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Abstract

Cytotoxic T cells are of central importance in the immune system’s response to disease. They 

recognize defective cells by binding to peptides presented on the cell surface by MHC (major 

histocompatibility complex) class I molecules. Peptide binding to MHC molecules is the single 

most selective step in the antigen presentation pathway. On the quest for T cell epitopes, the 

prediction of peptide binding to MHC molecules has therefore attracted large attention. In the past, 

predictors of peptide-MHC interaction have in most cases been trained on binding affinity data. 

Recently an increasing amount of MHC presented peptides identified by mass spectrometry has 

been published containing information about peptide processing steps in the presentation pathway 

and the length distribution of naturally presented peptides. Here, we present NetMHCpan-4.0, a 

method trained on both binding affinity and eluted ligand data leveraging the information from 

both data types. Large-scale benchmarking of the method demonstrates an increased predictive 

performance compared to state-of-the-art when it comes to identification of naturally processed 

ligands, cancer neoantigens, and T cell epitopes.

Introduction

Cytotoxic T cells play a central role in the immune regulation of pathogenesis and 

malignancy. They perform the task of scrutinizing the surface of cells for the non-self 

peptides presented in complex with MHC (major histocompatibility complex) molecules. In 

cases such peptides are recognized, an immune response can be initiated potentially leading 
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to killing of the infected (mal-functioning) cell. The most selective step in the pathway 

leading to this peptide presentation is the binding to MHC.

Over the last decades, large efforts have been dedicated to the development of computational 

methods capable of accurately predicting this event. The accuracy of these methods has 

improved substantially over the last years, and most recent benchmark results demonstrate 

that more than 90% of naturally presented MHC ligands are identified at an impressive 

specificity of 98% (1). This gain in performance is achieved partly by the extended 

experimental binding data sets made available in the IEDB (2), and partly by the 

development of novel machine-learning algorithms capable of capturing the information in 

the experimental binding data in a more effective manner. One such novel method is 

NNAlign-2.0, allowing the integration of peptides of variable length into the machine-

learning framework (3). This novel training approach allows both the incorporation of a 

larger set of training data, but also and maybe more importantly enables the method to 

directly learn the length preference presented peptides for each MHC molecule from the 

experimental binding data (4). Even though most presented MHC class I ligands are of 

length 9 amino acids, the ability to incorporate length preferences directly into the model is 

critical as experimental data demonstrate that the length profiles of presented ligands can 

vary substantially between MHC molecules; prominent examples are the mouse H-2-Kb, 

with a preference for eight amino acids-long peptides (5) and HLA-A*01:01, where close to 

one third of MHC presented peptides have a length longer than nine amino acids (6).

Some of the most well documented and applied of methods for predicting peptide binding to 

MHC class I include NetMHC (4, 7), and NetMHCpan (1, 8). These tools have over the last 

years gained increasing interest due to the recent focus on neoantigen identification within 

the field of personalized immunotherapy (9, 10). However, as underlined in several studies 

including the recent Nature Biotechnology Editorial (11), “neoantigen discovery and 

validation remains a daunting problem”, mostly due to the relative high false positive rate of 

predicted epitopes.

One potential cause for this relatively high rate of false positive epitope predictions is the 

fact that most methods are trained on binding affinity data, and as a consequence only model 

the single event of peptide-MHC binding. As stated above this binding to MHC is the most 

selective step in peptide antigen presentation. However, other factors including antigen 

processing (12) and the stability of the peptide:MHC complex (13) could influence the 

likelihood of a given peptide to be presented as an MHC ligand. Similarly, the length 

distribution of peptides available for binding to MHC molecules is impacted by other steps 

in the processing and presentation pathway, such as TAP transport and ERAP trimming, 

which are not reflected in binding data in itself (6). Advances in mass spectrometry (MS) 

have allowed the field of MS peptidomics to move forward. In this context, recent studies 

(14, 15, 16) have suggested that training prediction methods on such data rather than binding 

affinity data could improve the ability to accurately identify MHC ligands. As such, MS 

peptidome data would contain the comprehensive signal of antigen processing and 

presentation rather than just MHC binding affinity. Moreover, MS peptidome data generated 

by immunopeptidomic studies would contain precise information about the allele-specific 

peptide length profile preferences not available in the MHC binding affinity data sets.
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Identification of MHC bound peptides by mass spectrometry thus holds great promise for 

the generation of large scale data sets characterizing the peptidome specific for individual 

MHC molecules (15, 17), and potentially also for the identification of T cell epitopes (18). It 

is however clear that, within the foreseeable future, the number of MHC molecules 

characterized by such MS studies will remain limited. In this context, large efforts have over 

the last decades been dedicated to experimentally characterize the peptide binding space of 

MHC molecules using semi high-throughput MHC-peptide binding affinity assays (19, 20), 

enabling binding specificity characterization of a large set of MHC molecules from different 

species.

