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Abstract

Purpose

To compare human observers to a mathematically derived computer model for differentia-

tion between malignant and benign pulmonary nodules detected on baseline screening

computed tomography (CT) scans.

Methods

A case-cohort study design was chosen. The study group consisted of 300 chest CT scans

from the Danish Lung Cancer Screening Trial (DLCST). It included all scans with proven

malignancies (n = 62) and two subsets of randomly selected baseline scans with benign

nodules of all sizes (n = 120) and matched in size to the cancers, respectively (n = 118).

Eleven observers and the computer model (PanCan) assigned a malignancy probability

score to each nodule. Performances were expressed by area under the ROC curve (AUC).

Performance differences were tested using the Dorfman, Berbaum and Metz method.

Seven observers assessed morphological nodule characteristics using a predefined list. Dif-

ferences in morphological features between malignant and size-matched benign nodules

were analyzed using chi-square analysis with Bonferroni correction. A significant difference

was defined at p < 0.004.
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Results

Performances of the model and observers were equivalent (AUC 0.932 versus 0.910,

p = 0.184) for risk-assessment of malignant and benign nodules of all sizes. However,

human readers performed superior to the computer model for differentiating malignant nod-

ules from size-matched benign nodules (AUC 0.819 versus 0.706, p < 0.001). Large varia-

tions between observers were seen for ROC areas and ranges of risk scores. Morphological

findings indicative of malignancy referred to border characteristics (spiculation, p < 0.001)

and perinodular architectural deformation (distortion of surrounding lung parenchyma archi-

tecture, p < 0.001; pleural retraction, p = 0.002).

Conclusions

Computer model and human observers perform equivalent for differentiating malignant from

randomly selected benign nodules, confirming the high potential of computer models for

nodule risk estimation in population based screening studies. However, computer models

highly rely on size as discriminator. Incorporation of other morphological criteria used by

human observers to superiorly discriminate size-matched malignant from benign nodules,

will further improve computer performance.

Introduction

Lung cancer is the deadliest cancer in both men and women [1] because the disease is usually

diagnosed at an advanced stage. The National Lung Screening Trial (NLST) demonstrated a

decrease in lung cancer-specific mortality of 20% [2], which was the major driving power lead-

ing to a recommendation of low-dose computed tomography (CT) lung screening for eligible

subjects by several organizations including the U.S Preventative Services Task Force (USPSTF)

[3,4]. Lung cancer screening programs are now being implemented in the U.S.

Low-dose CT studies of the lung—obtained within a lung cancer screening program—are

characterized by the discrepancy between the high prevalence of pulmonary nodules and the

relatively low incidence of actual lung cancers. In the first CT round of the 24,715 subjects in

the CT arm of the NLST a total of 6,786 nodules had been annotated, however, only 168 sub-

jects were eventually diagnosed with a pulmonary malignancy within the 3 years screening

period or the follow-up of 6.5 years, illustrating the high prevalence of nodules in screening

CTs in general and the magnitude of the diagnostic and organizational challenge [5]. Accuracy

and efficiency of screening programs will therefore largely depend on the ability to correctly

differentiate malignant from benign nodules. A prospective estimation of which nodules are of

high risk to represent or develop into a malignancy, and therefore requiring more close fol-

low-up or intense diagnostic work-up as opposed to nodules that are of very low risk, is of cru-

cial importance to make screening programs efficient for a number of reasons including

burden of radiation dose, psychological load of the screening subjects and financial expenses.

This problem has been addressed by the management guidelines published by the American

College of Radiologists (ACR), called Lung-RADS. Nodules with benign appearance and very

low risk (categories 1 and 2) are differentiated from equivocal or suspicious nodules (catego-

ries 3, 4A and 4B) [6]. Lung-RADS and similar recommendations [7–9] have in common that

they use nodule type, nodule size and growth rate to select nodules that are malignant or at

risk to develop into a malignancy. A number of other risk prediction models rather focus on
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the selection of individuals being at risk for developing a lung malignancy [10–13] or estimate

the malignancy probability using both, clinical factors and nodule characteristics [7, 14–15].

