment [4–8]. Several
factors complicate the search for such biomarkers [7, 9].
First, mechanisms of ND initiation and development are
not well understood; second, NDs may develop without
any signs or symptoms for 10–20 years prior to clinical
manifestation; and third, commonly occurring comor-
bidities and symptomatic overlap, such as cognitive im-
pairment, complicate the differential diagnosis of NDs
(see [10, 11] for detailed discussion of the need and the
roadmap for the development of blood-based bio-
markers for AD and other dementias).
Recently, several groups have proposed the use of

microRNAs (miRNAs) circulating in plasma or serum
for ND detection [12–23]. miRNAs are small molecules
(~22 nucleotides) that play important roles in gene
regulation by binding to complementary regions of
messenger transcripts and repressing their translation or
regulating their degradation [24, 25]. On the basis of
sequence complementarity analysis, an individual
miRNA can bind to and regulate > 100 messenger RNAs
(mRNAs), and an mRNA can be regulated by multiple
miRNAs; thus, as potential biomarkers, miRNAs are
reflective of multiple cellular processes. Over 2000
miRNAs have been discovered in human cells to date,
and many of these miRNAs are specific to or overex-
pressed in certain organs, tissues, and cells [25–30]. Some
miRNAs, including those that are cell-specific, can be
enriched in particular cellular compartments, such as
neurites and synapses [31–37]. miRNAs can be secreted
or excreted into the extracellular space [38–41] and are
detectable in plasma and serum [14, 42–44].
Intracellular concentrations and rates of secretion of

miRNAs can be dramatically affected by physiological and
pathological cellular processes [39, 45–47]. In the case of
mild cognitive impairment (MCI), a heterogeneous

syndrome characteristic of early stages of various NDs, we
have previously shown that the condition can be detected
by analysis of miRNAs enriched in synapses of brain
regions affected in early AD, such as the hippocampus
[14, 48]. The concentration of a brain-enriched miRNA in
bodily fluids depends on intrinsic factors such as its
expression; its intracellular localization; and disease-
associated changes in expression, metabolism, and secre-
tion. It also depends on extrinsic factors such as blood
supply to a particular brain area, changes in blood-brain
barrier permeability, and miRNA stability in circulation.
To compensate for the impact of factors unrelated to a

specific ND and to account for smaller changes in
miRNA concentrations accompanying slowly developing
pathologies (as compared with those in acute diseases
such as stroke), other brain-enriched miRNAs can be
used for normalization of the miRNA biomarkers. This
miRNA “pair” approach (see below) has led to the
discovery of miR-132 and miR-134 families of miRNA
biomarker pairs capable of differentiating MCI from
age-matched controls with approximately 0.90 accuracy
[48, 49]. Interestingly, these miRNA pairs proved less ef-
fective as biomarkers for detecting AD dementia stages
[49], possibly owing to the loss of synapses and death of
neurons in the hippocampus causing the amount of hip-
pocampal synaptic miRNAs to decrease in plasma as the
disease progresses.
The present study was designed to evaluate circulating

brain-enriched miRNAs as potential biomarkers for detec-
tion and differentiation of AD, Parkinson’s disease (PD),
frontotemporal lobar degeneration (frontotemporal de-
mentia [FTD]), and amyotrophic lateral sclerosis (ALS).

