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Summary

B-cell memory was long characterized as isotype-switched, somatically

mutated and germinal centre (GC)-derived. However, it is now clear that

the memory pool is a complex mixture that includes unswitched and

unmutated cells. Further, expression of CD73, CD80 and CD273 has

allowed the categorization of B-cell memory into multiple subsets, with

combinatorial expression of the markers increasing with GC progression,

isotype-switching and acquisition of somatic mutations. We have

extended these findings to determine whether these markers can be used

to identify IgM memory phenotypically as arising from T-dependent ver-

sus T-independent responses. We report that CD73 expression identifies a

subset of antigen-experienced IgM+ cells that share attributes of functional

B-cell memory. This subset is reduced in the spleens of T-cell-deficient and

CD40-deficient mice and in mixed marrow chimeras made with mutant

and wild-type marrow, the proportion of CD73+ IgM memory is restored

in the T-cell-deficient donor compartment but not in the CD40-deficient

donor compartment, indicating that CD40 ligation is involved in its gen-

eration. We also report that CD40 signalling supports optimal expression

of CD73 on splenic T cells and age-associated B cells (ABCs), but not on

other immune cells such as neutrophils, marginal zone B cells, peritoneal

cavity B-1 B cells and regulatory T and B cells. Our data indicate that in

addition to promoting GC-associated memory generation during B-cell

differentiation, CD40-signalling can influence the composition of the

unswitched memory B-cell pool. They also raise the possibility that a frac-

tion of ABCs may represent T-cell-dependent IgM memory.
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Introduction

Humoral protection against re-encountered pathogens

relies on long-lived plasma cells and memory B cells, and

both are generated predominantly in germinal centre

(GC) reactions associated with the primary response.1–4

Long-lived plasma cells serve as a source of pre-existing

protective antibodies in the host, but memory B cells

contribute by undergoing rapid activation and differentia-

tion into plasma cells secreting relatively high-affinity

antibodies. Naive antigen-specific B cells can also con-

tribute in secondary responses – either by initiating a

fresh primary response, which leads to the generation of

short-lived plasma cells that contribute antibodies for

immediate protection, or by participating in the induc-

tion of fresh GCs.5,6 Hence, the humoral response to

Abbreviations: ABC, age-associated B cell; APC, allophycocyanin; ASC, antibody-secreting cell; BCL6, B lymphoma 6 protein;
BCR, B-cell receptor; BM, bone marrow; Breg, regulatory B cell; GC, germinal centre; KO, knockout; MZ, marginal zone; nMZ,
nodal marginal zone; NP, 4-hydroxy-3-nitrophenylacetyl; PE, phycoerythrin; TCR, T-cell receptor; TD, T-dependent; Tfh, T fol-
licular helper; TI, T-independent; Treg, regulatory T cell; WT, wild-type
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antigen challenge includes IgM and switched antibodies

with germline and mutated specificities, and represents

the output of primary and secondary B-cell stimulation

in spatially separated areas such as foci and GCs.7

There is evidence to indicate that B-cell memory may

be GC-independent and unmutated.8–10 Conditional abla-

tion of B lymphoma 6 (Bcl6) leads to the generation of

IgG1 memory cells without mutations, indicating that

they may be GC-independent.11 A population of ‘pre-GC’