The computer model that was evaluated in the following study also uses both a number of

nodule characteristics but also non-nodular CT imaging findings and further on considers a

number of subject related demographic factors [16]. This model is thus far the only published

malignancy risk prediction model that was mathematically modeled based on the findings of

an actual lung cancer screening trial [17]. Whereas other models use fixed thresholds for nod-

ule size this model applies hazard ratios for various parameters that have been derived from

the Pan-Canadian Early Detection of Lung Cancer Study (therefore the name PanCan model).

The model was externally validated using the British Columbia Cancer Agency (BCCA) cohort

and demonstrated a good performance with an area under the receiver-operator-characteris-

tics curve (AUC) of> 0.900 to discriminate malignant from benign nodules [16]. An external

second evaluation study used the cohort of the Danish Lung Cancer Screening Trial (DLCST)

and found an AUC of 0.834 [18]. The difference in results between the two external validation

studies can be explained by the fact that the performance of such risk prediction models are

considerably influenced by the type of nodule annotation protocol (e.g., how many small,

most likely benign nodules were included), the prevalence of malignancy and the underlying

screening population.

In contrast to mathematical risk prediction models, radiologists use a rather complex sys-

tem of visually accessible morphological information when determining the malignancy risk

of pulmonary nodules, such as internal nodular and external perinodular characteristics of the

lung parenchyma in addition to nodule diameter, upper lobe location and nodule type. No

studies thus far have investigated the difference in performance between the PanCan model

and human observers. The purpose of our study was to compare the PanCan model with

human observer performance for the prediction of malignancy risk of screen-detected

nodules.

Methods

Materials

For this retrospective study, we used anonymized CT scans from the Danish Lung Cancer

Screening Trial [19]. Approval by the Ethics Committee of Copenhagen County as well as

informed consent of all participants were available. In the DLCST, two experienced chest

radiologists had separately annotated nodules (� 3 mm) in CT scans with respect to size and

location, based on visual assessment and manual diameter measurements [19]. Follow-up

information with respect to presence of histologically proven malignancies was available for a

follow up of 9 years. Malignancies had a medium diameter of 15 mm (range 4 to 93 mm) on

the first scans they had been annotated.

For the observer study a case-cohort study design was used. A study-group of 300 partici-

pants was selected from the complete screening data set under the following conditions: The

study group included all 60 participants with at least one malignant nodule that had been

found in the complete DLCST (group 1), 120 participants with at least one benign nodule ran-

domly selected from the whole screening dataset (group 2), and 120 participants also randomly

selected from the whole screening dataset but under the condition that they showed at least

one benign nodule with a diameter in the range of 3 to 16 mm with a preference for lesions

larger than 10 mm (group 3).

Group 1 consisted of the CT scans on which the malignant nodules had been annotated

first. In participants with multiple malignant lesions, one malignant nodule was randomly

selected. Group 2 consisted of baseline CT scans with benign nodules of all size ranges being
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reflective of lesions seen in a screening cohort. Group 3 consisted of baseline CT scans with

benign nodules with a medium size larger than seen in the whole cohort but matching in size

more closely to the malignant nodules.

Two size-matched nodules that had been classified as benign during the screening rounds

developed into malignancies during the follow-up period of 9 years, their status was therefore

changed accordingly resulting in a final group of 62 malignancies, 120 random benign and 118

size-matched benign nodules.

CT acquisition

All CT scans were performed using volumetric acquisition (16 rows Philips Mx 8000, Philips

Medical Systems, Eindhoven, The Netherlands) and a low-dose protocol (120 kV, 40 mAs)

with a section collimation of 16 x 0.75 mm, pitch 1.5 and rotation time 0.5 s. The scans were

obtained after full inspiration and without the use of contrast. Images were reconstructed with

thin (1 mm) sections and a sharp filter algorithm (kernel D) [19].

