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Abstract

Habitat suitability models are useful to understand species distribution and to guide manage-

ment and conservation strategies. The grey wolf (Canis lupus) has been extirpated from most

of its historic range in Pakistan primarily due to its impact on livestock and livelihoods. We used

non-invasive survey data from camera traps and genetic sampling to develop a habitat suitabil-

ity model for C. lupus in northern Pakistan and to explore the extent of connectivity among pop-

ulations. We detected suitable habitat of grey wolf using a maximum entropy approach

(Maxent ver. 3.4.0) and identified suitable movement corridors using the Circuitscape 4.0 tool.

Our model showed high levels of predictive performances, as seen from the values of area

under curve (0.971±0.002) and true skill statistics (0.886±0.021). The main predictors for habi-

tat suitability for C. lupus were distances to road, mean temperature of the wettest quarter and

distance to river. The model predicted ca. 23,129 km2 of suitable areas for wolf in Pakistan,

with much of suitable habitat in remote and inaccessible areas that appeared to be well con-

nected through vulnerable movement corridors. These movement corridors suggest that poten-

tially the wolf range can expand in Pakistan’s Northern Areas. However, managing protected

areas with stringent restrictions is challenging in northern Pakistan, in part due to heavy depen-

dence of people on natural resources. The habitat suitability map provided by this study can

inform future management strategies by helping authorities to identify key conservation areas.

Introduction

The distribution of species in space and time is a central topic in ecology. Species distribution

models (SDMs) are increasingly important for investigating the requirements of species and

for conservation planning [1–5]. Such models provide valuable quantitative information on

the threats, such as areas of where there is high risk from humans, or where are the required

resources [6] and they help identify conservation priorities [7–11].

The conservation of large carnivores remains challenging, in part due to a poor understand-

ing of the complex spatial dynamics that facilitate population persistence [12]. The habitat
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requirements of such species deserve particularly close attention because they generally require

large home ranges, are negatively impacted by changes in land use and are killed because of

the threats they pose to livelihoods [13–16]. The grey wolf (Canis lupus) is a prime example of

the drastic reduction in former ranges as a result of intensive persecution. Wolves were once

widely distributed throughout the Palearctic and Nearctic biogeographic areas [17, 18]. How-

ever, global wolf range has decreased by 33% over the last century [18]. In many areas, agricul-

tural expansion into marginal areas of wolf habitat has increased depredation of livestock and

subsequently increased poaching, resulting in a numerical and spatial contraction of grey wolf

populations [19].

A major concern of modern conservation efforts is identifying remaining habitat that is

suitable for a species to occupy [19–23]. SDMs have proven to be effective at predicting habitat

suitability for large carnivores, including wolves [24–26]. Habitat and conflict management

can be implemented using the results from monitored wolf populations once potential areas

are identified. In addition, knowledge of potentially suitable wolf habitat can be integrated into

landscape planning [8]. Indeed, evidence from elsewhere suggests that map-based conserva-

tion planning can help facilitate human-wolf coexistence by identifying areas where the poten-

tial conflict caused by livestock depredation is high [27, 28].

Several studies have shown that the long-term survival of large vertebrates is achieved by

both protecting source populations and providing dispersal opportunities between suitable

patches [29,30]. Ecological corridors can help them connect local populations, allowing indi-

viduals free dispersal between populations [31]. Wolf dispersal patterns across the landscape

can better predict where new wolf populations may appear [20]. Animals use a wide variety of

mechanisms to select suitable habitat and being aware of habitat use details is important for

corridor design [32]. Connectivity analysis is particularly important for wolves because allow

them to know this animal can move through the existing habitat [33].

Wolf populations in Pakistan have suffered population declines and range contraction [34,

35]. They are now confined to remote, barren, mountainous regions and extensive deserts

[36]. Numerous factors are thought to be responsible for their decline. The expansion of agri-

cultural practices and land conversion has caused habitat loss. The movement of herders up

the altitudinal gradient because of climate warming has further reduced available habitat and

increased the impact of retaliatory killings of wolves. These predators move to lower altitudes

during heavy snowfall, further increasing the chances of being killed due to livestock depreda-

tion [37].