cells that are CD38+ GL7+ has been identified early in the

phycoerythrin (PE) -specific response and shown to dif-

ferentiate directly into IgM or switched memory cells in a

GC-independent but CD40-signalling-dependent process9

or to progress to ‘true’ BCL6+ GC cells that give rise pri-

marily to switched memory cells. Although GCs are a

characteristic feature of T-dependent (TD) responses, they

may also form in response to T-independent (TI) anti-

gens, especially if B-cell receptor (BCR) crosslinking is

extensive and the frequency of antigen-specific B cells is

high.12 Such GC-like structures, which support isotype

switching to IgG3, as well as low levels of somatic hyper-

mutation, have been shown to be dependent on CD40

expression but independent of CD154 (CD40L)-mediated

signalling, and may involve presentation of immune/com-

plement-complexed antigens on follicular dendritic

cells.13–15 Switched antibodies and GCs are also seen in

the spleen and Peyer’s patches of T-cell receptor (TCR) -

a�/� mice in the absence of overt immunization.16,17 Fur-

ther, memory cells and GCs can appear simultaneously3,18

and although not all TD memory cells show mutations, a

low level of somatic hypermutation has been observed

following immunization with the TI antigen 4-hydroxy-3-

nitrophenylacetyl (NP)-Ficoll.10,13,19,20 Hence, the mem-

ory B-cell pool in mice responding to environmental anti-

gens should include IgM and switched memory cells

arising from TI and TD responses, and generated either

within or outside GCs.

In this study, we tried to determine whether the mark-

ers CD73, CD80 and CD273 could be used to identify the

provenance of IgM memory cells in unimmunized mice

as arising from TD responses to environmental antigens.

Murine IgM memory has been difficult to characterize

phenotypically as the cells do not express specific markers

such as CD27, which has been useful in the identification

of human memory B cells. However, CD73, CD80 and

CD273 have been used to characterize ‘less-mature’ and

‘more-mature’ memory B-cell populations, with combina-

torial expression of these markers increasing as the

immune response matures and accumulates mutations

and switched receptors.10,21–23 We reasoned that IgM

memory cells arising from TD responses might resemble

the ‘more mature’ population and show preferential

acquisition of one or more of these markers compared

with IgM memory cells arising from TI responses. Hence,

we compared expression of these markers on IgM

memory cells in the spleens of wild-type (WT) mice and

mice lacking either T-cell help (TCR-b�/� and TCR-b�/

�d�/�) or the ability to form GCs (CD40�/�). We report

that CD40 signalling influences the size of the CD73+

IgM memory B-cell pool in the spleen of unimmunized

mice. It also affects the expression of this marker on sple-

nic age-associated B cells (ABCs) and T cells, but not on

neutrophils, marginal zone (MZ) B cells, regulatory T

(Treg) cells, regulatory B (Breg) cells or peritoneal B-1 B

cells.

Materials and methods

Mice

BALB/cByJ (BALB/c), C57BL/6ByJ (B6), B6.SJL-Ptprca-

Pepcb/BoyJ (B6.SJL), CNCr.129P2-Cd40tm1Kik/J (CD40�/�),
B6.129P2-Tcrbtm1Mom/J (TCR-b�/�) and B6.129P2-

Tcrdtm1Mom/J (TCR-d�/�) and B6.129S2-Ighmtm1Cgn/J

(lMT) mice were obtained from the Jackson Laboratories

(Bar Harbor, ME) and maintained in the Small Animal

Facility of the National Institute of Immunology. TCR-

b�/�d�/� mice were bred in-house from the single

mutants. All mouse protocols were carried out in accor-

dance with the Institutional Animal Ethics Committee

guidelines.

Mixed bone marrow chimeras and adoptive transfer

BALB/c: CD40�/� and B6.SJL: TCR-b�/�d�/�mixed bone

marrow (BM) chimeras were generated by transferring

BM from the two strains in a 1 : 1 ratio (3 9 107 cells/

mouse) intravenously into lethally irradiated (9 Gy)

BALB/c or B6.SJL mice, respectively. Approximately 1 : 1

chimerism was confirmed by staining peripheral blood

mononuclear cells for CD45.1 and CD45.2 8 weeks after

reconstitution. For adoptive transfer experiments,

3 9 107 spleen cells from B6.SJL mice were transferred

intravenously into non-irradiated TCR-b�/�d�/� mice.