Readers and image viewing

Eleven observers assessed the nodules in random order, using a computer vision tool (CIRRUS

Observer, Diagnostic Image Analysis Group, RadboudUMC, Nijmegen, The Netherlands) that

allowed for interactive viewing of high quality CT sections in all 3 projections (axial, coronal

and sagittal). The CT data were preloaded and displayed using a zoomed view of each nodule

to shorten the search process, however, observers could scroll and review the complete CT if

warranted. They were instructed to give a malignancy probability score to each nodule on a

scale of 0 to 100, where a score of 0 would indicate that all nodules that looked like this particu-

lar nodule would be benign according to the observer and a score of 100 would indicate that

all similar looking nodules would be malignant according to the observer. The observers

assessed the malignancy score on the basis of visual analysis of nodule morphology. Judgment

was left to the readers’ discretion and no specific criteria were given being suggestive for

malignancy.

Subsequently, the observers scored the presence of certain morphological features for each

nodule according to a predefined list. This list included the following items: single bubble,

multiple bubbles, airbronchogram, bulla with thickened wall, spiculation, lobulation, ill-

defined border, well-defined border, demarcation by interlobular septa, attachment to a vessel,

pleura or fissure, retraction of pleura or fissure, and distortion of surrounding lung architec-

ture. Scoring the morphology features was not mandatory, however, if they decided to score

nodule morphology, they were urged to do so for all nodules. Prior to scoring the actual study

group, 15 example cases were presented to the observers, in order to get familiar with the soft-

ware, nodule scoring method and the morphological features.

The observer group consisted of four board certified radiologists with > 10 years of experi-

ence in reading chest CTs and/or intense research training with respect to interpreting screen-

detected nodules, five radiology residents and two pulmonologists from eight institutions in

five countries. The first group of the four board certified radiologists formed the group of

observers of higher experience as opposed to the remaining seven observers.

PanCan computer model

We used the full model (2b), which determines the malignancy probability score based on the

parameters sex, age, family history of lung cancer, emphysema, nodule size, nodule type, nod-

ule location, nodule count and spiculation. Additionally, performance of the parsimonious

model (1b) was assessed, which includes a limited number of input parameters such as sex,

Malignancy risk in pulmonary nodules: Observers versus computer
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nodule size, nodule location and spiculation [16], thus leaving out age, family history, emphy-

sema, nodule type and nodule count. Family history of lung cancer pertained to parents or sib-

lings. Presence of emphysema was dichotomous and not corresponding to the degree of

emphysema. Nodule size was measured as the longest diameter. Nodule count pertained to the

number of additional nodules in the scan. Spiculation was defined as reticular markings of tis-

sue density centered along the border of the nodule. Nodule type, emphysema, spiculation,

and complete calcification were scored by an experienced radiologist (E.S.) [16] as this infor-

mation was not available from the DLCST database. The remaining parameters such as sex,

age, family history, nodule size, location and count were available from the DLCST database.

Completely calcified nodules and perifissural nodules (PFN) were given a malignancy proba-

bility score of 0 according to the model. The latter refer to smoothly defined nodules smaller

than 5 mm in size that are localized on or very close to the interlobar fissure and correspond to

benign intrapulmonary lymph nodes [20].

Statistical analysis

To compare the performance of the PanCan model with each observers’ performance, a multi-

reader multi-case (MRMC) receiver operating characteristic (ROC) analysis was applied using

the PROPROC method [21–23]. Areas under ROC curve (AUCs) of observers and the full

PanCan model were compared twice: a) considering the scores for all malignant and the set of

randomly selected benign nodules, and separately when b) considering the scores for all malig-

nant and the set of size-matched benign nodules. Performance differences were tested using

the Dorfman, Berbaum and Metz method (DBM-MRMC package, version 2.33, http://

perception.radiology.uiowa.edu), which accounts for case, reader, and treatment variance.

Differences in dataset characteristics were compared using chi-square for categorical

parameters and unpaired t-test analyses for continuous variables. A significant difference was

defined at p< 0.05. Morphological nodule features were considered to be present in the final

data analysis when the majority of the observers had scored its presence positively. Differences

in morphological features between malignant and size-matched benign nodules were analyzed

using chi-square analysis. With Bonferroni correction, a significant difference was defined at

p< 0.004. Analyses were performed using SPSS 22.0 (SPSS Inc., Chicago, IL, USA).

Results

Characteristics of subjects, subgroups and nodules as annotated in the screening database are

summarized in Table 1. The time between the CT scan used in this study and the date of diag-

nosis was on average 20.5 months (range 0.3–86 months); the follow-up time for the benign

nodules was on average 121.1 months (range 109.1–126.7 months).