Although a several studies have addressed GIS and modelling analyses of C. lupus in differ-

ent area in the world [24–26], no research has been conducted on grey wolf in northern Paki-

stan. Our goal was to model, through the use of non-invasive survey data from camera traps

and genetic sampling, a habitat suitability model for grey wolves in northern Pakistan and to

explore the extent of connectivity between populations. We identified: a) the first geographical

distribution analysis for C. lupus in northern Pakistan and which ecological factors may be

limiting the species distribution in the study area; b) the corridors in northern Pakistan where

the landscape would facilitate dispersal of C. lupus to provide an understanding of landscape

permeability for large carnivores in a largely unsuitable matrix and to present conservation

agencies with useful information should grey wolves continue to disperse into the region.

Materials and methods

Study area

The Northern Areas of Pakistan (35-37o N and 72-75o E) are dominated by glaciated moun-

tains crests, narrow valleys, ravines, cliffs and rough ridges [38]. They fall in the watersheds of
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the Karakorum, Himalaya and Hindu Kush mountain ranges (Fig 1). The Karakoram-Pamir

landscape is a combination of several unique agro-ecological units that merge into one another

[39]. Climatic conditions vary widely, ranging from the monsoon-influenced moist temperate

zone in the western Himalayas to the semi-arid cold deserts of the northern Karakorum and

Hindu Kush [40]. Four vegetation zones can be distinguished along the altitudinal gradients,

namely alpine dry steppes, subalpine scrub zones, alpine meadows and permanent snowfields

[38]. These varied climatic conditions and ecosystems support rare and endangered animals

such as the snow leopard (Uncia uncia), brown bear (Ursus arctos), grey wolf (Canis lupus),
Himalayan lynx (Lynx lynx), Marco Polo sheep (Ovis ammon polii), musk deer (Moschus chry-
sogaster), blue sheep (Pseudois nayaur), Himalayan Ibex (Capra ibex sibirica), flare-horned

markhor (C. f. cashmirensis), Ladakh urial (Ovis orientalis vignei) and woolly flying squirrel

(Eupetaurus cinereus).

Genetic sample collection

The field surveys were conducted during the period 2010–2012 within the following protected

areas (PAs): Machiara National Park, Musk Deer National Park, Khunjerab National Park,

Broghil Valley National Park, Qurumber National Park, Shandoor-Handrab National Park,

and Deosai National Park, as well as outside the PAs in Laspur, Yarkhun, Misgar, and Chapur-

san, covering suspected wolf range. We covered seven national parks and eight non-protected

study sites. Survey areas were divided into grids cells of 5 × 5 km (except in Khunjerab Na-

tional Park and Shimshal where the grid size was taken as 10 × 10 km) on GIS maps. Surveys

points were randomly selected within each grid cell and a 50 m radius around each point was

searched for wolf scats. We searched 1,736 points within the study area. We also searched for

scats at camera trap locations and whilst hiking along livestock trails and manmade tracks

Fig 1. Study area (Northern Pakistan). Scales show the altitude ranging from low (dark grey) to high (red).

https://doi.org/10.1371/journal.pone.0187027.g001
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(which were also used by wildlife). About 1,000 scat samples of carnivores were collected and

preserved in 20 ml bottles filled with 95% alcohol.

We confirm that: 1) the institution leader of this research (Carnivore Conservation Lab,

Department of Animal Sciences, Quaid-i-Azam University, Islamabad) has all field permit to

work in all protected areas; 2) the owner of the land in non-protected study sites gave us the

authorization to conduct the study on this site; and 3) no wolfs were harmed and sacrificed

during this research. We only have collected wolf scats and image by camera traps.