Flow cytometry

The following reagents were used for flow cytometry:

FITC/PE-TexasRed�/PE-CF594/Pacific BlueTM/V450 anti-

mouseB220 (clone RA3-6B2), PE-CF594 anti-mouse

CD40 (clone 3/23), FITC anti-mouse CR1/CR2 (CD21/

35, clone 7G6), FITC/PE anti-mouse IgD (clone 11-

26c.2a), PE-Cy7 anti-mouse CD23 (clone B3B4), PE/Bio-

tin anti-mouse CD80 (clone 16-10A1), V450 anti-mouse

CD45.2 (clone 104), allophycocyanin (APC)/PE-Cy7 anti-

mouse CD45.1 (clone A20), FITC/APC-Cy7 anti-mouse

CD90.2 (clone 53-2.1), PE/APC anti-mouse CD4 (clone

RM4-5), V450 anti-mouse CD8 (clone 53.6.7), APC anti-

mouse CD279 clone (J43), PE anti-mouse CXCR5 (clone

2G8), PE anti-mouse Gr1 (clone RB6-8C5), FITC
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anti-mouse CD11b (clone M1/70), PE-Cy7 anti-mouse

CD19 (clone 1D3) (all from BD Biosciences, San Jose,

CA). In addition, FITC/APC anti-mouse CD93 (clone

AA4.1), eFluor450� anti-mouse CD21/35 (eBio4E3), Peri-

dinin chlorophyll protein (PerCP)-eFluor710� anti-mouse

IgM (clone II/41), PE/PE-Cy7/Biotin anti-mouse CD73

(clone eBioTY/11.8), PE/Biotin anti-mouse CD273 (clone

122), FITC anti-mouse CD19 (clone eBio1D3), APC anti-

mouse CD5 (clone 53-7.3), APC-Cy7 anti-mouse CD25

(clone PC61.5), FITC anti-FoxP3 (clone FJK-16s), V450

anti-mouse CD4 (clone GK1.5), PerCP5.5 anti-mouse

CD4 (clone RM4-5), APC anti-mouse CD90.2 (clone 53-

2.1) (all from Thermo Fisher Scientific, Waltham, MA),

Pacific-BlueTM anti-mouse CD1d (clone 1B1; Biolegend,

San Diego, CA). PE/APC/APC-Cy7-streptavidin (BD Bio-

sciences, San Jose, CA) was used as a secondary reagent.

For intracellular FoxP3 staining, cells were fixed and per-

meabilized with FoxP3/transcription factor staining buffer

set (Thermo Fisher) as per the manufacturer’s instruc-

tions. Samples were run on FACS Canto II or FACSAria

III (BD Biosciences) and data were analysed using FLOWJO

(Tree Star, Ashland, OR).

Identification of cell subsets

Antigen-experienced B cells were gated as

B220+ IgD� CD93� CD21/35� CD23+ and separated into

unswitched (IgM+) and switched (IgM�) subsets. Peritoneal
B-1 B cells were identified as CD19hi B220lo. Splenic MZ B

cells were identified as B220+ IgMhi CD93� CD23� CD21/

35+. ABCs were identified as B220+ CD93� CD21/

35� CD23�. Treg cells were identified as CD4+ CD25+

FoxP3+. B reg cells were identified as B220+ CD90� CD1dhi

CD5+. T follicular helper (Tfh) cells were identified

CD4+ FoxP3� CD279+ CXCR5+. Blood neutrophils were

identified as B220� CD90� Gr1+ CDllb+.

B-cell stimulation

IgM+ and IgM– fractions of antigen-experienced splenic

cells from BALB/c mice were gated as above, sorted on a

FACSAria III, plated at 2 9 104 cells/well in 96-well

round-bottomed plates (Costar, Corning, NY) and stimu-

lated with 10 lg/ml of lipopolysaccharide (LPS; Sigma

Aldrich, St. Louis, MO) for 72 hr in the presence or

absence of 1 lg/ml of aphidicolin (Sigma) in RPMI-1640

medium (Biological Industries, Cromwell, CT) supple-

mented with fetal bovine serum (Thermo Fisher) antibi-

otics (HiMedia, Mumbai, India) and b-mercaptoethanol

(Sigma). Secreted immunoglobulin was estimated by

ELISA on plates (Costar) coated with goat anti-mouse

immunoglobulin (Southern Biotechnology, Birmingham,

AL) and detected using goat anti-mouse immunoglobu-

lin-horseradish peroxidase (Southern Biotechnology).