Nodule size, the presence of spiculation, the presence of nodule calcification, and the num-

ber of nodules per scan (nodule count) were statistically significantly different between malig-

nancies and size-matched benign nodules (p = 0.003, p< 0.001, p = 0.001, and p = 0.042,

respectively) as well as between malignancies and randomly selected benign nodules

(p< 0.001, p< 0.001, p < 0.001, and p = 0.004, respectively). Additionally, nodule type

(p< 0.001), nodule location in the upper lobe (p = 0.006), and the presence of emphysema

(p = 0.005) were statistically significantly different between malignancies and randomly

selected benign nodules (Table 1).

Performance of observers versus the computer model

For discriminating randomly selected benign nodules (group 2) from malignant nodules

(group 1), the PanCan model 2b had an AUC of 0.932 and the human observers had an
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average AUC of 0.910 (range 0.860–0.950); the difference did not achieve significance

(p = 0.184). The four board certified radiologists yielded an averaged AUC of 0.919, whereas

the five radiology residents and two pulmonologists had an AUC of 0.905. Both were not sig-

nificantly different from the computer model (p = 0.366 and p = 0.117, respectively).

Human observers achieved an average AUC of 0.819 (range 0.771–0.881) for differentiating

size-matched benign nodules (group 3) from malignancies (group 1), while the computer

model achieved an AUC of 0.706. The difference between the mean performance of all observ-

ers and the computer model was statistically significant (p< 0.001). The differences between

each individual observer and the computer model were statistically significant for 10 of the 11

observers (range from p< 0.001 to p = 0.022). The board certified radiologists yielded an aver-

aged AUC of 0.844 while the radiology residents and pulmonologists yielded a mean AUC of

0.804, both performances were significantly different from the computer model (p< 0.001

and p = 0.002, respectively).

The parsimonious model achieved an AUC of 0.920 for the randomly selected benign and

0.695 for the size-matched benign nodules. When nodule size was considered as the only input

parameter for the model, the AUC yielded 0.918 for randomly selected benign and 0.687 for

size-matched benign nodules, respectively. Table 2 displays the AUC of each observer, the

AUC averaged over all observers and the AUC of the computer model for the two discrimina-

tion tasks. Fig 1 shows the corresponding ROC curves. Fig 2 shows examples of nodules classi-

fied uniformly by all observers and the computer model, while Fig 3 depicts examples of

nodules for which discrepant risk estimations occurred between the computer model and

observers.

Malignancy probability scores

In the full computer model, the median malignancy probability score was 18.5% (range 0.3%–

85.7%) for malignant nodules, 4.6% (range 0%–67.8%) for size-matched benign nodules, and

Table 1. Characteristics of the nodule groups.

Parameters PanCan model Malignant nodules* Random benign

nodules

Size-matched

benign nodules

Total P value Size-

matched / random †

Number 62 120 118 300

Age in years 62 (52–75) 58 (50–68) 58 (50–69) 59 (50–75) 0.927 / 0.703

Sex: Male; Female 33 (53%); 29 (47%) 59 (49%); 61 (51%) 60 (51%); 58 (49%) 152 (51%); 148

(49%)

0.875 / 0.598

Family history of lung cancer 16 (26%) 21 (18%) 28 (24%) 65 (22%) 0.245 / 0.624

Emphysema 46 (74%) 62 (52%) 87 (74%) 195 (65%) 1.000 / 0.005

Nodule size in mm 15 (4–93); Median: 12 6 (3–16); Median: 5 12 (3–90); Median: 9 10 (3–93); Median: 7 0.003 / <0.001

Nodule Type: Solid; Part-solid;

Non-solid; Perifissural

45 (73%); 10 (16%); 7

(11%); 0 (0%)

107 (89%); 1 (1%); 3

(2.5%); 9 (7.5%)

84 (71%); 11 (9%); 16

(14%); 7 (6%)

236 (79%); 22 (7%);

26 (9%); 16 (5%)