DNA analysis and species identification

Deoxyribonucleic acid (DNA) was extracted from 15 mg of feces using the DNeasy Blood and

Tissue Kit (Qiagen, Hilden, Germany) recovered in a total volume of 200 μL. Blank extractions

were systematically performed to monitor possible contaminations. Species identification was

performed through next generation sequencings (NGS) by amplifying DNA extract using

primer pair 12SV5F (5’-TAGAACAGGCTCCTCTAG-3’) and 12SV5R (5’- TTAGATACCC
CACTATGC-3’) [41] targeting about 100-bp of the V5 loop of the mitochondrial 12S gene

[42]. The sequencing was carried out on the Illumina Genome Analyzer IIx (Illumina Inc.),

using the Paired-End Cluster Generation Kit V4 and the Sequencing Kit V4 (Illumina Inc.),

following the manufacturer’s instructions. The sequence reads were analyzed using OBI Tools

(http://www.prabi.grenoble.fr/trac/OBITools). Taxon assignation was achieved using the eco-

Tag program [43] in comparison with a reference database for vertebrates. This reference data-

base was built by extracting the relevant part of the mitochondrial 12S gene from the European

Molecular Biology Laboratory’s (EMBL) nucleotide library using the ecoPCR program [44].

Genetic results revealed identification of 80 samples belonging to wolves.

Camera traps

Camera traps were installed in 798 locations during the period 2009–2017 and were separated

by a horizontal buffer of at least 1 km (Table 1). Camera trap locations were identified based

on landscapes characteristics—ridges, cliff bases, draw—preferred by carnivores and the pres-

ence of carnivore signs [38]. A single motion-triggered digital camera with infrared flash

(HC500/PC900, Reconyx, Holmen, WI, USA) was deployed at each location on a steel pole

(50–60 cm) driven into the ground. Camera traps were set to take consecutive images (1-s pic-

ture interval) when triggered and were typically kept active at a given location for 10–40 days

[38]. Camera trap sites were baited with fish oil. Commercial trapping scent lures were

deployed in some randomly selected sites [45].

Model preparation: Selection of presence data and environmental

variables

Records obtained by scats collection and camera trapping of C. lupus were screened in ArcGis

(version 9.2) for spatial autocorrelation using average nearest neighbour analysis to remove

spatially correlated data points and guarantee independence [46–48]. After this selection, from

an initial dataset of ca. 131 presence records, only 25 unrelated locations were used to generate

current SDMs of C. lupus.
To produce SDMs for C. lupus in northern Pakistan, we considered initially a set of 28 envi-

ronmental variables. We included altitude, 19 bioclimatic variables, land cover, slope, soil type,

distance to roads, distance to rivers, distance to settlements, vector ruggedness measure and

normalized difference vegetation index. Bioclimatic variables and altitude were obtained from

WorldClim database (www.worldclim.org/current) [49]. Land cover was obtained from the

Global Land Cover 2000 (available from https://lta.cr.usgs.gov/glcc/globdoc2_0). Distance to
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roads, distance to rivers, distance to settlements were calculated by using Euclidean distance

tool in Arc GIS 10.0. Soil (FAO, 2003, digital soil map of the world), vector ruggedness mea-

sure (SRTM 90m DEM by Center for Nature and Society, Peking University.) and normalized

difference vegetation index were obtained from NASA website (http://modis-land.gsfc.nasa.

gov/vi.html). The MODIS normalized difference vegetation index product is computed from

atmospherically corrected bi-directional surface reflectance that have been masked for water,

clouds, heavy aerosols and cloud shadows. Global MOD13A2 data are provided every 16 days

at 1-kilometer spatial resolution as a gridded level-3 product in the Sinusoidal projection.

In order to remove any variables that were highly correlated before generating the models,

we calculated a correlation matrix using Pearson’s technique and selected only the variables

for which r< 0.70 [50]. From this first set of predictors, we selected only the variables that

were most representative of the species’ ecological requirements [12, 16, 17, 18, 20, 24, 25, 26,

33, 34]. After this analysis, eight environmental variables were selected considering their appli-

cability to the scale of our study area, relevant predictive power, and their suspected biological

importance [51, 52]. All the variables were prepared—conforming cell size [30-arc second res-

olution (0.93 × 0.93 km = 0.86 km2 at the equator)], geographic extent, projection, and ASCII

—using the ‘resample’, ‘clip’, ‘mask’, and ‘conversion’ tools in Arc GIS 10.0. Finally, the follow-

ing eight environmental variables were used for model training: distance to roads (m), distance

to rivers (m), mean temperature of wettest quarter (˚C), mean diurnal range (˚C), soil, annual

precipitation (mm), altitude (m) and global land cover 2000.