Immunoglobulin concentrations were calculated from a

standard curve run in parallel with purified mouse

immunoglobulin. Plasma cells were scored as antibody

secreting cells (ASCs) on multiscreen filter plates (Multi-

ScreenHTS IP Filter Plates; Merck-Millipore, Billerika,

MA) activated with 70% ethanol, using the same coating

and detection reagents. Spots were quantified on an ELI-

SPOT reader (AID, GmBH, Straßberg, Germany). Cells

were titrated down from 50 000 to 200 cells and the

number of antigen-secreting cells/105 input cells was cal-

culated.

Real-time RT-PCR

Cells were suspended in TRI-Reagent (Sigma), and RNA

was isolated by chloroform extraction and precipitation.

cDNA was prepared from 180 ng of RNA by reverse tran-

scription (Promega, Madison, WI) and Power SYBR

Green master mix was used for amplifications (AB Sys-

tems, Waltham, MA). The following primers were used:

Blimp-1, 50-TGAGTGCCAGGTCTGCCA-30 and 50-CTGGG
CACACTTGTGAGG-30; Bcl6, 50-CATCTGCGCATCCACAC
AGGA-30 and 50-CGAGGAACACTCCATGCTTCA-30;
Bmi1, 50-ATGAGTCACCAGAGGGATGG-30 and 50-AAGA
GGTGGAGGGAACACCT-30; Klf2, 50-GCCTGTGGGTTCG
CTATAAA-30 and 50-TTTCCCACTTGGGATACAGG-30;
Ski, 50-AAAAGCCCTCCGCTCTAGTC-30 and 50-GACGTC
AGGGCTTAGCAGTC-3; Tcf4, 50-CACAACGGAGCGAT
GGGTA-30 and 50-GGGTGGGTTCAAGTCAGG-30; Gapdh,
50-ATGGCCTTCCGTGTTCCTA-30 and 50-TGAAGTCGCA
GGAGACAACCT-30. Amplification was initiated by denatu-

ration at 95° for 10 min and followed by 40 cycles of 95°
for 30 seconds, 55° for 30 seconds, and 72° for 30 seconds.

All reactions were carried out on a 7500 Real Time PCR

system (AB Systems). Relative RNA expression was deter-

mined as described previously.24

Statistical analysis

P values were determined by two-tailed unpaired Stu-

dent’s t-test for samples of unequal variance.

Results

Unswitched antigen-experienced B-cell subsets can be
identified in unimmunized mice

We first determined whether antigen-experienced IgM+

and switched cells, generated in response to environmen-

tal antigens, could be reliably identified in unimmunized

mice by flow cytometry, and whether they differed in the

relative expression of CD73, CD80 and CD273 as

reported for memory cells arising in response to immu-

nization. Hence, splenocytes were first gated as

B220+ IgD– CD93� CD21/35� CD23+ and then separated

into unswitched and switched fractions based on the
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expression of IgM (Fig. 1a). The combination of these

markers reliably excludes naive, MZ, transitional and B-1

B cells, ABCs and plasmacytoid dendritic cells.25–28 The

two antigen-experienced B-cell populations were then

analysed for expression of CD73, CD80 and CD273. Our

analysis was restricted to determining the frequencies of

cells expressing individual markers due to the unavailabil-

ity of reagents for simultaneous detection of all three.21

We found that CD73+, CD80+ and CD273+ cells were

readily detectable in both B-cell pools in unimmunized

mice, and that higher frequencies of these markers were

seen on switched cells, as reported earlier in immuniza-

tion experiments (Fig. 1b,c).