The IEDB contains a comprehensive set of MHC binding and ligand data available in the 

public domain. While this data set contains binding affinity data characterizing more than 

150 different MHC class I molecules (from human, non-human primates, mouse, and life-

stock), at the onset of this study only 55 MHC class I molecules were characterized by MS 

peptidome data. This imbalance made us suggest a novel machine learning approach 

integrating information from both types of data (binding affinity and MS ligands) into a 

combined framework benefitting from information from the two worlds. The proposed 

framework is “pan-specific” as it can leverage information across MHC molecules, data 

types, and peptide lengths into one single model. We hence expect this approach to achieve 

superior predictive performance compared to models trained on the two data types 

individually, and also achieve an improved performance when it comes to predicting length 

profile preferences of different MHC molecules.

While recent works have demonstrated the improved ability to identify MHC ligands using 

methods trained on MS peptidome data (14, 15), limited data is available on their impact for 

the identification of T cell epitopes. In this work, we focus on demonstrating the improved 

prediction performance not only on large sets of MS peptidome data but also on T cell 

epitope data independent from the data used to train the new predictor.

Materials and Methods

Data sets

Data on all class I MHC ligand elution assays available in IEDB database (www.iedb.org) 

were collected including the ligand sequence, details of the source protein, position of the 

ligand in the source protein and the restricting allele of the ligand. There were 160,527 

distinct assays in total and the length of the ligands ranged from 4–37. All lengths with a 

count of ligands at least 0.5% of total ligands were selected for further analysis which 

included lengths 8–15 and comprised of 99% of the assay entries.

The restricting MHC molecule of the ligands were analyzed and entries with alleles listed 

unambiguously were selected. For example, some entries where the HLA alleles are listed as 

just the gene name and alleles from chicken, horse, cow and mouse for which we did not 

have binding prediction algorithms were excluded. Representative alleles were assigned for 

entries where only supertypes were listed (e.g. HLA-A*26:01 for HLA-A26). Thus there 

were 127 class I molecules from human and mouse in the selected data set. Redundant 

entries with same ligand sequence and MHC molecule were removed and MHC molecules 
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with at least 50 ligand entries were selected. This included 55 class I molecules and the 

number of available ligands per molecule varied widely from 50 to 9500.

We hypothesized that some of the ligands could be artefacts of the elution assays and 

therefore their source proteins could be false positive as antigens. A protocol was designed 

to identify such false positive antigens and exclude them from the final data selected. The 

protocol identified proteins that had significantly lesser number of predicted binders among 

ligands than expected of random peptides using binomial probability distribution. Five sets 

of random peptides were generated from the ligand sequences by shuffling the amino acid 

residues within the ligands. Binding affinity was then predicted for the original ligands and 

random peptide sets for their corresponding alleles. The median of the predicted percentile 

ranks of the five random sets was estimated and assigned as the binding affinity of the 

random peptides. Based on a predicted binding affinity cut-off of percentile rank 1.0, the 

number of predicted binders among the original ligands and the random peptide sets were 

estimated. Five proteins were thus identified as false positives and ligand entries from these 

proteins were excluded from the data set.

The final data set had 85,217 entries in total with ligand length ranging from 8 to 15. The 

ligands originated from 14,797 source antigens and were restricted by 55 unique HLA 

molecules.

Random artificial negatives were generated for each MHC molecule covered by eluted 

ligand data by sampling randomly 10*N peptides of each length 8–15 amino acids from the 

antigen source protein sequences, where N is the number of 9mer ligands for the given MHC 

molecule.

Neural network training

The NNAlign training approach with insertions and deletions (3) was extended by adding a 

second output neuron as shown in figure 1. This was done to allow combined training on 

binding affinity and MS eluted ligand data. Binding affinity values are measured as IC50 

values in nM (aff) and can be rescaled to the interval [0,1] by applying 1-log(aff)/

log(50,000), representing continuous target values (21). For eluted ligands the strength of the 

interaction between peptide and MHC molecules is unknown, therefore a target value of 1 is 

assigned to binders and 0 to artificial negative peptides (see above).

In this network architecture weights between the input and hidden layer are shared between 

the two input types (binding affinity/ligand), and weights connecting the hidden and output 

layer are specific for each input type. During neural network an example is randomly 

selected from either data set and submitted to forward- and backpropagation according to the 

NNAlign algorithm (3). In this setting, we define one training epoch as the average number 

of iterations needed to process each data point in the smaller data once.

