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Summary

The human leukocyte antigen class I gene HLA-B27 is the strongest risk factor

for ankylosing spondylitis (AS), a chronic inflammatory arthritic disorder.

More recently, the Endoplasmic Reticulum Aminopeptidase (ERAP) 1 and 2

genes have been identified by genome wide association studies (GWAS) as

additional susceptibility factors. In the ER, these aminopeptidases trim the

peptides to a length suitable to fit into the groove of the major

histocompatibility complex (MHC) class I molecules. It is noteworthy that an

epistatic interaction between HLA-B27 and ERAP1, but not between HLA-B27

and ERAP2, has been highlighted. However, these observations suggest a

paramount centrality for the HLA-B27 peptide repertoire that determines the

natural B27 immunological function, i.e. the T cell antigen presentation and,

as a by-product, elicits HLA-B27 aberrant behaviours: (i) the misfolding

leading to ER stress responses and autophagy and (ii) the surface expression of

homodimers acting as ligands for innate immune receptors. In this context, it

has been observed that the HLA-B27 carriers, besides being prone to

autoimmunity, display a far better surveillance to some viral infections. This

review focuses on the ambivalent role of HLA-B27 in autoimmunity and viral

protection correlating its functions to the quantitative and qualitative effects of

ERAP1 and ERAP2 polymorphisms on their enzymatic activity.
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Introduction

A group of human disorders classified as autoimmune and/or

autoinflammatory share a similar immunopathogenic ground

in which the principal risk factor is a ‘tagging’ human leukocyte

antigen (HLA) class I gene. In addition, a prominent role has

been attributed to Endoplasmic Reticulum Aminopeptidase

(ERAP)1 and, in some cases, ERAP2 genes. We are referring to

immunological disorders such as Behçet’s disease (BD), psoria-

sis (Ps), birdshot chorioretinopathy (BSCR) and ankylosing

spondylitis (AS), each associated by a variable relative risk

(odds ratio) with the HLA-B51, HLA-C*0602, HLA-A29 or

HLA-B27 genes, respectively [1,2]. Besides peculiar clinical hall-

marks due to distinct polygenic backgrounds, such diseases

usually affect body sites that undergo physical stress and are

located at either external barriers (oral mucosa, skin, gut, eye)

or at interior sites (joints, enthesis, cardiac valves, blood vessel

walls) [1]. The endogenous and/or exogenous aetiological trig-

gers are usually unknown. However, the co-occurring

association with both single HLA class I genes and endoplasmic

reticulum (ER) aminopeptidases involved in the final cut of

HLA peptides points unequivocally at antigen processing and

imbalanced peptide repertoire as putative unifying pathogenic

key events. This concept is strengthened further by the fact that

the association of ERAP1 in BD, Ps and AS reveals an epistatic

gene–gene interaction with HLA-B51, HLA-C*0602 and HLA-

B27, respectively [3–5]. This review will discuss how the classi-

cal and non-classical HLA-B27 functions could be influenced

by the peptide repertoire that, in turn, is finely shaped by

ERAP1 and 2 allelic variants and how the different settings can

affect AS and the superior anti-viral immunity (Fig. 1).

HLA-B27, a molecule with two faces: the
involvement in spondyloarthritis

HLA-B27 went into the spotlight during early 1970s, when

a strong association with AS and other related immune-
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mediated conditions [reactive arthritis (ReA), psoriatic

arthritis, enteropathic arthritis and acute anterior uveitis]

was established [6,7]. During the next 40 years, although

rapid progress in many research fields enabled acquisition

of a deep knowledge of the biochemical and functional

properties of HLA-B27, its exact role in AS onset has

remained elusive.

The normal immunological function of HLA class I mol-

ecules is generally to present endogenous peptides of

microbial or self-origin to CD81 T lymphocytes. These are

generally peptides of 8–10 aa in length, which in the case of

HLA-B27 are stabilized through two principal anchors: the

first is almost exclusively an Arg at position 2 (P2), whereas

the second, at the peptide carboxy-terminus (pX), can

admit several different amino acids [8]. Accordingly, one of

the first and more popular theories to explain the B27

involvement in AS was the so-called arthritogenic peptide

hypothesis. This implies the activation of an autoreactive

HLA-B27-restricted cytotoxic CD81 T cell response primed

by cross-reactive microbial antigen(s), thus breaking self-

tolerance and perpetuating an autoimmune process leading

to tissue damage [9]. In accordance with this hypothesis,

HLA-B27-restricted CD81 T cells reactive against both self-

peptides and enterobacterial antigens were found in the

synovial fluid of patients with AS and ReA [10]. Moreover,

in HLA-B27-positive AS patients, our group has described

autoreactive B27-mediated cytotoxic T lymphocyte (CTL)

responses triggered by a self-peptide from the vasoactive

intestinal peptide receptor type I (VIPR) and cross-reacting

with a viral epitope from latent membrane protein 2

(LMP2) of Epstein–Barr virus (EBV) [11]. However, this

theory has not received further support, for several reasons.