IgM+ antigen-experienced cells in unimmunized mice
share attributes of functional B-cell memory

To determine whether antigen-experienced cells identified

phenotypically could be classified as memory B cells, we

first looked for the relative expression of transcripts for

Blimp-1, Bcl-6, Tcf4, Bmi1, Ski and Klf2, which are

reported to be differentially expressed in GC B cells,

plasma cells and memory cells in NP-immunized mice.29

Hence, IgM+ and IgM– antigen-experienced cells from

unimmunized mice, identified as in Fig. 1, were sorted

and amounts of the various transcripts in these cells were

compared with those in B cells stimulated with LPS for

24 hr (to serve as a pool of recently activated B cells) or

for 96 hr (to serve as a pool of plasmablasts and plasma

cells). We found that Blimp-1 transcript amounts were

very low in both sorted cell populations compared with

the plasma cell pool (relative expression of 0�08 and 0�01
in the IgM+ and IgM– pools, respectively). However, tran-

script amounts were similar to those in 24-hr blasts

(Fig. 2a). On the other hand, Tcf4, Bmi1, Ski and Klf2

transcripts were higher in both sorted populations com-

pared with the 24-hr blasts, as reported for memory cells

versus GC B cells in the microarray,29 although all four
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Figure 1. Gating strategy for identification of antigen-experienced B cells in unimmunized mice. B220+ cells in the spleen were sequentially gated

as IgD– CD21� CD93� CD23+ to identify total antigen-experienced cells and then as IgM+ and IgM– for identification of the unswitched and

switched components, respectively (a). Gating for identification of CD73+, CD80+ and CD273+ cells on IgM+ (b) and IgM– (c) antigen-experi-

enced cells.
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transcripts were more abundant in the IgM– pool than in

the IgM+ pool (Fig. 2a). The most striking increase over

24-hr blasts was in Klf2 transcript amounts and these data

also fit in with the microarray data. Bcl-6 transcripts were

reported in the microarray to be lower in memory cells

than in GC B cells but these were higher in our sorted

cells. Hence, B cells that have responded to environmental

antigens in mice share transcript profiles that differentiate

antigen-specific memory B cells from recently activated

cells and plasmablasts in primed mice.

To determine whether these cells shared functional

attributes of B-cell memory, we determined whether they

could undergo division-linked differentiation. It has been

shown previously that NP-specific B cells from prime-

boosted mice can differentiate into plasma cells upon

stimulation with LPS for 5 days.30 It has also been shown

that pre-plasmablasts, but not memory cells, secrete

immunoglobulin when stimulated in TD cultures even if

cell division is blocked with aphidicolin.31 Hence, IgM+

and IgM– populations were sorted as above, cultured with

LPS � aphidicolin for 84 hr, and secreted immunoglobu-

lin was estimated. Spleen cells that had been pre-activated

with LPS to serve as a source of plasmablasts/plasma cells

were also plated with/without aphidicolin. We found that

both IgM+ and IgM– antigen-experienced cells could be

stimulated with LPS to secrete immunoglobulin and also

that neither population did so in the presence of aphidi-

colin (Fig. 2b). Similar results were obtained in experi-

ments where supernatants were harvested at 48 or 72 hr

(data not shown). As expected, the pre-activated cells

secreted immunoglobulin even in the presence of aphidi-

colin. Similar results were obtained when ASCs were esti-

mated at 72 hr (Fig. 2c). Together, the data indicate that

the IgM+ antigen-experienced cells identified by pheno-

typic markers probably represent quiescent IgM memory

cells.