A neural network ensemble was trained as described by Andreatta et al. (1) using 5-fold 

nested cross-validation. Networks with 60 and 70 hidden neurons were trained leading to an 

ensemble of 40 networks in total.
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The inputs to the neural networks consisted of the peptide and the MHC molecule in terms 

of a pseudo sequence (8). All peptides were represented as 9-mer binding cores by the use of 

insertions and deletions as described by Andreatta et al. (4) and encoded using BLOSUM 

encoding (21). As in the earlier work by Andreatta et al. (4), additional features for the 

encoding of peptides included: the length of the deletion/insertion; the length of peptide 

flanking regions, which are larger than zero in the case of a predicted extension of the 

peptide outside either terminus of the binding groove; and the length L of the peptide, 

encoded with four input neurons corresponding to the four cases L<=8, L=9, L=10, L>=11.

Performance

In order to benchmark the combined training method described above (referred to as BA

+EL), additional methods with only one output but otherwise identical setup were trained on 

binding affinity data only (BA data) and eluted ligand data only (EL method). Performance 

was measured as area under the receiver operating curve (AUC), a value of AUC=0.5 

indicates random model performance while an AUC=1 represents a perfect model. AUC 

values were calculated for each MHC allele separately and subsequently binomial tests were 

performed to compare the different models.

Length preference of MHC molecules

For all MHC molecules shared between the binding affinity and eluted ligand data sets, we 

generated predictions for 80,000 random natural peptides of lengths 8–15 amino acids 

(10,000 of each length). From the top 2% predictions, the frequency of each peptide length 

was estimated. Subsequently Pearson's correlation coefficient was calculated between the 

frequencies observed in the eluted ligand data set and the frequencies predicted by 4 models 

(BA only, EL only, binding affinity of BA+EL, and eluted ligand predictions of BA+EL)

Leave-one-out validation

Leave-one-out experiments were performed for all MHC molecules present in the eluted 

ligand data set. For this, a given MHC molecule was removed from the eluted ligand data 

set, then the BA+EL method was trained in five-fold cross-validation as described above, 

omitting multiple random initializations, resulting in an ensemble of 10 networks. 

Performance of the leave-one-out models is compared to an ensemble of neural networks of 

the same size trained on the complete data set. Further predictions are made for 80,000 

peptides of lengths 8–15 amino acids derived from natural proteins to evaluate a model’s 

ability to predict the length preference of an MHC allele that was not part of the eluted 

ligand training data.

The final NetMHCpan-4.0 method implementation

The final neural network ensemble of the NetMHCpan-4.0 method is trained on binding 

affinity and eluted ligand data as described above using 5-fold cross-validation. Networks 

with 56 and 66 hidden neurons (in accordance with earlier NetMHCpan implementations) 

were trained using 10 distinct random initial configurations, leading to an ensemble of 100 

networks in total.
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Percentile rank scores was estimated from predicted EL and BA binding values from a set of 

125,000 8–12mer random natural peptides (25,000 of each length)

Validation on external data sets

A dataset of eluted ligands was obtained from Pearson et al. (17). Also, a set of positive CD8 

epitopes was downloaded from the IEDB. The epitope set was identified using the following 

search criteria “T cell assays: IFNg", "positive assays only", "MHC restriction Type: Class 

I". Only entries with fully typed HLA restriction, peptides length in the range 8–14 amino 

acids, and with annotated source protein sequence were included. Positive entries with a 

predicted rank score greater than 10% using NetMHCpan-3.0 were excluded to filter out 

likely noise (6). For both the T-cell epitope and eluted ligand data sets, negative peptides 

were obtained by extracting all 8–14mer peptides from the source proteins of the eluted 

ligands and subsequently excluding peptides-MHC combination found with an exact match 

in the training data (both binding affinity and eluted ligand data sets). The final eluted data 

set contained 15,965 positive ligands restricted to 27 different HLA molecules, and the 

IEDB T cell epitope data set 1,251 positive T cell epitopes restricted to 80 HLA molecules.

A Frank value was calculated for each positive-HLA pair as the ratio between the number of 

peptides with a prediction score higher than the positive peptide and the number of peptides 

contained within the source protein. The Frank value is hence 0 if the positive peptide has 

the highest prediction value of all peptides within the source protein, and a value of 0.5 in 

cases where an equal amount of peptides has a higher and lower prediction value compared 

to the positive peptide.

