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Summary

Stem cell antigen-1 (Sca-1/Ly6A/E) is a cell surface glycoprotein that is

often used as a biomarker for stem cells and cell stemness. However, it is

not clear what factors can directly induce the expression of Sca-1/Ly6A/E

in T lymphocytes in vivo, and if induction of Sca-1 is associated with T

cell stemness. In this study, we show that interleukin-27 (IL-27), a mem-

ber of the IL-12 family of cytokines, directly induces Sca-1 expression in

T cells in vivo. We found that mice-deficient for IL-27 (either P28 or

EBI3) or its signalling (IL-27Ra) had profound reduction of Sca-1 expres-

sion in naive (CD62L+ CD44�), memory (CD62L+ CD44+) and effector

(CD62L� CD44+) T cells. In contrast, in vivo delivery of IL-27 using

adeno-associated viral vectors strongly induced the expression of Sca-1 in

naive and memory/effector T-cell populations in an IL-27 receptor- or sig-

nal transducer and activator of transcription 1-dependent manner. Inter-

estingly, IL-27-induced Sca-1+ T cells do not express or up-regulate classic

stem cell-associated genes such as Nanog, Oct4, Sox2 and Ctnnb1. How-

ever, IL-27-induced Sca-1+ T cells had increased expression of effector/

memory-associated transcription factor T-bet, Eomes and Blimp1. Hence,

IL-27 signalling directly induces the expression of Sca-1/Ly6A/E expres-

sion in T cells. Direct expansion of Sca-1+ CD62L+ CD44� T memory

stem cells may explain why IL-27 enhances T-cell memory.
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Introduction

Interleukin-27 (IL-27) is a member of the IL-12 cytokine

family that consists of two subunits, i.e. Epstein–Barr virus-
induced gene 3 (EBI3) and P28 (also known as IL-30).1 IL-

27 is produced by activated antigen-presenting cells such as

dendritic cells and macrophages,2–4 and signals through a

heterodimeric receptor (IL-27R) consisting of the WSX-1

and the gp130 subunits in a variety of cell types including T

cells.5 IL-27 activates both the signal transducer and activa-

tor of transcription 1 (Stat1) and Stat3 signalling cascade,6,7

with the activation of Stat1 being dominant.8–10 Hence, IL-

27 has potent activity in regulating T helper types 1, 2 and

17, and FoxP3+ regulatory T cell responses.11–13 IL-27 is also

ª 2017 John Wiley & Sons Ltd, Immunology, 152, 638–647638

IMMUNOLOGY OR IG INAL ART ICLE

http://orcid.org/0000-0001-9476-8376
http://orcid.org/0000-0001-9476-8376
http://orcid.org/0000-0001-9476-8376


known to induce T-cell expression of IL-1014–16 and pro-

grammed death ligand 1 (PD-L1),17 two inhibitory pathways

that are associated with T-cell tolerance.

In addition to the well-appreciated anti-inflammatory

effects of IL-27, we and others have shown that IL-27 can

also enhance T-cell survival18–20 and promote T-cell mem-

ory.18,21,22 Our in vitro analysis of IL-27-stimulated cytotoxic

T lymphocytes revealed that IL-27 induces T-cell expression

of stemness-associated molecule Sca-1/Ly6A.18 Sca-1 is a cell

surface glycoprotein that is expressed in all adult mouse

haematopoietic stem cells23 and also in activated T cells.24

Haematopoietic stems cells deficient for Sca-1 are defective25

and T lymphocytes deficient for Sca-1 have altered prolifera-

tive responses.24 Recently, we also showed that Sca-1 could

be induced in T cells by in vivo delivery of IL-27 using

adeno-associated viral (AAV) vectors.26 However, it remains

unclear if IL-27 directly induces Sca-1 expression in T cells,

and if its induction is associated with T-cell stemness.

Previous studies have revealed a group of

CD62L+ CD44� Sca-1+ T cells that are termed as T

memory stem cells (TSCM). TSCM cells are an early-stage

T memory subset that has robust proliferative potential,

long-term survival capacity and the ability to mediate

superior tumour regression upon adoptive transfer into

tumour-bearing mice.27,28 TSCM cells can be generated by

programming naive T cells in the presence of glycogen

synthase-3b inhibitors27,28 or cytokines such as IL-1529

and IL-21.30 It would therefore be interesting to deter-

mine if IL-27 can induce the expansion of TSCM cells.