Maxent model

SDMs rely on presence-absence data or presence-only data [7, 9, 53–55]. The use of presence-

only is recommended when absence data has a high degree of uncertainty relative to presence

data, which is especially true when detection rates are poor [25,26]. We modeled wolf

Table 1. Details of camera trapping studies and photo captured record of wolf in Northern Pakistan.

N˚ Site Year N˚ camera station Camera station with wolf presence

1. Chitral 2006 19 1

2. Chitral 2007 18 5

3. Chitral Gol National Park 2008 21 3

4. Chitral Gol National Park 2009 20 0

5. Tooshi game reserve 2009 30 0

6. Khunjerab National Park 2010 10 0

7. Laspur valley 2010 20 0

8. Khunjerab National Park 2011 86 1

9. Shimshal 2011 36 0

10. CGNP, TGR & Buffer 2011 22 11

11. Broghil & Qurumber 2012 80 6

12. Deosai National Park 2013 116 9

13. Yarkhun valley, Chitral 2013 58 0

14. Misgar & Chapursan 2013 59 0

15. Astore valley 2013 25 0

16. Musk deer National Park 2014 36 1

17. Khanbari, Diamer 2014 48 11

18. Tirch valley, Chitral 2015 26 0

19. Hisper valley, Nagar 2016 38 0

20. Bhasha valley, CKNP 2017 30 3

https://doi.org/10.1371/journal.pone.0187027.t001
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distribution using Maxent (ver. 3.4.0) as it is recognized as a better performer with presence-

only data, especially with small numbers of occurrence points [56–58]. To build the models,

we used the presence records (defined “sample” in Maxent) of C. lupus selected as described

above and the environmental variables (defined “environmental layers” in Maxent). In the set-

ting panel, we selected the following options: auto features; random seed; write plot data;

remove duplicate presence records; give visual warming; show tooltips; regularization multi-

plier (fixed at 1); 10,000 maximum number of background points; 1,000 maximum iterations;

and, finally, we achieved a 20 replicates effect with cross-validation run type as suggested by

Pearson et al. [59] for testing small samples, this run type makes it possible to replicate n sam-

ple sets removing a locations at each step [47, 60, 61]. All other parameters were left by default.

These settings are conservative enough to allow the algorithm to get close to convergence and

optimize performance [62].

The final logistic output gave suitability values from 0 (unsuitable habitat) to 1 (suitable

habitat). The 10 percentile training presence (i.e. the value above which the model classifies

correctly 90% of the training locations) was selected as the threshold value for defining the spe-

cies’ presence. This is a conservative value commonly adopted in species distribution model-

ling studies, particularly those relying on datasets collected over a long time by different

observers and methods [11, 47]. This threshold was used to reclassify our model into binary

presence/absence map.

We used Jackknife sensitivity analysis to estimate the actual contribution that each variable

provided to the geographic distribution models. During this process, Maxent generated three

models: first, each environmental variable was excluded in turn and a model was created with

the remaining variables to check which one of the latter was the most informative. Second, a

model was created by individually by adding each environmental variable to detect which vari-

able had the most information not featuring in the other variables. Third, a final model was

generated based on all variables. Response curves derived from univariate models were plotted

to know how each environmental variable influence presence probability.

Model validation

We tested the model with different validation methods: the receiver operated characteristics,

analyzing the area under curve (AUC) [63] and the true skill statistic (TSS) [64].

AUC assesses the discrimination ability of the models and its value ranges from 0 (equaling

random distribution) to 1 (perfect prediction). AUC values> 0.75 correspond to high dis-

crimination performances [63]. TSS compares the number of correct forecasts, minus those

attributable to random guessing, to that of a hypothetical set of perfect forecasts. It considers

both omission and commission errors and success as a result of random guessing; its values

range from -1 to +1, where +1 corresponds to perfect agreement and zero or less to a perfor-

mance no better than random [64].