The CD73+ subset of IgM memory is reduced in mice
lacking T cells or CD40

IgM memory cells have been reported to form in response

to both TD and TI antigens, to be important in recall

responses and to enter GCs upon antigenic challenge.9–

11,22,32,33 However, the factors required for the generation

of IgM memory remain poorly understood and murine

IgM memory cells have been difficult to characterize due

to a lack of specific surface markers for identification. As

expression of CD73, CD80 and CD273 appears to
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correlate with mature memory or mutated memory,9,21,22

we reasoned that higher expression of one or more of

these markers may help to identify IgM memory arising

from TD responses. Hence, we compared expression of

these markers on IgM memory cells in the spleens of WT

mice and mice deficient either in T-cell help (TCR-b�/�)
or in the ability to form GCs (CD40�/�). As expected, we
found that frequencies of switched memory B cells were

significantly lower in the spleen of both knockout (KO)

strains, and that within the switched pool the proportion

of cells expressing CD73, CD80 or CD273 was also signifi-

cantly lower (Fig. 3). When we analysed unswitched mem-

ory, we found that TCR-b�/� mice had similar

frequencies as WT mice, but that fewer cells expressed

CD73. In the CD40�/� mice, IgM memory frequencies

were lower, and there was a significant reduction in the

proportion of cells expressing CD73 and CD273 (Fig. 4).

In TCR-d�/� mice, however, neither the frequency of IgM

memory cells nor the proportion of cells that expressed

any of the three markers was affected (Fig. 4). Hence, the

CD73+ fraction of IgM memory appears to be dependent

on classical T-cell–B-cell interaction.

The CD73+ subset of IgM memory is CD40
dependent

To confirm that conventional T-cell help, and CD40 sig-

nalling in particular, was necessary for generation of the

CD73+ memory pool, we made mixed marrow chimeras

in irradiated WT mice with B6.SJL and TCR-b�/�d�/�

cells on the one hand and BALB/c and CD40�/� BM cells

on the other. We restricted our analysis to IgM memory,
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as the frequency of switched memory was reduced in

both KO strains. The CD73+ and CD273+ populations

were reduced in the IgM memory pool in both CD40�/�

and TCR-b�/�d�/� mice. However, the presence of WT

cells in vivo led to restoration of both populations in the

TCR-b�/�d�/� donor pool but not in the CD40�/�

donor pool (Fig. 5). In another approach, we determined

whether CD73+ memory B-cell frequencies in TCR-b�/

�d�/� mice could be increased by provision of peripheral

WT T cells. Hence, congenic (CD45.1+) spleen cells were

adoptively transferred into the KO mice and memory

subsets were assessed on gated recipient (CD45.2+) B cells

6 weeks later. As seen in Fig. 6, provision of T-cell help

in the periphery led to an increase in the frequencies of

CD73+ and CD273+ subsets of unswitched memory cells,

and to an increase in expression of all three markers in

switched memory cells in the KO mice.

CD40 deficiency affects CD73 expression on ABCs
and T-cell subsets

A number of other cells of the immune system have

been reported to express CD73. These include neu-

trophils, Treg cells, nodal marginal zone (nMZ) B cells,

ABCs, Breg cells, B-1 B cells, CD11c+ B cells and Tfh

cells.28,34–39 We found equivalent expression of CD73 on

blood neutrophils, peritoneal cavity B-1 B cells and sple-

nic Treg cells, Breg cells and MZ B cells from WT and

CD40�/� mice (Fig. 7). In the mature follicular B-cell

pool, almost all the CD73+ cells were IgD-negative (data

not shown), indicating that its expression was restricted

largely to memory cells. In the unimmunized mice used

in this study, the frequencies of nMZ B cells and

CD11c+ B cells were too low to allow for accurate scor-

ing. Peyer’s patches were sampled as the tissue most

likely to have a significant Tfh population in unimmu-

nized mice, and we found that although Peyer’s patches

of CD40�/� mice had fewer cells (around 25% of WT)

and they contained fewer Tfh cells (32�6 � 3�58 versus

7�77 � 2�7), almost all Tfh cells in both strains

expressed CD73 (Fig. 7). Interestingly, fewer ABCs in

the CD40�/� mice expressed CD73. Representative gat-

ing for the cells analysed is shown in the Supplementary

material (Figs S1 and S2).