0.137 / <0.001

Nodule Count 1.3 (1–5) 1.85 (1–6) 1.6 (1–4) 1.6 (1–6) 0.042 / 0.004

Nodule Location: Upper Lobe 39 (63%) 50 (42%) 64 (54%) 153 (51%) 0.273 / 0.006

Spiculation 22 (35%) 3 (3%) 7 (6%) 32 (11%) <0.001 / <0.001

Calcified 0 (0%) 24 (20%) 16 (14%) 40 (13%) 0.001 / <0.001

* Percentages or ranges are in parentheses.
† P-value for malignant and size-matched benign nodules / malignant and randomly selected benign nodules. A p-value < 0.05 indicates significance of

difference. Significant differences are indicated in bold. Note that malignant nodules are more often spiculated, have a higher nodule count, and are on

average 3 mm larger than the size-matched benign nodules. Malignant nodules are more often part-solid nodules and located in the upper lobes compared

to the benign nodule groups, while randomly selected benign nodules are mostly small solid nodules.

https://doi.org/10.1371/journal.pone.0185032.t001
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Table 2. Performance of observers and the various computer models (PanCan 1b and 2b) for the discrimination between malignant and benign

nodules for random and size-matched benign nodules versus malignant nodules.

Readers AUC* random nodules P-value AUC size-matched nodules P-value

Observer 1 0.902 0.285 0.797 0.027

Observer 2 0.909 0.346 0.820 0.002

Observer 3 0.936 0.793 0.877 <0.001

Observer 4 0.928 0.903 0.881 0.004

Observer 5 0.930 0.910 0.800 0.009

Observer 6 0.950 0.274 0.771 0.066

Observer 7 0.881 0.049 0.846 <0.001

Observer 8 0.860 0.004 0.783 0.049

Observer 9 0.901 0.073 0.786 0.023

Observer 10 0.896 0.173 0.813 0.005

Observer 11 0.915 0.499 0.830 0.004

Average all 0.910 0.184 0.819 <0.001

Board certified radiologists (1–4) 0.919 0.366 0.844 <0.001

Radiology residents and pulmonologists (5–11) 0.905 0.117 0.804 0.002

PanCan model 2b 0.932 0.706

PanCan model 1b 0.920 0.695

PanCan, size only 0.918 0.687

* AUC randomly selected nodules: area under the receiver-operating-characteristics curve for discriminating malignant from randomly selected benign

nodules. AUC size-matched nodules: area under the receiver-operating-characteristics curve for discriminating malignant from size-matched benign

nodules. P-values refer to comparison with the PanCan model 2b. A significant difference is defined at p-values < 0.05 and significant differences are

indicated in bold.

https://doi.org/10.1371/journal.pone.0185032.t002

Fig 1. Performance of observers and PanCan model. ROC curves of the observers 1–11, the PanCan model 2b, the

PanCan model 1b, and only nodule size as predictor for (A) discriminating randomly selected benign nodules from

malignant nodules on the left, and (B) on the right discriminating size-matched benign nodules from malignant nodules.

Note that in Fig 1A the PanCan model outperforms human observers at a specificity > 80%, while in Fig 1B all human

observers perform better than the PanCan model.

https://doi.org/10.1371/journal.pone.0185032.g001

Malignancy risk in pulmonary nodules: Observers versus computer

PLOS ONE | https://doi.org/10.1371/journal.pone.0185032 November 9, 2017 7 / 15

https://doi.org/10.1371/journal.pone.0185032.t002
https://doi.org/10.1371/journal.pone.0185032.g001
https://doi.org/10.1371/journal.pone.0185032


0.4% (range 0%–25.9%) for randomly selected benign nodules. For the parsimonious model

the corresponding numbers were 13.6% (range 0.2%–86.7%), 4.4% (range 0%–62.1%), and

0.3% (range 0%–18.1%).

The median probability scores determined by the observers were 50% (range 15%–75%)

for malignant nodules, 5% (range 0%–25%) for size-matched and 2% (range 0%–10%) for ran-

domly selected benign nodules. The distribution of malignancy probability scores for the three

nodule groups per observer and the computer model are depicted in Fig 4.