An unfiltered eluted ligand data set was obtained from Bassani-Sternberg et al. (22). This 

data sets consisted of eluted ligand data from 6 cell lines each with fully typed HLA-A, B 

and C alleles. A data set was constructed for each cell line, including all 8–13mer ligand as 

positives, and 5 times the total number of ligands random natural negatives for each length 

8–13. That is if a data set contained 5,000 ligands, 5*5000 = 25,000 random natural peptides 

of length 8, 9, 10, 11, 12, and 13 were added as negatives arriving at a final data set with 

155,000 (5000 + 6*25000) peptides.

Results

We trained the NetMHCpan method version 4.0 for the prediction of the interaction of 

peptides with MHC class I molecules integrating binding affinity and MS eluted ligand data. 

Combined training was achieved by adding a second output neuron to the NNAlign 

approach described previously (3). In this setup, the first output neuron returns a score of 

binding affinity, and the second output neuron a score of ligand elution. As described in 

materials and methods, the model parameters between the input and hidden layer of the 

artificial neural network are shared between the two input types. Thanks to this network 

architecture, we expect the model to be able to combine informative patterns found in the 

two data types, boosting performance for both output neurons. To demonstrate this, we 

compared the performance of the BA+EL method to the BA method, trained only on binding 

affinity data and the EL method trained only on eluted ligand data. Figure 2 shows the mean 

performance per MHC allele of the four methods on four different data sets given in in terms 
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of AUC (for details see Supplementary Table 1). From this analysis, it is clear that especially 

the BA+EL method with EL predictions performs much better on binding affinity data than 

the EL only method. This observation strongly suggests that the EL only method, as a results 

of the small number of only 55 different MHC molecules included in the eluted ligand data 

set, has limited pan-specific potential compared to the BA+EL EL method trained on data 

from 169 MHC molecules included in the combined binding and MS eluted ligand data set.

Peptide length preference of MHC molecules

We next set out to investigate how well the different methods could capture the peptide 

length preferences of individual MHC molecules. For this, we predicted binding scores for a 

set of random natural peptides of lengths 8–15 amino acids and calculated the frequencies of 

peptides of different lengths in the top 2% of predictions. In figure 3a-c, we visualize 

examples of such peptide length preference profiles predicted by the BA, BA+EL BA, BA

+EL EL, and EL only methods. The depicted MHC molecules are known to have 

preferences for different peptide lengths. All HLAs have a preference for 9mer peptides. 

However, HLA-A*01:01 has an increased preference for 10-mers compared to average, 

HLA-A*02:01 has a strong preference for 9-mers only, and HLA-B*51:01 has an increased 

preference for 8-mers compared to average (6). Binding affinity predictors often 

overestimate the amount of binding 10-mer peptides due to their over-representation in the 

binding affinity data set (4), which is also visualized in figure 3.

Next, we extended the analysis to all MHC molecules included in the eluted ligand data set, 

calculating the correlation between observed and predicted length frequencies for each 

prediction method. This analysis (figure 3d) clearly confirms the results obtained from the 3 

case examples, namely that the two methods BA+EL EL and EL only show significantly 

higher power for predicting the peptide length preference of individual MHC molecules 

compared to the two methods trained to predict binding affinity (BA, and BA+EL BA).

The predictions for the two eluted ligand likelihood models only show low performance for 

one molecule; HLA-B41:04. This molecule is however only characterized by 52 eluted 

ligands, whose length profile forms an unusual bimodal distribution with peaks at length 9 

and 11 (data not shown).

Leave-one-out experiments on eluted ligand data

In the above experiment, the MHC molecules used for the peptide length preference 

evaluation were also included as training data of the EL prediction methods. This naturally 

leads to a bias in the performance evaluation. To address this, and to access the pan-specific 

potential of the BA+EL EL prediction method, we conducted a leave-one-out experiment. 

Here, a given MHC molecule was removed from the eluted ligand data set, and the BA+EL 

method retrained as described in material and methods. Next, both the predictive 

performance (estimated in terms of AUC for separating the known ligands from the artificial 

negatives) and the ability to predict the peptide length preference were evaluated. The result 

of the benchmark is shown in figure 4. This figure clearly confirms the pan-specific power of 

the BA+EL method. In terms of the predictive performance (figure 4a), the LOO methods 

display, as expected, a slight decrease in performance compared to a method trained and 
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evaluated on all data (the all data method). When looking at the performance for predicting 

the peptide length profile (figure 4b), the LOO methods display a very high performance. 

Only in one case, the EL LOO method shows a substantial drop in performance for the left 

out MHC molecule. This case is H2-Kb, the only mouse molecule in the MS ligand data set 

with a strong preference for 8mer ligands. The BA+EL EL LOO method is able to predict 

the length profile of H2-Kb due to the H2-Kb affinity data present in the BA training data 

set.