In this study, we have examined whether IL-27 signalling

directly induces Sca-1 expression in T cells in vivo and if

induction of Sca-1 is associated with T-cell stemness. We

found that mice deficient for IL-27 (either P28 or EBI3) or

its receptor (IL-27Ra) had profound reduction of Sca-1

expression in both naive and memory T-cell populations.

In contrast, in vivo delivery of IL-27 by AAV significantly

induced the expression of Sca-1 in naive and memory T-

cell populations in IL-27 receptor- and Stat1-dependent

manners. Interestingly, IL-27-induced Sca-1 expression is

not associated with T-cell stemness, as IL-27-stimulated T

cells failed to up-regulate traditionally stemness-associated

genes such as Nanog, Oct4, Sox2 and Ctnnb1. In vivo deliv-

ery of IL-27 by AAV induced an effector/memory pheno-

type in T cells characterized by the expression of T-bet,

Eomes and Blimp1. Hence, IL-27 signalling directly induces

the expression of Sca-1/Ly6A expression in T cells. Direct

expansion of Sca-1+ CD62L+ CD44� TSCM cells may

explain why IL-27 enhances T-cell memory.

Materials and methods

Mice

C57BL/6 mice and IL-27Ra�/� mice were purchased from

the Jackson Laboratory (Bar Harbor, ME). EBI3-deficient

mice in the C57BL/631 and BALB/c background22 have been

described. C57BL/6 mice with a targeted mutation of the P28

gene (IL-27P28�/�)13 were obtained from Dr Daniel J. Cua

via a material transfer agreement. Stat1-deficient BALB/c

mice32 have been described previously. All mice were main-

tained in OSU laboratory animal facilities that were fully

accredited by Institutional Animal Care and Use Committee.

Antibodies and flow cytometry

Fluorescein isothiocyanate-, phycoerythrin-, allophyco-

cyanin- or Peridinin chlorophyll protein-labelled antibod-

ies to CD4, CD8a, CD44, CD62L, PD-L1, Sca-1 and

isotype control antibodies were purchased from BD Bio-

sciences (San Diego, CA). For staining of cell surface

markers, cells (single-cell suspensions of spleen) were

stained with various antibodies in staining buffer (PBS

with 1% fetal calf serum) on ice for 30 min, after washing

with staining buffer, cells were fixed in 1% paraformalde-

hyde in PBS and were analysed on a FACSCalibur flow

cytometer. Data were analysed using FLOWJO software

(Tree Star, Inc., Ashland, OR).

Production of adeno-associated viral vectors and mice
treatment

We used rAAV vector to express IL-27 and IL-30 in vivo.

The IL-30 expression plasmids33 were obtained from Dr

Shulin Li (MD Anderson Cancer Center). Briefly, IL-27 or

IL-30 cDNA was inserted into an AAV carrier vector under

the control of the cytomegalovirus-chicken b-actin hybrid

(CAG) promoter.34,35 The IL-27 or IL-30 carrier AAV vec-

tor was compacted with a helper vector in 293K cells into

the AAV serotype 8 (AAV8). AAV8 is known to be particu-

larly suitable for expression in muscle cells.36,37 Intramus-

cular injection of 2 9 1011 DNAse resistant particle

(DRP)/mouse of AAV-IL-27 or AAV-IL-30 achieved high

concentrations of IL-27 or IL-30 production in the periph-

eral blood of mice. Hence, we evaluated the in vivo effects

of AAV-IL-27 and AAV-IL-30 on T-cell activation in the

context of a concanavalin A-induced liver injury model.

ELISA

Blood was drawn from mice treated with AAV-IL-27,

AAV-IL-30 and AAV-ctrl vectors at 2 weeks after viral

injection. Serum was investigated for the presence of IL-

27 and IL-30 using ELISA kits purchased from eBio-

science (San Diego, CA) for IL-27 and R&D Systems, Inc.

(Minneapolis, MN) for IL-30.