CD73 has also been used to identify a subset of

primed but cytokine-uncommitted CD4+ T helper cells

that can be identified as CD4+ CD44+ Sca-1– CD73+.

We did not look for these cells because the CD40�/�

mice used in this study are on the BALB/c background

and such T helper primed precursor cells cannot be

identified in this strain with this marker combination.40

However, we did find that fewer CD4+ and CD8+ cells

in the spleens of CD40�/� mice expressed CD73.

Hence, CD40 signalling can also support the induction

of CD73 on peripheral T cells. Notably, specific B-cell–
T-cell interactions are not apparently required for this,

as T cells in lMT mice were not significantly deficient

in CD73 expression (Fig. 7).
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Discussion

The generation of memory B cells has classically been

ascribed to interactions between follicular B cells and T

cells in GCs. As cells bearing isotype-switched BCRs can

readily be identified as belonging to the memory pool,

much of our understanding of memory B-cell biology has

come from studies on switched cells. However, immu-

nization of mice with TD antigens such as PE and experi-

ments using NP-specific transgenic B cells have revealed

that the memory B-cell pool includes both IgM and

switched populations, and that IgM memory is functional

and long lived, with a half-life similar to that of switched

memory.10,21,22,41 They may outnumber switched memory

cells in vivo, and contribute to GC reactions in secondary

responses.10,22 IgM memory has also been reported to

contribute adoptive protection against Borrelia hermsii

infection41 and to mount a rapid recall response to

malaria challenge.42 There are conflicting reports about

the ability of IgM memory B cells against nominal anti-

gens to respond to a boost. An early challenge of sheep

red blood cell-primed mice with homologous antigen

indicated that they do22 whereas a late challenge of PE-

immunized mice indicated that they do not.10 The differ-

ence between the two immunogens is the maintenance of

a sustained GC reaction following sheep red blood cell

immunization and it has been suggested that IgM mem-

ory cells may be recruited into secondary responses if

GCs are present.43

Recent efforts from several groups have attempted to

characterize B-cell memory into phenotypic and

functional subsets, and these studies have revealed that

relative expression of the markers CD73, CD80 and

CD273 can be used to define at least five subsets of mem-

ory.20,21,44,45 CD73 is expressed on a proportion of IgG

and IgM memory and marks GC-derived, mutated mem-

ory.9,11,22,46 CD80+ memory cells are also mutated, and

adoptive transfer experiments show that they may repre-

sent a significant fraction of long-lived memory.47 Expres-

sion of CD80 and CD273 correlates with sustained GCs

and with survival of GC B cells,23,48 indicating that sig-

nalling through these receptors contributes to response

maturation. Cells co-expressing CD80 and CD273 are

present in IgG as well as IgM memory pools, and they

differentiate rapidly into plasma cells upon challenge, as

opposed to double-negative cells that preferentially seed

GCs.44 Hence, the combinatorial expression of the three

markers increases with response maturation.

The aim of this study was to determine whether IgM

memory to environmental antigens could be identified as

arising from TD or TI responses based on the relative

expression of CD73, CD80 and CD273. Multi-colour flow

cytometry enabled identification of IgM+ and IgM– anti-

gen-experienced follicular cells, and the relative expression

of Blimp-1, Tcf4, Bmi1, Ski and Klf2 in these cells, as well

as their ability to undergo division-linked differentiation

into immunoglobulin-secreting cells when re-stimulated,

indicated that they share attributes of functional memory.

In the two WT mouse strains used (B6 and BALB/c),

IgM memory was found to be less abundant than

switched memory (Figs 3 and 4) and it is possible that

this reflects inclusion of all subclasses of IgG, and possibly
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other isotypes, in the switched pool. CD73 expression was

also lower in the unswitched pool (10–40% of the IgM+

population versus 55–60% of the IgM– population).

CD73 expression has been shown to increase progressively

on GC B cells34 and it is possible, therefore, that IgM

memory cells exit the GC relatively early.