Modelling potential movement corridors

A spatial corridor model was developed using the distribution map of wolves in Circuitscape

4.0 software (http://www.circuitscape.org/downloads) [65]. We used Circuitscape 4.0 to model

connectivity and movement corridors of grey wolf in Pakistan across the landscape. Circuits-

cape treats the landscape as a conductance surface, where each pixel represents a resistor with

an assigned resistance value. Pairwise electrical resistances between locations are calculated by

running a theoretical electrical current between each population pair, with one population

being set as the current source and the other as the ground [65]. Contrary to least cost resis-

tance methods, Circuitscape does not assume that animals disperse according to previous

Habitat modelling and movement corridors of grey wolf in Pakistan
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knowledge of the surroundings, but is based on random walks [65]. It thus links populations

through multiple pathways [65], such that connectivity between habitat patches increases

according to the number of connected pathways, and the effective resistance between two pop-

ulations is derived from the overall resistance across all pathways. We used SDM output as

conductance layer and 24 nodes to run movement corridors of grey wolf in Circuitscape 4.0.

The nodes were used to represent different areas where we have confirmed wolf presence in

northern Pakistan. Clearly, we have not used all the nodes to run Circuitscape because other-

wise this procedure would become too complex. We have used a very low number of nodes

and have chosen them as the most important areas of wolf movement in northern Pakistan.

We converted the nodes into a grid file in Arc GIS 10.0. Both the habitat suitability map (cre-

ated by Maxent) and the nodes file were converted into ASCII format for a Circuitscape model

run. We used the option of conductance instead of resistance because the landscape is repre-

sented as a conductive surface with low resistances assigned to landscape feature types [9, 66,

67]. Finally, the final map of movement corridors was reclassified into three categories, respec-

tively, low, moderate and high to better represent the most important areas for C. lupus
movements.

Results

Camera traps and genetic analysis

We obtained 51 wolf presence records from camera traps and 80 from the genetic analysis of

scat samples collected from the distribution range of wolves (Fig 2). Most presence records

were obtained from national parks. Presence records along the altitudinal gradients ranged

Fig 2. Genetic or photographic detections of wolves in the study area. The presence points were obtained

from camera trap results and DNA analysis of scat samples collected from the Northern Areas of Pakistan (2009–

2015). Altitude map in grey.

https://doi.org/10.1371/journal.pone.0187027.g002
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from 3,000 m (Musk Deer National Park) to 4,700 m (Khunjerab National Park). PAs with

higher frequency of presence records were Deosai National Park (Himalayan range), Chitral

Gol National Park (Hindu Kush range), Khunjerab (Karakorum range) and Broghil National

Park (Pamir range). Outside the PAs, the highest wolf encounter was recorded from the Khan-

bari Valley in Gilgit-Baltistan. There was no presence record from Terich, Astor, Misgar, Chi-

purson, Shimshal and Hisper Hooper Valley. Overall, wolf detection was low, suggesting thin

and patchy population.

Habitat suitability and model validation

The Maxent model suggested that there was suitable wolf habitat within the areas chosen as

suspected wolf habitat range (Fig 3). The binary map discriminated between areas typically

used by wolves and those considered unsuitable (Fig 4). The most suitable areas identified

from the models were located predominantly within PAs and most inaccessible areas with

minimum human disturbance, and overall, mainly along the narrow valley and around sum-

mer livestock pastures. The model suggested that there was less suitable habitat in lower alti-

tude areas with more human access.

In relation to the distribution range, suitable areas were quantified based on habitat suitabil-

ity modelling (Fig 4). The model predicted ca. 23,129 km2 of potential distribution of wolf in

Northern Pakistan.