Real-time PCR

Quantitative real-time PCR was performed using an ABI

7900-HT sequence system (PE Applied Biosystems, Foster
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City, CA) with the QuantiTect SYBR Green PCR kit

(Qiagen, Hilden, Germany) in accordance with the manu-

facturer’s instructions. PCR was performed using previ-

ously determined conditions.38 The following primers

were used for amplifying specific genes: Actin: 50-GAG
ACCTTCAACACCCCAGC-30 (forward) and 50-ATGT-
CACGCACGATTTCCC-30 (reverse); Bcl2: 50-TGCGGAG-
GAAGTAGACTGATA-30 (forward) and 50-TGGCATGA
GATGCAGGAAA-30 (reverse); Bcl6: 50-CATACAGAG
ATGTGCCTCCATAC-30 (forward) and 50-CCCATTCTC
ACAGCTAGAATCC-30 (reverse); Blimp1: 50-TCTACCC
TCGGGTGGTTTAT-30 (forward) and 50-TGAGTTATG-
TAGGTGGGTCTCT-30 (reverse); Ctnnb1: 50- GCTGCTC

ATCCCACTAATGT-30 (forward) and 50-CCGCGTCATC
CTGATAGTTAAT-30 (reverse); Eomes: 50-CGTTCACC-
CAGAATCTCCTAAC-30 (forward) and 50-GCAGAGAC
TGCAACACTATCA-30 (reverse); Foxo1: 50-CGTGCCC
TACTTCAAGGATAAG-30 (forward) and 50-GCACTC-
GAATAAACTTGCTGTG-30 (reverse); ID2: 50-CTACTCC
AAGCTCAAGGAACTG-30 (forward) and 50-GATCTGCA

GGTCCAAGATGTAA-30 (reverse); ID3: 50-AGACTACAT
CCTCGACCTTCA-30 (forward) and 50-GATCACAAG
TTCCGGAGTGAG-30 (reverse); Klf4: 50-CCCTTCGGTCA
TCAGTGTTAG-30 (forward) and 50-GGACCGCCTCTT
GCTTAAT-30 (reverse); Lef1: 50-AGAACACCCTGAT-
GAAGGAAAG-30 (forward) and 50-GTACGGGTCGCTGT
TCATATT-30 (reverse); Nanog: 50-GGCAGCCCTGATT
CTTCTAC-30 (forward) and 50-GAGAACACAGTCCGCA
TCTT-30 (reverse); NFATc1: 50-CCGTCCAAGTCAGTT
TCTATGT-30 (forward) and 50-GTCCGTGGGTTCTGTC
TTTAT-30 (reverse); Oct4: 50-CCTACAGCAGATCACTCA
CATC-30 (forward) and 50-GCCGGTTACAGAACCA-
TACTC-30 (reverse); Stat4: 50-GAAGTGCAGTACTGGGA
GTAAA-30 (forward) and 50-GGTTAATGGTGAGGCCA-
TAGAG-30 (reverse); Sox2: 50-TGAACGCCTTCATGG-
TATGG-30 (forward) and 50-GATCTCCGAGTTGTGCA
TCTT-30 (reverse); TCF1: 50-CCTTGGTGGAGGAGTGTA
ATAG-30 (forward) and 50-GTTGGCAAACCAGTTGTA-
GAC-30 (reverse); T-bet: 50-CCAGGGAACCGCTTATAT
GT-30 (forward) and 50-CCTTGTTGTTGGTGAGCT

C
D

4+

%
 o

f m
ax

Sca-1

C
D

8+

Total

WT
P28–/–

CD62LloCD44hi CD62LhiCD44hi CD62LhiCD44lo

C
D

44

CD62L

150

104

103

102

101

100

S
ca

-1
 in

 C
D

4+
 T

 c
el

ls
 (

M
F

I)

S
ca

-1
 in

 C
D

8+
 T

 c
el

ls
 (

M
F

I)