Morphological characteristics

Seven observers determined the morphological characteristics of nodules. Table 3 displays the

morphological features scored by the observers. Morphological features that were statistically

significantly predictive of malignancy in the majority of the observers were spiculation

(p< 0.001), distortion of surrounding lung parenchyma architecture (p< 0.001) and

Fig 2. Observer agreement for malignancy probability score. Examples of nodules for which observers and the PanCan model

uniformly scored a high or low malignancy probability. For the observers, a threshold of < 25% averaged over all observers was considered a

’low risk’ score, and a threshold of > 60% was considered a ’high risk’ score. For the PanCan model, a threshold of < 6% was considered as

a ’low risk’ score and a threshold of > 30% was considered as a ’high risk’ score. Nodules are displayed in the axial plane. From left to right:

A) Part-solid malignant nodule, 13 mm, observers scored 65%, PanCan 31.9% corresponding to a uniformly true positive score; B) Solid

malignant nodule, 4 mm, observers scored 9.5%, PanCan 0.3%; corresponding to a uniformly false negative score; C) Solid benign

perifissural nodule, 11 mm, observers scored 1.9%, PanCan 0%, corresponding to a uniformly true negative score; D) Part-solid benign

nodule, 27 mm, observers scored 60%, PanCan 30.7%, corresponding to a uniformly false positive score.

https://doi.org/10.1371/journal.pone.0185032.g002

Fig 3. Observer disagreement for malignancy probability score. Examples of nodules for which the PanCan model and the observers

showed conflicting malignancy probability scores. For the observers, a threshold of < 25% averaged over all observers was considered a

’low’ score, and a threshold of > 60% was considered a ’high’ score. For the PanCan model, a threshold of < 6% was considered a ’low’

score and a threshold of > 30% was considered a ’high’ score. Nodules are displayed in axial plane. From left to right: A) Solid malignant

nodule, 15 mm, observers scored 24%, PanCan 35%; B) Pure ground-glass malignant nodule, 9 mm, observers scored 58%, PanCan 4%;

C) Solid benign nodule, 16.5 mm, observers scored 14%, PanCan 37%; D) Part-solid benign nodule, 13 mm, observers scored 65%,

PanCan 14%.

https://doi.org/10.1371/journal.pone.0185032.g003
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retraction of pleura or fissure (p = 0.002). A well-defined border was statistically significantly

predictive of a benign nodule (p< 0.001). Spiculation is the only feature that is included in the

PanCan model 1b and 2b.

Fig 5 shows typical examples of four morphological characteristics that showed significant

differences.

Discussion

Given the large discrepancy between the prevalence of benign and eventually malignant nod-

ules in a screening population, robust methods for risk prediction are mandatory in a screen-

ing program for accurate discrimination of high-risk lesions that require additional work-up

and low-risk lesions requiring none or less intense follow-up. Given the large number of nod-

ules and scans to be evaluated and the influence of observer variability leading to loss of

Fig 4. Malignancy probability score distribution. The distribution of malignancy probability scores of the

observers and the PanCan model are visualized in these box plots for the malignant nodules in the upper

box plot (A), randomly selected benign nodules in the middle box plot (B), and size-matched benign nodules in

the lower box plot (C). Observers and the PanCan model use a different distribution of the scale (0–100). Note

the large variability between observers with respect to mean and range of risk probability estimates.

https://doi.org/10.1371/journal.pone.0185032.g004
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standardization and even potential oversights, application of a computer model for risk predic-

tion appears a very attractive alternative. The PanCan model published in 2013 was the first

mathematical model for predicting the risk of malignancy in screen-detected nodules that

was derived from an actual screening population (the Pan-Canadian Early Detection of Lung

Cancer Study). Subsequently, two external validations confirmed the high performance of

the PanCan model in screening populations [16, 18, 24] one using the BCCA population

(AUC > 0.900) and one the DLCST screening trial (AUC 0.834). One study comparing four

prediction models for the assessment of clinically detected lung nodules found a performance

for the PanCan model of AUC = 0.902, compared to 0.735 for the Veterans Association model

and 0.895 for the Mayo model. The only model achieving a higher AUC was the Herder model

with 0.924 when including information of FDG PET-CT [24].

In a previous study of our research group we had compared the PanCan model to other

management strategies such as National Comprehensive Cancer Network (NCCN) or Lung-

Table 3. Differences in morphological features between malignant and size-matched benign nodules.