The jackknife-cross-evaluation test yielded the relative contribution and permutation

of each environmental variable using Maxent. Distances to road, mean temperature of the wet-

test quarter and distance to river contributed most to the model. Soil, altitude, annual precipi-

tation and land cover contributed relatively little. Response curves showed how the logistic

prediction changed as environmental variables varied while keeping all other environmental

Fig 3. Wolf habitat suitability in Northern Pakistan, generated through Maxent. Scales show the probability

of presence ranging from 0 to 1.

https://doi.org/10.1371/journal.pone.0187027.g003
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variables at their average sample values. The probability of wolf presence was 0.7 at 0 km2 of

distance from the road and stream, but it drastically to 0.05 at a distance of 0.5 km2. Mean tem-

perature of the wettest quarter ranged from -10˚C to 10˚C with a max value (0.6) of probability

of presence around 0˚C.

The jackknife test also revealed the importance of different variables and their impact on

model efficacy. Distance to river was the most important variable in determining model pre-

diction in training, test and AUC evaluation. The distance to river increased the gain more

than any other variables when added in isolation. On the other hand, the mean temperature of

the wettest quarter variable decreased the gain most when omitted i.e. it contains the most

information not present in other variables (Fig 5).

Finally, our model showed high levels of predictive performances as can be seen from the

values of area under curve (0.971±0.002) and true skill statistics (0.886±0.021).

Potential movement corridors

The corridor modelling generated estimates of habitat connectivity among scattered wolf pop-

ulations in northern Pakistan (Fig 6). Four chunks of suitable habitat were identified within

the Himalayas, Pamirs, Hindukush, and Karakorum mountains ranges of northern Pakistan.

Sub-populations have strong, but unprotected connections and corridors movement existed

between all major areas of wolf habitat. The model identified weak linkages between popula-

tions found at lower altitudes with high disturbance rates. Among the PAs, Chitral Gol, Bro-

ghil and Qurumber National Park had wide potential corridors comprised of suitable habitat

connecting core areas. Furthermore, the analysis revealed appropriate dispersal habitat

between Musk Deer and Deosai National Park, and similarly between Qurumber, Broghil, and

Khunjerab National Park to allow for wolf dispersal.

Fig 4. Binary map of C. lupus in Pakistan. White = Absence; Red = Presence.

https://doi.org/10.1371/journal.pone.0187027.g004
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Discussion

Maxent model and movement corridors of grey wolf in Pakistan

This study represents the first large-scale assessment of wolf distribution, habitat suitability

and movement corridors in Pakistan. Our model identified areas with suitable habitat and cor-

ridors through which wolves may travel to reach new territories across northern Pakistan. The

model showed considerable predictive performance, showing AUC value > 0.9 that may be

placed among the highest in published models [5, 55, 68] and excellent values of the True Skill

Statistic, corresponding to a very high predictive capacity [69–71].

Fig 6. Potential movement corridors of wolf in northern Pakistan. Red areas are strong links while yellowish areas are

weakest. Map also illustrating population connection found in National Park.

https://doi.org/10.1371/journal.pone.0187027.g006

Fig 5. Jackknife analysis of variables. It shows how important each variable is in explaining wolf presence

when used separately (cobalt blue), and how the model is affected when each variable is left out (aqua). Dark

blue bars = Importance of single variable, light blue bars = loss in model gain, when variable is omitted. Red

bar = total model gain. Alt = Altitude; bio_12 = Annual Precipitation; bio_2 = Mean Diurnal Range (Mean of

monthly); bio_8 = Mean Temperature of Wettest Quarter; glc2000 = Global land cover 2000;

road_dist = Distance to roads; river_dist = Distance to rivers; Soil = Soil.

https://doi.org/10.1371/journal.pone.0187027.g005
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Overall, our model found that the most suitable areas for wolves are located in mountainous

regions where human disturbance is limited. Yet, it was also clear that wolves are relatively

flexible in their use of habitat at the landscape scale. Along the altitudinal gradients, wolf pres-

ence was recorded ranging from a moist temperate zone in Musk Deer National Park up to the

alpine zone in Khunjerab National Park. In general, wolves could potentially live in any area

where human tolerance and prey populations are adequate to support viable numbers [72].