Unlike another related disease, namely ReA [12], AS is not

usually preceded by microbial infections, even though the

intestinal microbiota has been evoked recently to have an

inciting role on B27-restricted T cell responses [13]. Fur-

thermore, the HLA-B27 transgenic rat model seems to dis-

prove the possibility that HLA-B27 is uniquely responsible

for disease because of its classical antigen-presenting func-

tions, given that the lack of CD81 T cells does not prevent

spondyloarthritis in this context [14].

The HLA-B27 family consists of more than 160 alleles

(https://www.ebi.ac.uk/cgi-bin/ipd/imgt/hla/allele.cgi), whose

ancestral subtype is the HLA-B*2705 that is distributed

Fig. 1. Cartoon illustrating the interaction between human leukocyte antigen (HLA)-B27 and Endoplasmic Reticulum Aminopeptidase 1 and 2

in ankylosing spondylitis and antiviral defence. HLA-B27 carriage, in association with high peptide-trimming activity ERAP1 haplotypes and the

concomitant expression of ERAP2 predisposes to AS. This genetic ground would affect the B27 peptidome impairing HLA-B27 functionality. It is

currently unknown whether the so-called ‘aberrant’ peptidome contains additional pathogenic epitopes and/or loses peptides relevant for the

stability of B27 complex or other functions. Indeed, an aberrant peptidome could impact on antigen presentation as well as on the rate of B27

misfolding thus activating ER stress, unfolded protein response or autophagy. In addition, the formation of B27 homodimers can activate cells

expressing killer-cell immunoglobulin receptor (KIR)3DL2 and leukocyte immunoglobulin-like receptors (LILRB2) innate immune receptors.

Conversely, the HLA-B27 co-inherited with ERAP1 haplotypes of low enzymatic activity, and in the absence of ERAP2, would display a proper

and non-disease prone B27 peptidome. With regard to viral infections, it is still unknown whether the protective behaviour of HLA-B27

correlates with a high or low activity of ERAP1, and/or with the presence or absence of ERAP2.
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ubiquitously worldwide and is strongly AS-associated [15].

Most B27 alleles are rare, so that their relation to AS is

unknown. Nevertheless, at least two alleles, the HLA-B*2706

and HLA-B*2709, are not risk factors for AS [15–17]. These

alleles have limited polymorphic positions compared to the

AS-associated HLA-B*2705 allele. In particular, the B*2709

differs from the B*2705 only for a His instead of an Asp at

position 116, whereas the B*2706, an Asian allele, displays

two substitutions (Asp114His, Tyr116Asp) compared to the

B*2704 allele, which is strongly AS-associated in the same

geographic area [16]. These polymorphisms are clustered

mainly around the pockets of the peptide-binding cleft, and

influence the peptide repertoire. Therefore, based on the

arthritogenic peptide theory, the disease-inducing peptides

should be exclusive ligands of the AS-associated alleles and

not of B*2706 and B*2709 alleles. In contrast with this

assumption, recent biochemical studies from Purcell’s group,

analysing a large peptide data set from the AS-associated and

non-AS-associated B27 alleles expressed by transfected C1R

cells, failed to identify qualitative changes in their peptide rep-

ertoire [18]. Rather, quantitative differences have been found

which justify the interest towards a panel of 26 peptides

eluted in lower abundance from the non-AS-associated alleles

[19]. In addition, another study in which structure, peptide

specificity, folding and stability of either AS-associated or

non-AS-associated subtypes on C1R cells were correlated

with the constitutive peptidomes, reached similar results.

Indeed, very few peptides emerged as connected strictly with

the disease [20]. Unfortunately, these studies are limited by

experimental requirements that allow preferential analysis of

certain cell types. Therefore, little is known so far about the

peptide repertoire of either AS-associated or non-AS-

associated subtypes in the target tissues, where the differences

could be more informative.