Methods
Clinical diagnosis and plasma samples
Thirty-seven miRNAs were analyzed in two 0.5-ml
aliquots (1 ml total) of K2-ethylenediaminetetraacetic
acid-treated frozen plasma samples from 250 research
participants (n = 50 for each ND) recruited and clinically
evaluated at the University of Pennsylvania Health
System, including the Alzheimer’s Disease Center (in
2003–2014), the Parkinson’s Disease and Movement
Disorders Center (in 2010–2015), the Frontotemporal
Degeneration Center (in 2010–2013), and the Amyotrophic
Lateral Sclerosis Clinic (in 2010–2014). Fifty samples from
age- and sex-matched control subjects were collected in
2009–2015. The ND conditions were clinically diagnosed
according to published procedures [50–58]; demographic
characteristics of the study groups, including control sub-
jects, are summarized in Table 1 and Additional file 1. The
study participants in the AD group were selected on the
basis of AD phenotype and tau and amyloid biomarkers as
determined by CSF analysis. The biofluid samples were col-
lected and processed on the day they were obtained
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following the same standard operating procedures in all
specialty clinical practices at the Center for Neurodegenera-
tive Disease Research, University of Pennsylvania [59].
Blood samples were centrifuged at 3000 × g for 15 minutes
at 4 °C and aliquoted into 2.0-ml polypropylene cryovials
(Corning Life Sciences, Corning, NY, USA). The aliquots
were stored at −80 °C. De-identified samples were sent to
the Asuragen laboratory (Austin, TX, USA) for RNA
isolation and qRT-PCR (see below). Clinical information,
including demographics, diagnosis and cognitive scores,
and identifiers to match the samples, were sent to the
DiamiR principal investigator, who kept the information
blinded from the laboratory personnel.
All groups were randomly divided into two sets of equal

size (25 samples each, balanced by age, sex, and comorbid-
ities) and used in training and confirmation experiments.
The PD and ALS groups had fewer female participants,
and the ALS group was younger than other ND and con-
trol groups. Age may affect miRNA expression, and thus
differences in the age composition of different groups may
contribute to the differentiation of the groups with specific
miRNAs. In the present study, however, the average ages
were not significantly different between various groups
(see Additional file 1); we found that the exclusion of sev-
eral outliers did not change the results. Correlations be-
tween miRNA ratios and age in all pathology cohorts are
low (r < 0.2) and have low statistical significance (p > 0.04).
To determine the source of miRNA ratio differences in
disease groups and the control group, we performed linear
regression analysis of miRNA ratios using disease group
identity and age as covariates. p Values for the significance
of the disease group identity for all miRNA pairs selected
were < 0.0001, indicating that the differentiation of two
groups depended on diagnosis. Only in the ALS group did
some miRNA pairs correlate with age with p < 0.05. Age
adjustment for these pairs slightly increased the accuracy
(1–2%); age adjustment for all other pairs either did not
change or slightly improved the accuracy (by < 2%). Simi-
larly, to determine the effect of sex on differentiation of
PD and ALS (the two NDs with smaller numbers of fe-
male participants; see Table 1 and Additional file 1) from
control subjects, we performed a linear regression analysis
of miRNA ratios using sex as a covariate. For most pairs,
the effect of sex adjustment was insignificant. Additional
stratified analysis of all NDs (described in the “miRNA
biomarker sex-dependent effects” subsection of the
Results section below) revealed miRNA pairs differentiating
male and female participants separately better than all
(male and female) participants.

RNA isolation and qRT-PCR
RNA was extracted from 1 ml of plasma using a TRIzol
treatment (Life Technologies, Carlsbad, CA, USA) and
silica (Ambion Glass Fiber Microcolumn; Fisher Scientific,

Pittsburgh, PA, USA) binding protocol (http://asuragen.
com/wp-content/uploads/2016/05/biomarkers.pdf).
Single-target qRT-PCR was performed using the TaqMan®
Reverse Transcription Kit and miRNA-specific stem-loop
primers (Applied Biosystems, Foster City, CA, USA). The
RT step for miRNA measurements was performed in trip-
licate and each RT reaction was then used separately for
PCR. 2µl plasma equivalents were present in the final
PCR. (Additional file 2 presents the qRT-PCR variability
for each tested miRNA.) Placental RNA was used as a
positive control and no template as a negative control.
Calibration curves for each miRNA were generated to fa-
cilitate comparing and combining of training and confirm-
ation datasets. Quality control of miRNA preparations
was performed by testing two ubiquitous miRNAs, miR-
16 and miR-27a, in each plasma preparation; all samples
with values within 2 SD of the average value were qualified
as acceptable for analysis. The average SDs of miR-16 and
miR-27a were 1.40 and 1.01 in the training and confirm-
ation sets, respectively. miRNAs with cycle threshold
(Ct) > 37 were excluded from the analysis of a respective
sample. Although small RNA yield was not directly mea-
sured after RNA extraction, the control data reported in
Additional file 2 provide a good indicator of miRNA yield.