The NetMHCpan-4.0 method

Having demonstrated the increased predictive power of the BA+EL method when it comes 

to prediction of peptide binding affinity (the BA+EL BA model), likelihood of being an 

eluted ligand (BA+EL EL model), and the ability of capturing the MHC specific peptide 

length binding preferences (also the BA+EL EL model), we set out to construct the final 

NetMHCpan-4.0 method. This method was trained as the BA+EL method, using 5 fold 

cross-validation as described in materials and methods. The method is accessible at 

www.cbs.dtu.dk/services/NetMHCpan-4.0. The functionality is identical to the earlier 

NetMHCpan implementations with the important additional functionality that two different 

output options (binding affinity and eluted ligand likelihood) are available. By default, the 

program returns eluted ligand likelihood scores. An example of the output of the method is 

shown in Supplementary figure 1.

Validation on external data sets

The performance of the updated NetMHCpan method was assessed on two independent 

external data sets; one consisting of 15,965 eluted ligands covering 27 HLA molecules, and 

another consisting of 1,251 validated CTL epitopes covering 80 HLA molecules reported in 

the IEDB. The validation data sets were constructed as described in materials and methods. 

The source protein sequence was identified for each ligand/epitope, and all overlapping 8–14 

mer peptides except the ligand/epitope were annotated as negatives. All data points included 

in the binding affinity and eluted ligand training data sets were excluded from the validation 

data set. A Frank value was calculated for each positive-HLA pair as described in materials 

and methods as the ratio of the number of peptides with a prediction score higher than the 

positive peptide to the number of peptides contained within the source protein. In this 

manner, we can construct the sensitivity curves presented in figure 5. Two observations are 

striking from these results. First and foremost, the results clearly demonstrated the increased 

predictive power of integrating eluted ligand data into the training data of NetMHCpan. In 

the left panel (the analysis of the eluted ligand data), we can observe that the gain in 

sensitivity at a Frank threshold of 1% for the EL models (NetMHCpan-4.0 EL or EL only) 

compared to NetMHCpan-3.0 is 10% (95% versus 85%), and 15% at a Frank threshold of 

0.5% (90% versus 75%). These numbers mean that a ligand will have a prediction score 

within the top 0.5% of its source protein peptides in 90% of the cases using the EL models, 

compared to only 75% using NetMHCpan-3.0. The results shown in the left panel of figure 5 

however also suggest that the two EL models achieve very similar predictive performance 

when it come to identification of eluted ligands. This is in strong contrast to the results 

obtained from the IEDB epitope data set (figure 5, right panel). Here, only the 
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NetMHCpan-4.0 EL model demonstrates an improved predictive performance compared to 

NetMHCpan-3.0.

There are several potential explanations for the improved performance of the EL models on 

the eluted ligand evaluation data including i) a bias against cysteins specific for the eluted 

ligand training and evaluation data, ii) as suggested earlier (15) differences in the MHC 

binding motifs contained within the eluted ligand and in-vitro binding data, and iii) the 

improved prediction accuracy of the ligand length preference (see figure 3d). To investigate 

i) we repeated the experiment displayed in figure 5, removing all peptides containing one of 

more cysteins. If the bias against cysteins in the eluted ligand data had any impact on the 

predictive performance of the proposed method, the bias would be reflected in an altered 

predictive performance on the reduced data sets. This turned out not to be the case (data not 

shown) hence suggesting that cysteine bias is not the influencing the relative predictive 

performance of the different methods. Looking into the differences in the binding motif 

derived from binding affinity and eluted ligand data respectively for specific HLA 

molecules, we find differences for most MHC molecules. A few examples are shown in 

figure 6..

These results demonstrated that eluted ligands tend to share more conserved anchor motifs 

compared to affinity-defined binders. This observation is in agreement with earlier findings 

suggesting eluted ligands to be more stably bound to MHC-I molecules compared with other 

affinity matched peptides (13, 23). In summary, these analyses suggest that the gained 

predictive performance of the EL method on the eluted ligand evaluation data is driven by at 

least two factors; differences in binding preferences between eluted ligand and affinity-

defined peptide binders, and the improved prediction accuracy of ligand length preference of 

the EL methods.

To be or not to be a ligand

We investigated what prediction threshold to use to best separate ligand from non-ligand 

peptides. Earlier work by others and us suggests that different MHC molecules present 

peptides at different predicted binding affinity thresholds (1, 24). Given this, it was 

interesting to investigate to what degree a similar observation could be made for the eluted 

ligand likelihood predictions produced by the NetMHCpan-4.0 method. To address the 

question, we compared the predicted ligand likelihood scores of all 15,965 ligands in the 

Pearson data set. The result of this analysis is displayed as box-plots in the left panel of 

figure 7.