100

50

0

80WT

*

**

*
*

*

**
*

**

p28–/–

Tot
al 

Cd4
+

Cd6
2L

– Cd4
4
+

Cd6
2L

+ Cd4
4
+

Cd6
2L

+ Cd4
4
–

Tot
al 

Cd8
+

Cd6
2L

– Cd4
4
+

Cd6
2L

+ Cd4
4
+

Cd6
2L

+ Cd4
4
–

WT

p28–/–

N·S

N·S

60

20

40

0

B6

17·3

26·4

18·0

P28–/–

C
D

4+
C

D
8+

104

103

102

101

100

104

103

102

101

100

104

103

102

101

100

80

100

60

40

20

0

80

100

60

40

20

0

80

100

60

40

20

0

80

100

60

40

20

0

80

100

60

40

20

0

80

100

60

40

20

0

80

100

60

40

20

0

80

100

60

40

20

0

104103102101100 104103102101100 104103102101100 104103102101100

104103102101100 104103102101100 104103102101100 104103102101100

104103102101100
104103102101100

104103102101100 104103102101100

13·4

16·1 32·2

2·52 19·5 4·21

35·650·9

37·4

(a) (b)

(c)

Figure 1. IL-27P28-deficient mice had a reduced Sca-1+ memory pool of T cells. Splenocytes from naive wild-type (WT) B6 and P28�/� mice were

analysed by flow cytometry. Spleen CD4+ and CD8+ T cells and their subsets (a), based on the expression of CD62L and CD44, were analysed for

the expression of Sca-1 (b). Sca-1 expression in CD4+ and CD8+ T cells and their subsets were quantified (c). Three to five mice were used in each

group for this experiment. Data are expressed as means of individual determinations � SE and represent three experiments using both male and

female mice. Statistical analysis was performed using the unpaired Student’s t-test. *P < 0�05; **P < 0�01; ***P < 0�001. N.S., not significant.
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TTAG-30 (reverse). Each sample was assayed in triplicate

and the experiments were repeated twice. The relative

gene expression was calculated by plotting the Ct (cycle

number) and the average relative expression for each

group was determined using the comparative method

(2�DDCt).

Statistics

Data are expressed as means of individual determina-

tions � SE. Statistical analysis was performed using the

unpaired Student’s t-test.

Results

Reduced Sca-1/Ly6A expression in T cells in IL-27
and IL-27 receptor-deficient mice

Previous studies18,21,22 have revealed that IL-27 con-

tributes to T-cell memory, and expression of Sca-1/Ly6A,

a cell surface glycoprotein, is considered to be a biomar-

ker for TSCM.
28 We therefore examined if the lack of IL-

27 or IL-27 receptor signalling affected T-cell expression

of Sca-1 in naive and memory T-cell populations. In the

peripheral lymphoid organs of naive mice, T cells can be

sub-divided into three populations based on their expres-

sion of CD62L and CD44, i.e. CD62L+ CD44� (naive),

CD62L+ CD44+ (central memory) and CD62L� CD44+

(effector memory) T cells. As shown in Fig. 1(a), CD4+

and CD8+ T cells from IL-27P28-deficient and wild-type

B6 mice were subdivided into three populations based on

their expression of CD62L and CD44. We found that

CD4+ and CD8+ T cells and their subpopulations from

IL-27P28�/� mice had significantly reduced expression of

Sca-1, and the reduction of Sca-1 expression was particu-

larly significant among memory T-cell populations in

both CD4+ and CD8+ T cells (Fig. 1b,c). Similarly, CD4+

and CD8+ T cells from IL-27EBI3�/� and wild-type mice

were also subdivided into three populations based on
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Figure 2. IL-27EBI3-deficient mice had a reduced Sca-1+ memory pool of T cells. Splenocytes from naive wild-type (WT) and EBI3�/� mice

were analysed by flow cytometry. Spleen CD4+ and CD8+ T cells and their subsets (a) were analysed for the expression of Sca-1 (b). Sca-1+ T

cells in CD4+ and CD8+ T cells and their subsets were quantified (c). At least three mice were used in each group for this experiment. Data are

expressed as means of individual determinations � SE and represent three experiments using both male and female mice. Statistical analysis was

performed using the unpaired Student’s t-test. *P < 0�05; ***P < 0�001. N.S., not significant.
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their expression of CD62L and CD44 (Fig. 2a). We

observed reduced Sca-1 expression in all subpopulations

of CD8+ T cells in IL-27EBI3�/� mice, whereas a trend of

Sca-1 reduction in CD4+ T cells from IL-27EBI3�/� mice

was also observed (Fig. 2b,c). Finally, the T-cell subpopu-

lations in IL-27Ra�/� mice (Fig. 3a) were also analysed

in a similar manner. Significant reduction of Sca-1/Ly6A

expression was observed in all subpopulations of CD4+

and CD8+ T cells in IL-27Ra�/� mice (Fig. 3b,c). Hence,

IL-27-IL-27R signalling appears to be required for the

expression of Sca-1/Ly6A in both naive and memory/ef-

fector T cells under steady state.