Statistical analyses
In our approach, an effective biomarker is a ratio (pair)
of two brain-enriched miRNAs. Software developed at
DiamiR [48, 49] was used for all calculations, including
determination of miRNA pairs capable of differentiating
NDs from controls and from each other on the basis of
their concentration ratios (ΔCt) in plasma. The applica-
tion was designed using .NET technology with a set
of .NET statistical packages. The selection of miRNA
pairs as well as their combinations was based on the
AUC and p values as follows. For every pair, ROC curves
were constructed to calculate the area under the ROC
curve (AUC). In the training set analysis, pairs with
AUC ≥ 0.75 for AD, PD, and ALS, as well as AUC ≥ 0.70
for FTD, were initially accepted. Training and confirm-
ation sets were of the same size. A lower cutoff for FTD
was used because of high heterogeneity of the group
(presence of several FTD syndromes). In the combined
set, there were 23 behavioral variant frontotemporal de-
mentia (bvFTD), 17 primary progressive aphasia (PPA),
and 10 progressive supranuclear palsy (PSP) cases. The
acceptance p value threshold was set on the basis of sig-
nificance of differences between any two experimental
groups, calculated by the Mann-Whitney U test with
Bonferroni correction. Validation of miRNA pair selection
and testing for overfitting were performed using random
forest classification with bootstrapping. For 37 miRNAs
used, the total number of pairs was 666 (36 × 37/2). The
ratios A/B and B/A are equivalent as potential biomarkers
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because they have the same variance, difference of means,
correlation coefficients, p values, and ROC parameters. In
cases where disease was compared with control, the ratio
whose numerical value was larger in disease samples was
selected. According to the Bonferroni correction, statisti-
cally significant results should then have a p value of 0.05/
666 = 7.5 × 10−5. Because we were using highly correlated
miRNAs for creating pairs (Ct Spearman’s rank correlation
coefficient, ≥ 0.8), the number of pairs analyzed was
reduced to about 160, and thus the threshold for statistical
significance rose to ~ 3.0 × 10−4. Pair sensitivity and speci-
ficity are reported for the cutoff points on the ROC curves
that provided the best overall accuracy. For selecting
effective pair combinations, miRNA classifiers, a stepwise
algorithm for logistic regression using a linear model with
no interaction [60] was applied. The miRNA classifiers
having AUC ≥ 0.9 for AD, PD, and ALS, as well as AUC ≥
0.8 for FTD, in the combined (training + confirmation) set
were accepted.

Results
miRNA selection
In this work, we performed targeted preselection of
miRNAs present in synapses, enriched in different brain
regions, and also detectable in plasma. The levels of all
preselected miRNAs in plasma samples were determined
by qRT-PCR. The miRNAs analyzed in the study are
listed in Additional file 3 and included (1) miRNAs
present in synapses [33, 35, 36, 61, 62] and enriched in
different brain regions affected by the target pathologies
[26–30, 63–67]; (2) miRNAs associated with inflamma-
tory processes [68–71]; (3) miR-206 highly enriched in
muscle tissue and in cerebellum [68, 72, 73]; (4) ubiqui-
tous apoptosis-associated miR-16 [74]; and (5) miR-451,
which is more effectively excreted from pathologic than
normal cells [39]. As shown in Additional file 3, certain
brain-enriched miRNAs are expressed in several brain
regions; typically, the levels of these miRNAs in specific
brain regions (shown in bold in Additional file 3) are sig-
nificantly higher than in others. Potential roles of many
of the miRNAs listed in Additional file 3 in NDs are be-
ing investigated by several groups [62, 75–88].