This figure reveals that the likelihood prediction scores for known ligands come out very 

different for different HLA molecules. The large difference in prediction values between 

HLA molecules can to a high degree be linked to their absence from the eluted ligand 

training data. The molecules with lowest median eluted ligand likelihood scores in this 

figure are molecules absent from the eluted ligand training data set. However, as 

demonstrated in figure 4 and 5, the fact that an HLA molecule has not been characterized 

with eluted ligand training data does not impair its predictability. Given this, a natural 

measure to correct for this great imbalance in prediction score is use percentile rank scores 

to reconcile and make prediction score comparable between different MHC molecules. The 
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right panel of figure 7 shows the results of such a transformation. Here, eluted ligand 

likelihood prediction values for each ligand in the Pearson data are transformed to percentile 

rank scores, and the score distribution is visualized as box plots for each HLA molecule. 

Given that percentile rank values fall in the range 0–100%, it is apparent that transforming 

the prediction values into such rank scores, allows for a direct score comparison between 

HLA molecules.

In light of these results, we next investigated what percentile rank threshold to apply to 

optimally identify MHC ligands. We assess this by calculating sensitivity/specificity curves 

as a function of the percentile rank score threshold for a balanced set (max 100 ligands per 

HLA) of eluted ligands and source protein negatives from the Pearson evaluation data set. 

The results are shown in figure 8 and confirm earlier findings that the vast majority (96.5%) 

of natural ligands are identified at a very high specificity (98.5) using a percentile rank 

threshold of 2%.

Evaluation on unbiased data sets

Most eluted ligand data potentially suffer from biases towards current prediction methods. 

This is because many eluted ligand studies, including the Pearson data used here, assign 

MHC restriction based on predicted binding. To address the impact of this bias, we here 

benchmark our method against sets of unfiltered eluted ligand data. These data sets were 

obtained from Bassani-Sternberg et al. (22), and cover eluted ligands obtained from 6 cell 

lines each with typed HLA expression. From these data, we constructed 6 benchmark data 

sets by enriching each positive eluted ligand data set with a set of random natural negative 

peptides (for details see materials and methods). After filtering out data included in the 

training data of NetMHCpan-4.0, we next benchmarked the predictive power of the different 

prediction methods. The result of the benchmark is shown in figure 9.

These results clearly confirm the improved performance of the proposed NetMHCpan-4.0 

eluted ligand likelihood predictions over both the NetMHCpan-4.0 and NetMHCpan-3.0 

binding affinity predictions. Also, the results show that in the majority of cases the 

percentile rank predictions achieve improved predictive performance compared to the raw 

prediction scores.

Identification of cancer neoantigens

A research field where prediction of naturally processed and presented eluted ligand has 

attracted large recent attention is rational identification of cancer neoantigens. In contrast to 

tumor-associated self-antigens, cancer neoantigen are naturally presented ligands containing 

tumour-specific mutations. Such neoantigens are attracting large attention since these 

peptides are new to the immune system and not found in normal tissues, and hence are ideal 

potential cancer vaccine candidates or targets for adoptive T cell therapy. Depending on the 

mutational load, the number of potential tumour-specific neopeptides (peptides containing 

one or more missense mutations) can be in the order of many thousands (25). This large 

number of potential peptide candidates clearly underlines the need for tools to rationally 

downsize the peptide space in the search for cancer neoepitopes. A recent study by Bassani-

Sternberg et al. (14) demonstrated how this downsizing could be effectively achieved by a 
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prediction method trained on a large set of MS eluted ligands. Here, we repeated this 

benchmark analysis using NetMHCpan-4.0. The results are shown in figure 10 and confirm 

the finding by Bassani-Sternberg et al. (14), that predictors trained on MS eluted ligand data 

information in most cases show very high predictive power for the identification of cancer 

neoantigens. Both the NetMHCpan-4.0 and MixMHCpred method proposed by Bassani-

Sternberg et al. (14) identify the known neoantigens within the top 25 peptides in 6 out out 

10 cases. NetMHCpan-3.0 only achieves this in 2 out of 10 cases. The results also confirm 

the earlier findings presented here, that NetMHCpan-4.0 achieves improved performance 

compared to that of version 3.0, and that the ligands in all cases are predicted with very 

strong eluted ligand likelihood values (all percentile rank values are less than 1, and the 

majority are less than or equal to 0.02).