IL-27 directly induce Sca-1/Ly6A in T cells in an IL-
27R- or Stat1-dependent manner

We previously showed that cultured T cells stimulated

with IL-27 up-regulated Sca-1/Ly6A.18 We also observed

that T cells in AAV-IL-27-treated mice had increased

expression of Sca-1/Ly6A.26 To determine if IL-27

directly induces Sca-1 expression in T cells in vivo, we

generated AAV-IL-27, AAV-IL-30 (IL-27P28) or AAV-

Ctrl viral vectors and injected the vectors intramuscu-

larly into wild-type mice. As shown in Fig. 4(a), 2 weeks

after the injection of viral vectors, significant levels of

IL-27 or IL-30 were detected only in the serum from

mice receiving respective AAV vectors. Multi-coloured

flow cytometry analysis was used to determine the

expression of Sca-1. As shown in Fig. 4(b) and summa-

rized in Fig. 4(c,d), T cells from AAV-IL-27, but not

AAV-IL-30 or AAV-Ctrl viral vector-treated mice had

significantly up-regulated expression of Sca-1, essentially

in all subpopulations. These results confirm that IL-27,

but not its subunit P28 (IL-30), induces Sca-1 expres-

sion in all T-cell subpopulations in vivo. Moreover, we

found that AAV-IL-27-induced Sca-1 expression was IL-

27R and Stat1-dependent, as AAV-IL-27-induced Sca-1

expression was only detected in T cells from wild-type,

but not IL-27Ra (Fig. 5a) and Stat1-deficient mice

(Fig. 5b).
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Figure 3. Interleukin-27 receptor a (IL-27Ra) -deficient mice had a reduced Sca-1+ memory pool of T cells. Splenocytes from naive wild-type

(WT) B6 and IL-27Ra�/� mice were analysed by flow cytometry. Spleen CD4+ and CD8+ T cells and their subsets (a) were analysed for the

expression of Sca-1 (b). Sca-1 expression in CD4+ and CD8+ T cells and their subsets was quantified (c). Four to five mice were used in each

group for this experiment. Data are expressed as means of individual determinations � SE and represent two experiments. Statistical analysis was

performed using the unpaired Student’s t-test. **P < 0�01; ***P < 0�001.
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Transcription factors in IL-27-stimulated Sca-1+ T
cells

To understand the phenotypes of AAV-IL-27-induced

Sca-1+ T cells, we sorted CD4+ and CD8+ T cells from

AAV-IL-27 and AAV-ctrl virus-treated mice by FACS, and

used quantitative PCR to measure T-cell differentiations

and stemness-associated transcription factors. As shown in

Fig. 6, AAV-IL-27 treatment significantly up-regulated the

expression of T-bet, Eomes and Blimp1, transcription fac-

tors typically expressed by effector memory T cells.39 We

failed to detect the expression of stem cell-associated tran-

scription factors40 such as Nanog, Oct4 and Sox2, in T cells

from either AAV-IL-27 or AAV-ctrl virus-treated mice.

Induction of Ctnnb1 (b-catenin) has been shown to be

associated with T-cell stemness.28 However, we found that

Ctnnb1 was slightly reduced in T cells from AAV-IL-27-

treated mice. Finally, Klf4 up-regulation was found in

CD4+, but not CD8+, T cells from AAV-IL-27-treated

mice. Hence, IL-27-induced Sca-1+ T cells express tran-

scription factors of effector memory T cells but do not

show many features of typical stem cells.

Discussion

In this study, we have found that IL-27 directly induces

Sca-1 expression in naive and memory T cells in vivo. In

IL-27 and IL-27 receptor-deficient mice, Sca-1 expression

is greatly reduced in all three populations of T cells, i.e.