ND detection
As described above, each group (AD, FTD, PD, ALS, and
age- and sex-matched control group) was divided in two
equal sets and analyzed independently in the training
and confirmation studies. miRNA pairs and their combi-
nations (miRNA classifiers) capable of differentiating
each ND from controls with the highest accuracy were
assessed in the training set and verified in the
confirmation set analysis, followed by the analysis of the
combined dataset (Figs. 1 and 2 and Additional file 4).
Combining two or more qRT-PCR experiments is often

challenging because of possible technical variations in
RNA extraction, RT and/or PCR kits, and instrumental
fluctuations. Furthermore, samples for the confirmation
study were kept frozen for an additional 6 months.
Nonetheless, certain miRNA pairs and classifiers effectively
differentiated AD, FTD, PD, and ALS from controls in
both training and confirmation studies (Additional file 4).
The accuracy of ND detection in the combined dataset by
miRNA classifiers for AD, PD, FTD, and ALS was 0.89,
0.90, 0.88, and 0.83, respectively. The comparison of the
differentiation obtained with individual miRNAs and with
miRNA pairs is reported in Additional file 5. Only muscle-
enriched miR-206, whose average concentration is about
eight times higher in patients with ALS than in control
subjects, differentiates these two groups with accuracy
similar to that of miRNA pairs. In all other cases, the use
of miRNA pairs produces much better differentiation be-
tween NDs and controls than individual miRNAs.

ND differentiation
The same approach was used for establishing miRNA
biomarkers capable of differentiating the four NDs (AD,
PD, FTD, and ALS) from each other. Figure 3 and
Additional file 6 present miRNA classifiers effectively
distinguishing two NDs in the training and confirmation
studies as well as in the combined dataset. The overall
accuracy in the range of 0.75–0.93 was obtained. The
lowest accuracy (0.77 with most effective miRNA bio-
markers) was observed for differentiation of AD and
FTD, for which partial anatomic overlap between the
affected brain regions could be larger than between
other NDs. The miRNA pairs most effectively differenti-
ating disease groups from each other and from control
are listed in Additional file 7.

ND subgroup differentiation
Table 1 summarizes comorbidities and subgroups of
NDs included in the study. Although the sample size of
individual subgroups was insufficient for obtaining sta-
tistically significant results, promising miRNA biomarker
candidates capable of distinguishing FTD syndromes
were identified. Data presented in Additional file 8A for
differentiation between bvFTD, PPA, and PSP with ac-
curacy in the range of 0.70–0.87 warrant further studies
of larger patient cohorts. Additional file 8B and C
present data on differentiation of PD with dementia
from other patients with PD and on differentiation of
ALS-FTD from other patients with ALS, respectively.

miRNA biomarker sex-dependent effects
In our other studies focused on distinguishing very
mild/mild cognitive impairment from control, we ob-
served sex-specific differences in plasma concentrations
of some brain-enriched miRNAs in patients and controls
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Fig. 1 (See legend on next page.)
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(unpublished data). Thus, in this study, we performed
the additional stratified analysis for the four pathologies
(AD, FTD, PD, and ALS) and control in the combined
dataset as follows:

1. All (male and female) participants in each disease
group vs. all control participants

2. Male participants in each disease group vs. male
control participants

3. Female participants vs. female control participants

Table 2, section A, shows the performance of effective
miRNA classifiers for differentiating each ND from con-
trol in all (male and female), male, and female groups.

a

b

c

Fig. 2 Differentiation of neurodegenerative diseases (NDs) from control in combined set by select microRNA (miR) pairs and their combinations.
a Frontotemporal dementia (FTD) vs. control. b Parkinson’s disease (PD) vs. control. c Amyotrophic lateral sclerosis (ALS) vs. control. AUC is area
under ROC curve