As expected, switched memory cell frequencies, as well as

expression of all three markers, were lower in TCR-b�/�

mice and CD40�/� mice when compared with their WT

controls Interestingly, the CD73+ subset was especially

affected in the unswitched pool in both KO strains (Fig. 4).

IgM memory was unaltered in the absence of TCR-cd T

cells, but we did find that switched memory (frequencies

and phenotype) was compromised (data not shown). Our

gating strategy includes the total B-cell memory pool in

unimmunized mice, and the data indicate that in the

absence of TCR-cd cells, B-cell responses to environmental

antigens or their differentiation outcomes may be dis-

turbed, as has been reported for the development of natural

resistance to Eimeria vermiformis in mice49 and for control

of mycobacterial and viral infections.50–52

A specific role for CD40 signalling for optimal genera-

tion of the CD73+ IgM memory pool came from

irradiation BM chimera experiments, which showed re-

establishment of CD73+ IgM memory frequencies in the

TCR�/� donor pool but not in the CD40�/� donor pool

in the respective chimeras. Transfer of congenic WT

spleen cells into non-irradiated TCR-deficient mice for

provision of peripheral T-cell help also led to restoration

of IgM and switched memory subsets within 6 weeks

(Figs 5 and 6). Together, our data indicate that CD73

expression identifies a subset of IgM memory in mice

that is TD and CD40 signalling dependent. The popula-

tion is, however, quite small and whether their small

numbers can mediate significant biological effects remains

to be determined.

CD73 is a 50 ectonucleotidase that converts extracellular

50-AMP into adenosine and its activity has multiple conse-

quences for inflammation and infection, including inhibi-

tion of cytokine release from endothelial cells, promotion

of lymphocyte transmigration and attenuation of neu-

trophil accumulation at vascular surfaces.53,54 It is

expressed on a number of immune cell types and we

sought to determine whether CD40 deficiency affected

CD73 expression on some of these cells. In WT and

CD40�/� mice, expression of CD73 was similar on
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neutrophils, peritoneal B-1 B cells and Treg cells, although

CD40-null mice had fewer Treg cells, as noted earlier.55 It

has been reported that IgM memory may be generated

from splenic MZ B cells56 and hence we included MZ B

cells in our analysis. No effect of CD40 deficiency was

observed. We did find that CD73 expression was lower on

gated CD4+ and CD8+ T cells in CD40�/� mice. However,

frequencies were similar in lMT mice, indicating that

CD73 expression on T cells can be maintained by interac-

tions with other CD40-expressing cells in vivo. CD73 sig-

nalling by adenosine through the adenosine receptor A2A

has been shown to support the survival of naive T cells

responding to tonic signalling by preventing the down-

regulation of interleukin-7 receptor57 and also to arrest

the terminal differentiation of CD8 T cells.58 Our data

indicate that constitutive CD40 signalling may be involved

in T-cell homeostasis. We also found that Peyer’s patches

of CD40�/� mice had fewer Tfh cells and our results are

in keeping with reports indicating that B-cell–T-cell inter-
actions involving CD40 signalling promote Tfh cell differ-

entiation.59,60

Another subset of cells in CD40�/� mice that showed

relatively low expression of CD73 was the ABC subset.

ABCs are reported to be antigen-experienced cells, mostly

unswitched, that have been generated following BCR and

Toll-like receptor engagement in the response to intracel-

lular pathogens like viruses.27 It is possible, therefore, that

the CD73+ fraction of ABCs may also represent TD IgM

memory. CD73 has also been shown to promote isotype

switching autonomously in human B cells stimulated

coordinately by BCR and Toll-like receptor ligation by

participating in the conversion of ATP released from

Ca2+ sensitive vesicles during B-cell activation.61 It is pos-

sible, therefore, that the IgM memory pool that has been

identified as preferential entrants into GCs in secondary

responses10,22,43 may well be the CD73+ population.
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