Morphology characteristics Malignant nodules n = 62 * Benign size-matched nodules n = 118 * P-value

Single bubble 2 (3%) 1 (1%) 0.236

Multiple bubbles 6 (10%) 3 (3%) 0.037

Airbronchogram 5 (8%) 4 (3%) 0.171

Bulla with thickened wall 4 (6%) 0 (0%) 0.005

Spiculation 20 (32%) 4 (3%) <0.001

Lobulation 7 (11%) 3 (3%) 0.015

Ill-defined border 19 (31%) 25 (21%) 0.161

Well-defined border 10 (16%) 65 (55%) <0.001

Demarcation by interlobular septum 0 (0%) 1 (1%) 0.467

Attachment to vessel 11 (18%) 6 (5%) 0.006

Attachment to pleura 23 (37%) 45 (38%) 0.891

Attachment to fissure 10 (16%) 13 (11%) 0.329

Retraction of pleural or fissure 12 (19%) 6 (5%) 0.002

Distortion of surrounding lung architecture 14 (23%) 7 (6%) <0.001

* Percentages are in parentheses. Only a positive score occurred when� four of the seven observers considered “feature being present”. A p-

value < 0.004 was considered to indicate significance of difference. Significant differences are indicated in bold.

https://doi.org/10.1371/journal.pone.0185032.t003

Fig 5. Examples of nodules with morphological characteristics uniformly scored by six or seven observers. Every nodule is

displayed in axial plane. Images show a field of view of 60 x 60 mm, in which the nodule is centered. From left to right: A) Solid malignant

nodule, 13 mm, with spiculation; B) Part-solid malignant nodule, 17 mm, with retraction of a fissure; C) Solid malignant nodule, 30 mm, with

distortion of surrounding architecture; D) Solid benign nodule, 11 mm, with a well-defined border.

https://doi.org/10.1371/journal.pone.0185032.g005
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RADS for risk estimation of screen-detected nodules and also found a superiority of PanCan

to the other regimen, with an AUC of 0.874 compared to 0.813 (Lung-RADS, p = 0.003) and to

0.836 (NCCN, p = 0.010) [25].

We therefore were particularly interested in comparing the performance of the PanCan

computer model to human observers, which has never been done before.

To optimize between observer time and acquisition of statistically meaningful data, we used

a case-controlled study set-up. Therefore, our study design has a different prevalence of malig-

nant nodules (~33%) compared to, for example, the NLST (< 3%). Although there is little

research on the effect of prevalence expectation on the performance of observers, the available

research suggests that the effect is minimal [26]. Additionally, this study design is not suited to

be used as external validation of the performance of the PanCan model for a screening cohort

as has been done previously using the BCCN and the Danish lung cancer screening dataset.

In fact, our results confirm the high performance of the PanCan model in a representative

subset of the DLCST baseline population for discriminating malignant from randomly selected

benign nodules. The PanCan model was slightly, yet not significantly superior to the average

human observer performance (0.932 versus 0.910, p = 0.184). Based on this result it can be

concluded that the PanCan model represents a very valuable tool that is equally effective for

discriminating high-risk from low-risk screen-detected nodules as radiologists with varying

experience.

Our results underline the importance of size for predicting malignancy risk [27]. In fact,

using only size as the single indicator provided comparable AUCs as using the full PanCan

model, as illustrated in Fig 1. For the task of differentiating malignant from benign nodules of

similar size, the observers as well as the PanCan model achieved a substantially lower perfor-

mance than for the task of discriminating malignant from randomly selected benign nodules.

This can be explained by the fact that increasing size alone represents a very strong risk factor.

However, by taking visually accessible morphological aspects other than size and spiculation

into account, the human observers achieved a superior performance to the PanCan model for

this dataset (AUC 0.819 and 0.706, respectively, p< 0.001). The morphological characteristics

that were rated with different frequency in malignant and benign lesions were related to bor-

der characteristics (spiculation and well-defined border) and interference of the nodule with

the perinodular lung architecture (retraction of the pleura or fissure, distortion of the sur-

rounding architecture). While it can be assumed that these features did have an impact on the

observers’ judgment, the findings that make an observer rate a lesion as suspicious are most

likely more complex. Similar results were reported by Chung et al. [28] who reported a signifi-

cant increase of correctly updated subsolid lesions to Lung-RADS category 4B, which repre-

sents the most suspicious and highest risk category based on visual analysis. Similar to our

results, inter-reader variability was substantial and observer data did not allow to pinpoint a

single group of morphological features being significantly predictive.