(See figure on previous page.)
Fig. 1 Differentiation of Alzheimer’s disease (AD) from control by select microRNA (miRNA, miR) pairs and their combination. The performance of
three miRNA pairs and resulting signature in the training, confirmation, and combined sets is shown. The table at the bottom of the figure
indicates performance of the miRNA classifier in the three sets. The area under the ROC curve (AUC) is presented; sensitivity, specificity, and
accuracy of each biomarker/normalizer pair were calculated at the cutoff point with the highest accuracy. In the box-and-whisker plots, the ratios
are calculated as 2−ΔCt × 100, and the results are presented in log10 scale. The upper and lower limits of the boxes and the lines inside the boxes
indicate the 75th and 25th percentiles and the median, respectively. The upper and lower horizontal bars denote the 90th and 10th percentiles,
respectively. The points indicate assay values located outside 80% of data. AMC Age- and sex-matched controls
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There are no significant differences in AUC and accur-
acy between these groups, which indicates that these
miRNAs behave similarly in controls and male and
female patients. However, other tested miRNAs demon-
strated sex-associated effects, and miRNA pairs that
included these miRNAs more effectively differentiated
male or female participants from sex-matched controls.
Table 2, section B, presents the most effective miRNA
classifiers with additional miRNA biomarker candidates
for differentiating AD, FTD, PD, and ALS vs. control

separately in males and females. In this case, both AUC
and accuracy were significantly higher than effective
miRNA classifiers for all (male plus female) participants.
In addition, we compared male and female subgroups in
each disease group. The data presented in Additional file
9 demonstrate that certain miRNA pairs are capable of
differentiating sex-specific subgroups from each other in
every disease group with 66–75% accuracy. These data
demonstrate sex-specific patterns in levels of circulating
brain-enriched miRNAs in both patient and control

a

b

c

d

e

f

Fig. 3 Differentiation of neurodegenerative diseases (NDs) in combined set by select microRNA (miR) pairs and their combinations. a Alzheimer’s
disease (AD) vs. frontotemporal dementia (FTD). b Alzheimer’s disease (AD) vs. Parkinson’s disease (PD). c AD vs. amyotrophic lateral sclerosis
(ALS). d FTD vs. PD. e FTD vs. ALS. f PD vs. ALS
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samples and suggest that sex-specific assays can poten-
tially yield higher accuracy in diagnosing NDs.

Discussion
Previously, we proposed a novel approach to the devel-
opment of biomarkers in the area of neurodegenerative,
neurodevelopmental, and neurological diseases based on
analysis of brain-enriched miRNAs circulating in
plasma, and we demonstrated the viability of the con-
cept for early AD detection with the discovery of two
miRNA families capable of detecting MCI and pre-MCI
with high accuracy [48, 49]. In the present study, we
used this approach for the detection and differentiation
of four NDs: AD, PD, FTD, and ALS.
The most common approaches of searching for

circulating miRNA biomarkers to detect a specific path-
ology are based on the analysis of as many plasma/
serum miRNAs as technically feasible using miRNA
arrays or next-generation sequencing, followed by qRT-
PCR of the identified candidates, and normalization of
miRNA(s) whose concentration significantly changes in
a pathology sample per minimally variable miRNA or
average of all miRNAs tested. There are several
disadvantages to these approaches: (1) their sensitivity is
significantly lower than that of qRT-PCR, and thus many
brain-enriched miRNAs are not reliably detected in
plasma, which precludes their further analysis; (2) on
one hand, the variability of these methods is high, and

many potential candidate miRNA biomarkers are not
confirmed by qRT-PCR, and on the other hand, some
promising biomarkers are not selected as candidates;
and (3) many potential normalizer miRNAs are not uni-
formly expressed in various pathologies. The latter con-
sideration is especially important in NDs in elderly
people because there is a high chance of comorbidities
as well as use of various medications. For example,
plasma concentration of miR-16, which is widely used as
a normalizer in other indications, is changed in patients
with AD ([89, 90] and our unpublished data). Other con-
siderations are potential changes of brain blood supply
or blood-brain barrier permeability, which would affect
concentrations of brain-enriched miRNAs in plasma.
Thus, in our earlier studies, we developed a different ap-
proach based on miRNA pairs, consisting of one miRNA
enriched in synapses of a brain region affected by the
disease and another miRNA enriched in a different brain
region or cell type, such as glial cells. In effective miRNA
pairs, miRNAs are frequently highly correlated [49], de-
creasing intersubject variability. By combining two or
three effective miRNA pairs into a single miRNA classi-
fier, we achieve greater accuracy. Other groups have also
identified miRNA pairs as effective biomarkers in the
context of cancer diagnosis and prognosis [91–93].
The following factors, which may complicate the

search for miRNA biomarkers, should be considered: (1)
data on miRNA enrichment in the brain and the