Wolves show different patterns of habitat selection based on time (year, season, time of day)

and areas in which they were observed [73, 74]. Our data supported previous observations that

wolves occur in various types of habitat and shows low habitat specificity and high levels of

ecological resilience compared with other large carnivores [34, 72, 75].

Wolf habitat selection patterns at a fine scale appear to be influenced by complex interac-

tions between habitat attributes and human disturbances [73, 76]. We found that wolf presence

depended on the type of anthropogenic disturbance in the area. Most roads in the study area

are unpaved with minimum disturbance and traffic pressure. We observed that wolves avoided

main roads and tracks, but followed livestock tracks and small, unpaved roads with low distur-

bance. We suspect that wolves use roads for traveling, scent-marking, and territorial patrolling,

but have also developed cryptic behavioral responses to roads, likely driven by the increased

risks associated with human presence [77, 78]. Wolves are likely to select secondary gravel or

unpaved roads for hunting due to the greater visibility and mobility [20]. The presence of road

networks may drive wolves toward suitable habitat types. Wolf’s tolerance to human distur-

bances increased in suitable habitat types [79].

The results of our model suggested that the distance to road was an important predictor of

wolf presence [76, 80, 81]. This finding suggested that wolves may seek to minimize the proba-

bility of encountering humans this [80, 81].The proximity to rivers was the second most

important predictor. Riparian habitats provide wolves with increased opportunities to hunt

wild prey and are also important in den selection [82, 83]. In our landscape shepherds prefer

moving along streams and established temporary stay which may also attracts wolves to feed

on livestock. Wolves were concentrated in lower areas due to snow-caused aggregation of prey

during the winter season. Frozen rivers and lakes are often used by wolves to travel faster [84]

[85]. Others environmental variables such as altitude, annual precipitation and land cover

were among the variables that contributed least to the SDMs for C. lupus in northern Pakistan.

We found that summer huts, temporary settlements, and grazing pastures limited wolf dis-

tribution. Wolves exhibited some tolerance towards humans, enabling them to persist within a

mosaic of human-altered and naturally occurring habitat. Wherever primary habitat is rare,

wolves tend to be dispersed in meadows and rangelands, or in less-natural landscapes such as

mixed-use agro ecosystems [86,87]. A similar relationship between the number of inhabitants

of settlements and avoidance of close surroundings by wolves was observed in Poland [88].

Wolf populations in closer contact with human-active areas indicated tolerance to human

activities [89].

Resistance modelling indicated the presence of habitat corridors for wolves in northern

Pakistan. These corridors could link potential habitats and movement corridor between PAs.

Habitat connectivity is not uniform in the Himalayas and population connectivity between the

Pamirs and Himalayas range is very weak i.e. based on our corridor modelling analysis. Wolf

populations in the Hindu Kush appear to be well connected with the population of the Pamirs

and Karakorum’s, which is also enhanced by the establishment of PAs, including the Broghil,

Qurumber and Khunjerab National Parks. PAs have become islands of habitat within a mosaic

of agriculture and development, and although at a slower rate than non-PAs, anthropogenic

activities persist even within the boundaries of PAs [90]. Chitral, Broghil and Qurumber were

identified as areas of likely wolf activity based on habitat quality and connectivity to other
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patches of high-quality habitat. The wolf population in Deosai appears to be connected with

the population of Central Karakorum National Park, but only weak connected with other

potential habitat. The wolf populations at the Musk Deer and Khanbari study sites appear to

be isolated.

Highly suitable habitat was also detected outside of PAs with minimum levels of anthropo-

genic activities. For large carnivores, sub-optimal habitats might serve as corridors linking

habitats necessary for survival and reproduction and also to prevent inbreeding depression

[91]. Grey wolves are able to travel through habitats considered poor in the search for an area

to form a new pack [92]. “Pioneering” wolves have been known to disperse over large distances

and settle in new habitats far from the nearest source population [34, 93]. The populations of

the Hindu Kush, Pamirs and Karakorum appear to be connected through movement corri-

dors, but these needs to be protected to facilitate safe use by dispersing wolves.