Discussion

In this work, we have demonstrated how a relatively simple pan-specific machine learning 

method based on the NNAlign framework can be constructed integrating information from 

binding affinity data with MS peptidome data. Benefitting from the larger set of peptide 

binding affinity data with very broad MHC coverage (more than 150 molecules), and the 

additional information contained within MS peptideome data (information about both 

antigen processing and presentation, and allele specific peptide length profile), we could 

demonstrate that the proposed method, NetMHCpan-4.0, achieved improved predictive 

performance not only when it comes to characterizing the binding specificity of a given 

MHC molecule, but also when it comes to predicting the peptide length profile. Due to the 

pan-specific potential of the method, the improved performance was extended beyond the 

relatively few MHC molecules characterized by MS binding data included in the training of 

the method. Given this, we thus conclude that the proposed framework is able to benefit 

from the best of the two data sets; MHC coverage from the binding affinity data, and antigen 

processing and presentation, and allele specific peptide length profile from the MS data.

Our benchmarks confirmed earlier findings that prediction values for known ligands vary 

substantially between MHC molecules (26), and that only by the use of percentile rank 

scores can predictions between different MHC molecules be readily compared.

The improved peptide-MHC tool is made publicly available at www.cbs.dtu.dk/services/

NetMHCpan-4.0. The tool was benchmarked on two large independent data sets; one 

consisting of ~16,000 MS identified MHC restricted ligands (17) and one consisting of more 

than 1,250 validated T cell epitopes described in the IEDB. For both data sets, the updated 

version 4.0 of NetMHCpan significantly outperformed the earlier NetMHCpan 3.0 method. 

In particular, the benchmark on T cell epitope data - to the best of our knowledge - 

demonstrated for the first time how integration of MS peptidome data into a prediction 

method of MHC peptide presentation, can lead to improved predictive performance for T 

cell epitope discovery. The improved performance on this data set was only observed for the 

method trained on the combined data, and was not observed for the method trained on MS 

peptidome data alone. This observation underlines the large benefit of merging the two data 

types.
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Investigating potential causes for the observed improved performance of the proposed tool 

for identification of eluted ligands confirmed earlier findings that eluted ligands share a 

reduced amino acid diversity at the MHC anchor positions (13). This observation is 

consistent with the notion that ligands are more stably bound to MHC-I molecules compared 

with average affinity-defined bound peptides. We postulate that this difference in binding 

preferences between eluted ligand and affinity-defined peptide binders, combined with the 

improved prediction accuracy of ligand length preference of the EL methods are the main 

factors driving the improved predictive performance.

When benchmarking the predictive performance for identification of T cell epitopes, we 

observed that only the NetMHCpan-4.0 EL model trained on the combined eluted ligand and 

binding affinity data set demonstrated an improved predictive performance compared to 

NetMHCpan-3.0. This observation was surprising at first, as we would expect an improved 

performance also by the method trained on the eluted ligand only due to the reasons outlined 

above. One likely explanation for this result is the bias in the T cell epitope data towards 

predicted binding affinity motifs. Most T cell epitopes have been identified using some kind 

of HLA binding predictions as a filter prior to experimental validation hence giving a bias 

towards prediction methods trained based on binding affinity data. Given this, the source of 

the improved performance of the NetMHCpan-4.0 EL method compared to NetMHCpan-4.0 

BA on the T cell epitope benchmark data set is thus primarily driven by its improved 

prediction of the ligand length preference.

It is clear that even with the improved predictive performance of the NetMHCpan-4.0 tool 

reported here, not all MHC ligands and T cell epitopes will be captured by a prediction 

workflow. Likewise, it is clear that very few if any experimental workflows enable the 

exhaustive identification of the ligandome or epitope set contained within a given sample. 

Given the two workflows to work in concert and use in-silico screens as a guide to the 

experimental setup to effectively boost the sensitivity of the combined workflow. Such an 

approach where in-silico predictions were used to reduce the search space has with success 

been used to improve the sensitivity of MHC class I ligand discovery (27) and we expect 

other similar applications to appear in the future.

The machine-learning framework proposed here is not limited to the integration of MHC 

class I peptide binding affinity and MS peptidome data. The approach can readily be 

extended to integrate other types of relevant data including MHC binding stability (28), and 

epitope data. Also, the approach can in its current form be directly applied to the MHC class 

II system. The only critical limitation for such data integrations is the criteria that each data 

point must be associated with a specific MHC element. This information is not always 

readily available, but can in most cases be inferred by unsupervised clustering of the 

available data (using GibbsCluster (29), position weight matrix mixture models (16), or 

similar approaches), and association of each cluster to an MHC molecule of the given host.