Alternative areas of intense investigation have considered

aberrant and potentially pathogenic biochemical features

of HLA-B27 that set this allotype apart from other HLA

class I molecules. First, the HLA-B27 displays an altered

folding rate during the assembly into the ER [9,21,22].

This misfolding is a consequence of the particularly slow

HLA-B27 maturation rate that triggers the endoplasmic

reticulum (ER)-associated degradation (ERAD) of the

heavy chains [22]. However, the accumulation of misfolded

heavy chains, aggregates or even dimeric structures, which

do not transit further along the secretory pathway, gener-

ates ER stress and the unfolded protein response (UPR)

[22–24]. In turn, the UPR promotes cytokine dysregulation

and activates the interleukin (IL)-23/IL-17 axis [25]. This

mechanism has been well documented in transgenic rat

model for spondyloarthritis but not in humans, and its

pathological implication in AS remains controversial

[25,26]. In this regard, the occurrence of B27 misfolding in

gut of AS patients does not seem to activate UPR but rather

autophagy, that would be the leading mechanism modulat-

ing the intestinal production of IL-23 in the disease [27].

Another peculiarity of the HLA-B27 is related to its expres-

sion on the cell surface as a non-canonical form made by

b2m-free homodimers [9,21,28]. The formation of homo-

dimers arises from endosomal recycling compartments and

is caused by the impaired and highly reactive cysteine 67

(Cys67) located into the B pocket of the peptide groove

[29]. The pathogenic effects of these structures would

depend upon their engagement by both leukocyte

immunoglobulin-like receptors (LILR)B2 and killer-cell

immunoglobulin receptor (KIR)3DL2 innate immune

receptors expressed by natural killer (NK) and T cells, thus

triggering an inflammatory cascade [30]. In patients with

spondyloarthropathies, more CD41 T cells expressing

KIR3DL2 have been found and the binding with B27

dimers would licence pathogenic T helper type 17 (Th17)

cell polarization [31,32].

If misfolding as well as homodimer formation can be the

cause of AS pathogenesis, then the disease-associated B27

subtypes should differ from the non-disease associated

HLA-B*2706 and 09 alleles in this aspect. Several investiga-

tions have addressed this issue, and the results were not

always consistent [8,33–35]. One study failed to establish a

total correspondence between being a disease-associated

B27 subtype and a lower folding efficiency, as the AS-

associated B*2707 allele behaved as the non-AS-associated

B*2706 and B*2709 alleles [36]. Moreover, the two struc-

turally close but differently AS-predisposing B*2705 and

B*2709 alleles have been shown to have similar intracellular

trafficking and propensity to form oligomers [33]. How-

ever, more recently, it has been described a greater tendency

of AS-associated B*2702, B*2705, B*2707 alleles to accu-

mulate in ‘dynamic’ intracellular vesicles as misfolded/

aggregate proteins in comparison with the non-associated

B*2706 allele [37]. This behaviour has been correlated with

the B27 protein level.

One important question is whether a differential amount

of cell surface free heavy chain (FHC) and/or homodimers,

recognized by KIR3DL2 on NK and CD41 T cells, discrimi-

nates some B27 alleles from others, justifying their distinct

AS-association. So far, this matter has not been explored in

an in vivo setting in which cells from AS patients are com-

pared with the controls expressing the different B27 alleles.

However, no significant difference in cell surface expression

of FHC among several B27 subtypes expressed on C1R cells

has been reported [38]. Moreover, one report highlighted

that B*2706, unlike B*2709, expressed the highest surface

level of FHC, probably reflecting the poor tapasin depend-

ence during the assembly process which produces more

dissociation-prone heterotrimeric complexes [39]. More

recently, Cauli and co-workers, using transfected cells, have

shown that a higher cell surface FHC expression of B*2705

versus B*2709 could contribute to the differential disease-

association [40].