Model constraints

There are two main limitation to our model. First, no prey availability estimates were available.

Second, data was only collected during winter and wolf habitat selection patterns may vary

between seasons. The dataset was influenced by the species’ patchy distribution, its rarity

throughout the landscape, its seasonal surface occurrence, and its location (when active) on

steep and rocky (often impassable) terrain [94]. Previous studies showed that wolf distribution

at the landscape scale was influenced primarily by prey availability and human infrastructure

[95]. Assuming prey biomass varies with habitat type, studies on carnivores demonstrate the

potential for deriving accurate habitat and connectivity models [96, 97].

Application of habitat modelling

With respect to species presence, the model predicted habitat suitability reasonably well.

Among the four major chunks of high-quality habitat identified, one is protected, one is par-

tially protected, and the rest are weakly protected. The most suitable habitat in the Hindu

Kush range (Khanbari) lacks PAs and has poor connections with other populations. The east-

ern part of the Pamir range and southern Himalayas are partially connected with the western

Karakorum and northern Himalayan populations, respectively. Our study provides a better

idea of where wolves may disperse to in case numbers increase in the future, and help to iden-

tify priority areas for community engagement, management zones and proactive planning

[98].

Habitat models developed in the current study will support wolf conservation in three

ways. First, habitat maps provide a tool to identify suitable habitat and movement corridors

and provided a guide map for investing limited conservation resources. Second, wildlife man-

agers prioritize the establishment of more PAs covering suitable habitat and movement corri-

dors to extend the PA network for the long-term survival of wolf populations in Pakistan.

Third, it is a challenging issue in northern Pakistan to manage protected areas in stringent cat-

egories, due to heavy dependence of people on natural resources.
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69. Hanspach J, Kühn I, Pompe S, Klotz S. Predictive performance of plant species distribution models

depends on species traits. Perspect Plant Ecol Evol Syst. 2010; 12(3): 219–225. https://doi.org/10.

1016/j.ppees.2010.04.002

70. Taylor C, Cadenhead N, Lindenmayer DB, Wintle BA. Improving the design of a conservation reserve

for a critically endangered species. PLoS ONE. 2017; 12(1): e0169629. https://doi.org/10.1371/journal.

pone.0169629 PMID: 28121984

71. Wogan GOU. Life history traits and niche instability impact accuracy and temporal transferability for his-

torically calibrated distribution models of North American birds. PLoS ONE. 2016; 11(3): e0151024.

https://doi.org/10.1371/journal.pone.0151024 PMID: 26959979

72. Fritts SH, Stephenson RO, Hayes RD, Boitani L. Wolves and humans. In: Mech LD, Boitani L, editors.

Wolves: Behavior, ecology, and conservation. Chicago: University of Chicago Press; 2003. pp. 289–

316.

73. Ciucci P, Masi M, Boitani L. Winter habitat and travel route selection by wolves in the northern Apen-

nines, Italy. Ecography. 2003; 26(2): 223–235. https://doi.org/10.1034/j.1600-0587.2003.03353.x

74. Milakovic B, Parker KL, Gustine DD, Lay RJ, Walker ABD, Gillingham MP. Habitat selection by a focal

predator (Canis lupus) in a multiprey ecosystem of the northern Rockies. J Mammal. 2011; 92(3): 568–

582. https://doi.org/10.1644/10-MAMM-A-040.1

75. Carroll C, Noss RF, Schumaker NH, Paquet PC. Is the return of the wolf, wolverine, and grizzly bear to

Oregon and California biologically feasible? In: Maehr DS, Noss RF, Larkin JL, editors. Large Mammal

Restoration: Ecological and sociological challenges in the 21st century. Washington D.C.: Island

Press; 2001. pp. 25–46.

76. Houle M, Fortin D, Dussault C, Courtois R, Ouellet J-P. Cumulative effects of forestry on habitat use by

gray wolf (Canis lupus) in the boreal forest. Landsc Ecol. 2010; 25(3): 419–433. https://doi.org/10.1007/

s10980-009-9420-2
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