Although visual analysis of morphology apparently provides very useful information with

substantial discriminative power, none of the features were completely discriminative, and

there seems to be substantial observer variability as indicated by the substantial inter-reader

variability for the malignancy probability scores. The latter was demonstrated by one observer

(number 6) to an extreme: while achieving the best performance for discriminating malignan-

cies versus randomly selected benign nodules, the observer demonstrated the poorest perfor-

mance for discriminating malignancies from size-matched benign nodules. In general, more

experienced observers achieved a higher performance than less experienced observers (AUC

0.919 vs. 0.905 for random subset; 0.844 vs. 0.804 for size-matched subset).

Another way to further improve the model’s performance could be to include nodule

growth between scans obtained at different time points. Several studies have shown [29–30]
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that lesion growth over time is the most important and powerful predictor of nodule malig-

nancy. Recently Horeweg et al. demonstrated that volume doubling time (VDT) can be used

as an additional feature to individualize management of intermediate-sized nodules (5–10

mm). Using the database of the Dutch-Belgian lung cancer screening trial, the authors

reported a malignancy risk of 0.8% for a volume doubling time (VDT) of� 600 days, a risk

of 4% for a VDT of 400–600 days and a risk of 9.9% for a VDT of� 400 days [31].

It has to be noted that the observer probability scores on a scale from 0 to 100 cannot be

directly transferred to the probability estimates of the PanCan model. Some observers used

only the lower end of the range between 0 and 100, while others used a more wide-spread dis-

tribution. Following the PanCan model output thresholds as described by Tammemagi et al.

[32], a score of< 6% represents a low-risk lesion triggering annual repeat screening, an inter-

mediate score between 6% and < 30% triggers a rescreen in 3 months and a score of� 30%

indicates a high-risk lesion requiring more intense and possibly invasive diagnostic work-up.

The PanCan model rarely achieves scores beyond 50%. There is an inherent discrepancy in the

process of risk estimation of a logical but rigid mathematical model and the intuitive but vari-

able visual analysis of human observers. Whereas a direct comparison of the scores does not

lead to meaningful conclusions, the ROC statistical analysis we used sufficiently considered

the relative distribution of the scores and therefore allowed for comparing the performances of

observers and the PanCan model.

Our study has limitations. In the size-matched experiment, we tried to match the benign

nodules in size to the malignant nodules as close as possible but perfect matching was not pos-

sible. As a result, the mean diameter of the malignant lesions was 3 mm larger than the mean

of the benign nodules. However, while introducing a bias, it affected both observers and math-

ematical model in the same direction.

Another limitation refers to the different inclusion criteria of the PanCan model and the

DLCST: perifissural and calcified nodules were specifically excluded in the PanCan model

because of most likely being benign. In the DLCST trial, however, calcified and perifissural

nodules were included as solid nodules. Both, calcified and perifissual nodules in the group of

randomly selected and size-matched benign nodules were therefore assigned a score of 0% in

our study, to account for this design difference.

Furthermore, our dataset comprised a relatively small number of lung cancers (62 in total),

although we included all participants with malignant nodules annotated in the DLCST.

Finally, inter-observer variability was not further quantified, however it’s well reflected in

the variable AUC of the observers and the large variability of risk scores (Fig 4), as can be

expected with a large number of observers.

In conclusion, the PanCan risk prediction model and human observers perform equally

well for differentiating malignant from randomly selected benign screen-detected pulmonary

nodules, underlining the large potential of computer based risk estimation to trigger nodule

management in population based screening studies. Human observers, however, significantly

outperform the PanCan model for differentiating malignant from size-matched screen-

detected benign nodules suggesting that integration of additional morphological characteris-

tics, such as pleural retraction and perinodular lung parenchyma distortion, used by the

human observers is very likely to lead to further improvement of computer based risk predic-

tion models.
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