CD62L+ CD44� naive, CD62L+ CD44+ central memory

and CD62L� CD44+ effector memory T cells. In contrast,

in mice treated with AAV-IL-27, Sca-1 expression is

greatly increased in naive, central memory and effector

memory T cells, and AAV-IL-27-induced Sca-1 expression
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is IL-27R- and Stat1-dependent. Hence, our results sug-

gest that IL-27 signalling directly induces the expression

of Sca-1/Ly6A/E in T cells in vivo.

Demoulin et al.41 showed that IL-6 and IL-9 induced the

expression of Sca-1 in T lymphoma cells and mature T lym-

phocytes in vitro. They found that both IL-6 and IL-9 medi-

ated the transcriptional activation of Sca-1 through a GAS

element in the Sca-1 promotor, which was able to bind Stat1

and Stat3. In this study, we found that IL-27 signalling

induced Sca-1 expression in vivo exclusively through Stat1

(Fig. 5b). Hence, it is likely that IL-27-induced activation of

Stat1 directly binds to GAS element in the Sca-1 promoter,

leading to the expression of Sca-1 in T cells.

Sca-1/Ly6A/E is a cell surface glycoprotein that is

expressed in all adult mouse haematopoietic stem cells23

and has been shown to be necessary for haematopoietic
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stem cell self-renewal and the development of committed

progenitor cells.25 Sca-1 was also shown to play a role in

c-kit expression in haematopoietic stem cells42 and in

haematopoietic commitment to granulocyte develop-

ment.43 However, our current results suggest that IL-27-

induced Sca-1 expression does not appear to be

associated with stemness of mature T cells, as the classic

transcription factors associated with cell stemness, includ-

ing Nanog, Oct4 and Sox2, were undetectable in Sca-1+ T

cells from AAV-IL-27-treated mice (Fig. 6), whereas Klf4

expression was only found to be elevated in CD4+ but

not CD8+ T cells. Induction of Ctnnb1 (b-catenin) has

also been shown to be associated with T-cell stemness.28

However, we found that Ctnnb1 was slightly reduced in T

cells from AAV-IL-27-treated mice (Fig. 6). Hence, IL-27-

induced Sca-1+ T cells do not show many features of con-

ventional stem cells. These results suggest that Sca-1

expression in haematopoietic stem cells and mature T

lymphocytes play different roles.

Although IL-27-induced Sca-1+ T cells do not express

many stem cell-associated genes, they have elevated expres-

sion of memory T-cell-associated molecules such as Eomes,

which have been shown to promote T-cell memory.44,45

In this study, we have found that IL-27 induces Sca-1 expres-

sion in all three populations of T cells, i.e. CD62L+ CD44�

naive, CD62L+ CD44+ central memory and CD62L� CD44+

effector memory T cells. Although the significance for induc-

tion of Sca-1 in central memory and effector memory T cells

remains to be studied, Gattinoni et al. 27,28 have identified a

new subset of CD62L+ CD44� Sca-1+ TSCM. They have

shown that TSCM cells can be generated in vitro by program-

ming naive T cells in the presence of small molecules such as

glycogen synthase-3b inhibitors27,28 and cytokines such as

IL-1529 and IL-21.30 Our results provide the first evidence

that IL-27 signalling induces the expansion of

CD62L+ CD44� Sca-1+ TSCM cells in vivo. These findings,

taken together, explain why IL-27 promotes T-cell mem-

ory.18,21,22 However, these results do not suggest that Sca-1

itself is important for T-cell memory, as Sca-1-deficient mice

have normal T-cell memory responses.46

Taken together, we have found that IL-27 signalling can

directly induce Sca-1/Ly6A/E expression in naive and mem-

ory populations of T cells. However, IL-27-induced Sca-1+ T

cells do not express the classic transcription factors for stem-

ness. IL-27 induces the expansion of a memory pool of T

cells including TSCM cells. Given that IL-27 may potentially

be used as a therapeutic for cancer47 and autoimmune dis-

eases,48 identification of Sca-1/Ly6A/E as an IL-27-respon-

sive biomarker in T cells in vivomay potentially be useful for

determining therapeutic response in pre-clinical settings.
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