Table 2 Sex-dependent effect in differentiation of neurodegenerative disease s from control by microRNA classifiers

AD-CNTR FTD-CNTR PD-CNTR ALS-CNTR

A. miRNA classifiers most effectively differentiating NDs from control in all (male + female) participants

miR-99b/miR-181a and miR-9*/
miR-874 and miR-7/miR-16

miR-335/let-7e and miR-99b/
let-7e and miR-9*/miR-181a

miR-9*/miR-129-3p and miR-99b/
miR-874 and miR-9*/miR-411

miR-206/miR-31 and miR-206/
miR-125b and miR-99/
miR-338-3p

Male +
female

AUC 0.97 0.94 0.96 0.95

Accuracy 0.91 0.91 0.86 0.83

Male AUC 0.98 0.98 0.96 0.94

Accuracy 0.92 0.94 0.88 0.9

Female AUC 0.97 0.91 0.96 0.95

Accuracy 0.9 0.88 0.85 0.83

B. miRNA classifiers most effectively differentiating NDs from control in male and female groups

Male miR-99b/miR-181a and miR-125/
miR-874 and miR-9*/miR-29a

miR-335/let-7e and miR-99b/
let-7e and miR-9*/miR-181a

miR-9*/miR-129-3p and miR-99b/
miR-146a and miR-9*/miR-204

miR-206/miR-155 and miR-9*/
miR-129-3p and miR-335/
miR-338-3p

AUC 0.99 0.98 0.98 0.99

Accuracy 0.94 0.94 0.92 0.92

Female miR-99b/miR-181a and miR-9*/
miR-874 and miR-7/miR-451

miR-491/let-7e and miR-107/
miR-9 and miR-28/miR-181a

miR-9*/miR-29a and miR-99b/
miR-874 and miR-491/let-7e

miR-206/miR-7 ph2008and
miR-9*/miR-125b and
miR-491/miR-204

AUC 0.99 0.98 0.99 0.99

Accuracy 0.96 0.92 0.95 0.98

Abbreviations: AD Alzheimer’s disease, FTD Frontotemporal dementia, miR MicroRNA, ND Neurodegenerative disease, PD Parkinson’s disease, CNTR Control
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different brain regions is still limited, and some brain-
enriched miRNAs can be expressed, although at differ-
ent levels, in several brain regions; (2) ND progression
can substantially change both underlying processes, such
as synapse dysfunction and destruction in early disease
stages and neuronal death in late disease stages, and
brain regions involved in a disease due to the expan-
sion of pathologic processes to new brain regions;
(3) NDs exhibit heterogeneous clinical symptoms
and different brain pathologies (in this respect, ana-
lysis of larger cohorts of pathologically homogeneous
ND groups would be valuable); and (4) development
of neurodegeneration can result in changes in other
tissues and organ systems, such as the muscle fibers
in ALS.
The data obtained in the present study support our

minimally invasive approach to the detection of NDs
based on the analysis of circulating brain-enriched
miRNA in plasma. Individual miRNA pairs tested in this
study classified diseases with accuracies > 0.80, and combi-
nations of several miRNA pairs demonstrated accuracies
of up to 0.90. Some miRNA pairs proved to be effective in
detecting more than one ND, such as AD and FTD, which
partially affect overlapping brain regions. Effective
classifiers for ALS detection in addition to brain-enriched
miRNAs included muscle-enriched miR-206, which is also
highly expressed in cerebellum [72, 94].
As expected, miRNA classifiers for AD dementia were