In conclusion, we have here described a new framework for training of prediction methods 

for MHC peptide presentation prediction integrating information from two data sources (MS 

eluted ligand and peptide binding affinity). The framework was used to develop an updated 

version of NetMHCpan (version 4.0, available at www.cbs.dtu.dk/services/NetMHCpan-4.0) 
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with improved predictive performance for identification of validated eluted ligands, cancer 

neoantigens and T cell epitopes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Visualization of the neural networks with two output neurons used for combined training on 

binding affinity and eluted ligand data.
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Figure 2. 
Mean performance per MHC molecule measured in terms of AUC for the four methods; BA 

(trained on binding affinity data only), EL (trained on eluted ligand data only), BA+EL BA 

(the binding affinity prediction value of the model trained on the combined binding affinity 

and eluted ligand data), and BA+EL EL (the eluted ligand likelihood prediction value of the 

model trained on the combined binding affinity and eluted ligand data) The methods were 

evaluated on all binding affinity (all_BA) data and all eluted ligand (all_EL) data including 

negative peptides derived from source proteins, and on data sets restricted to alleles 

occurring in both binding affinity and eluted ligand data sets (shared_BA, and shared_EL).
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Figure 3. 
a-c) Predicted length preference of selected MHC molecules according to different models. 

Binding to selected HLA molecules was predicted for 80,000 8–15-mer peptides and the 

frequency of peptide lengths in the top 2% predicted peptides calculated. d) Correlation of 

predicted and observed ligand length for different models. Binding to all HLA alleles 

present in both binding affinity and eluted ligand data sets was predicted using the four 

different prediction methods for 80,000 8–15-mer peptides. Subsequently, the occurrence of 

different peptide lengths in the top 2% predicted peptides for each molecule was calculated, 

and the correlation coefficient between these frequencies and the length frequencies in the 

eluted ligand data set calculated.
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Figure 4. 
Eluted ligand leave-one-out experiments. a) Performance per MHC allele of a model trained 

on all data and a model where the eluted ligand data of a given allele was left out of the 

training process. b) Correlation of predicted and observed ligand length for a model trained 

on all data and the leave-one-out models.
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Figure 5. 
Sensitivity of different models as a function of the Frank threshold on a) eluted ligands 

published by Pearson et al. (17) and b) T-cell epitope data downloaded from IEDB.
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Figure 6. 
Binding motifs for HLA molecules derived from (upper panel) in-vitro binding affinity data 

using a binding threshold of 500 nM, (lower panel) eluted ligand data. Logos were made 

using Seq2Logo with default parameters (30).
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Figure 7. 
Motivation for using percentile rank score predictions. Box-plot representation of prediction 

values for the ligands in the Pearson data set. Left panel: Eluted ligand likelihood prediction 

scores. Right panel: Percentile rank values.
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Figure 8. 
Sensitivity and specificity performance curves for the NetMHCpan-4.0 eluted ligand 

likelihood predictions. Curves are estimated from a balanced set of eluted ligands from the 

(17) data set. The insert shows the complete sensitivity and specificity curves as a function 

of the percentile rank score. The main plot shows the curves in the high-scoring range for 0–

5 percentile scores. Dotted vertical and horizontal lines are guides to the eye indicating 

sensitivity and specificity and the 2% rank score threshold.
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Figure 9. 
Predictive performance measured in terms of AUC on the Bassani-Sternberg unfiltered 

eluted ligand data sets. Prediction values are assigned to each peptide in a given data set as 

the lowest percentile rank score / highest prediction score to each of the HLA molecule 

expressed by the given cell line. The six methods included are: EL RNK (NetMHCpan-4.0 

eluted ligand percentile rank), EL SCO (NetMHCpan-4.0 eluted ligand likelihood score), 

BA RNK (NetMHCpan-4.0 binding affinity percentile rank), BA SCO (NetMHCpan-4.0 

binding affinity score), 3.0 RNK (NetMHCpan-3.0 percentile rank, and 3.0 SCO 

(NetMHCpan-3.0 binding affinity score).
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Figure 10. 
Predictive performance evaluated in terms of rank of neo-antigens identified in four 

melanoma samples. A rank value of 1 corresponds to the ligand obtaining the highest score 

(lowest percentile rank) of all peptides from the given sample. Data and performance values 

for MixMHCFpred are from (31). NetMHCpan-4.0 and NetMHCpan-3.0 are performance 

values obtained by assigning to each peptide in the given data set the lowest percentile rank 

score to each of the HLA-A and B molecules expressed by the given cell line. The values in 

parentheses for NetMHCpan-4.0 are the predicted percentile rank values. Lowest rank value 

for each ligand is highlighted in bold.
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