different from the optimal miRNA classifiers for MCI
and pre-MCI [48, 49]. MCI is a heterogeneous syndrome
characteristic of many NDs. During the progression
from MCI to the dementia stage of AD, the ratio of
miRNA levels in bodily fluids can change as a result of
several factors. Hippocampal synapse and neurite degen-
eration during early stages of the disease leads to re-
duced numbers of synapses and neurites in later stages
of AD, resulting in diminished amounts of miRNAs be-
ing excreted from synapses and neurites of the hippo-
campus; in addition, because of the increased neuronal
cell death that occurs during the later stages of AD, the
concentration of neuronal cell body miRNAs in bodily
fluids increases. As the disease progresses, new brain re-
gions become involved in the pathology, compromising
the reliability of the normalizer miRNAs. This results in
numerator miRNAs of effective biomarker pairs for early
AD (e.g., miR-128a and miR-874) becoming denomina-
tors in effective pairs for later disease stages. Concur-
rently, because the pathology expands to new brain
regions (e.g., cortex and midbrain), synaptic miRNAs
from those regions, such as miR-107 and miR-9*, be-
come good biomarker numerators (Additional file 4A).
These events can be of informative value for disease
monitoring. For example, changes in relative concentra-
tions of miRNAs enriched in different brain regions or

different cell types (e.g., neurons and glial cells) may be
used as an indicator of disease progression.
Our analysis further revealed miRNA classifiers differ-

entiating AD from FTD with accuracy > 0.75 and all
other NDs from each other with accuracy in the range
of 0.80–0.90, a highly promising outcome for such het-
erogeneous diseases, which are in many cases accom-
panied by other related comorbidities.
Recent data indicate that brain aging and AD develop-

ment are sex-dependent phenomena [95–98]. Analysis of
the data presented here reveals sex dependence of certain
brain-enriched miRNAs, which distinguished NDs from
control in sex-specific subsets with significantly better ac-
curacy than in the total (female plus male) sets (Table 2,
section B). The effect is particularly notable for female par-
ticipants, such as that accuracy is 0.98 for female and 0.83
for all patients with ALS. More detailed, larger studies are
needed to further substantiate this observation and to in-
vestigate potential physiological mechanisms underlying
this phenomenon. In particular, it has to be determined
whether these sex-dependent differences are due to
differential expression, secretion, or excretion of some
brain-enriched miRNAs, intrinsic sex-dependent differ-
ences associated with NDs, or both.
It is worth noting that the approach of the present study

was based on analysis of brain-enriched miRNAs in the
total pool of miRNAs extracted from plasma. Recently, exo-
somes, and in particular neuronally derived exosomes, have
been studied as potential biomarkers of NDs [99–101]. The
promise of exosomes as biomarkers of pathology is due
largely to their protein content and membrane composition
because there is a high degree of variability in miRNA dis-
tribution across exosome populations, and contradictory
data exist on the fraction of miRNAs circulating in exo-
somes as compared with other forms of cell-free miRNAs
in the bloodstream [47, 102, 103].

Limitations
A limitation of this study is that all participants were re-
cruited at a single clinical site. Larger, multicenter stud-
ies are needed to further evaluate the utility of the
approach described herein. A further limitation of the
study is that the blood samples were collected from
symptomatic patients only. Longitudinal studies are
needed to assess the prognostic value of the biomarker
candidates in presymptomatic patients.

Conclusions
We report promising data on differentiation of four NDs
from control and from each other by brain-enriched
miRNA classifiers detectable in plasma. This work builds
on our earlier studies on brain-enriched miRNAs as bio-
markers of MCI [48, 49]. miRNAs hold strong potential
as effective and patient-friendly biomarkers, and several
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miRNA-based assays are currently used in oncology
clinical practice as part of “rule-in/rule-out” diagnostic
panels. Future work will address the utility and scope of
application of circulating brain-enriched miRNAs as bio-
markers of NDs.
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