The formation of B27 dimers and oligomers is a com-

plex process in which a series of unpaired Cys residues

HLA-B27 and ERAP1/2 aminopeptidases
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(positions 67, 308 and 325) appear to play important roles,

but the conserved Cys residues at 101 and 164 could also

be relevant [22,30,41,42]. These Cys residues are shared by

all B27 alleles; therefore, other residues must influence their

reactivity and accessibility to the oxidizing environment of

the ER for a time sufficient to allow the formation of aber-

rant disulphide bonds. A pivotal role has been ascribed to

residues 114 and 116 located in the F pocket of the binding

groove, which notoriously influence the repertoire of

bound peptides but also chaperone association, assembly

process, maturation rate and, lastly, heavy chain dimeriza-

tion [43,44]. Interestingly, these residues distinguish the

AS-associated from the non-AS-associated alleles [9,16]. Of

note, Tyr116 in B*2706, much more than His116 in

B*2709, appears to impact positively on the assembly

kinetics, thus reducing dimer formation [44]. These data

can also be interpreted on the basis of recent biophysical

and computational analyses. Indeed, several studies have

described an enhanced degree of flexibility and disorder of

B*2705 and B*2704 peptide-binding cleft in comparison to

that of B*2706 and B*2709 alleles [45–47]. This would

influence the tapasin dependence, the folding dynamics

and the stability of HLA–peptide complexes overall [46].

HLA-B27, a molecule with two faces: protection from
viral infections

Being a carrier of HLA-B27 certainly represents a risk con-

dition for the development of autoimmune rheumatic dis-

eases, but there are also benefits concerning a superior

protection against a variety of viruses [48,49]. Together

with few other HLA class I molecules of the B locus, the

HLA-B27 is associated with long-term non-progression to

AIDS in patients, called ‘elite controllers’, which maintain a

low viral load and remain asymptomatic for longer [50].

Furthermore, recent studies have revealed in HLA-B27 sub-

jects a high rate of spontaneous clearance of hepatitis C

virus [48,51]. The reasons for this are not completely

understood, although virological and immunological

explanations have been anticipated. First, during HIV and

hepatitis C virus (HCV) infections, viral escape from HLA-

B27-restricted cytotoxic T cells targeting immunodominant

epitopes is undoubtedly a difficult process. It usually

requires multiple compensatory mutations to counterbal-

ance structural and functional constraints having a high

cost for the viral fitness [48,52,53]. Secondly, a number of

immunological benefits of the virus-specific, HLA-B27-

restricted CD81 T cells have been described pertaining to

broader polyfunctionality and higher functional avidity

[54]. Furthermore, special thymic selection inducing a

larger B27-driven CD81 T cell precursor repertoire, prefer-

ential usage of certain T cell receptor (TCR) clonotypes

associated with higher cross-reactive and, finally, better

capacity of evasion from regulatory T cell (Treg)-mediated

suppression have also been documented [55–58].

Moreover, rapid and efficient processing of the proper

immunodominant epitopes would contribute to these suc-

cessful B27-restricted T cell responses [59].

Recently, in HLA-B*2705 subjects, mainly patients with

AS, our group has described the capacity to elicit a vigor-

ous HLA-B27-restricted CD81 T cell response against an

EBV epitope from EBNA3A (RPPIFIRRL) which was

already known as immunodominant in another restriction

context, namely the HLA-B7 molecules [60,61]. This pre-

sentation is somewhat intriguing, as the peptide is a subop-

timal B27 ligand and is expected to shift into the peptide-

binding cleft to permit the fitting of N-terminal Arg into

the B pocket, while leaving the A pocket empty [60]. Of

note, almost 70% of B*2705 individuals possess such

‘unexpected’ CD81 T lymphocytes that share a common

TCR b-chain repertoire. Interestingly, no reactivity has

been found in B*2709 healthy donors and, accordingly, the

non-AS-associated B*2709 allele appears unable to present

such suboptimal epitope. This is a further evidence sup-

porting the different plasticity of B*2705 versus the B*2709

antigen-presenting groove [49]. Overall, this finding allows

us to speculate that for some HLA-B27 alleles, possibly

those associated with AS, the real pool of bound ligands is

larger than anticipated on the basis of biochemical data.

This would enhance the ability to mediate anti-viral pro-

tection while increasing the risk of autoimmunity.

The ERAP1 and ERAP2 aminopeptidases: functional
role and allelic variants

ERAP1 and ERAP2 are endoplasmic reticulum-resident

aminopeptidases trimming peptides to an optimal length

for binding with major histocompatibility complex (MHC)

class I molecules [62,63]. They belong to the M1 family of

zinc-metallopeptidases and share 49% of sequence identity.

In humans, ERAP1 and ERAP2 genes are located on chro-

mosome 5q15 in opposite orientation and, conceivably,

share regulatory elements [62].

ERAP1, besides its role in antigen processing, exerts sev-

eral other biological functions promoting innate immune

responses, or even regulating angiogenesis and hyperten-

sion/blood pressure [64]. ERAP1 is a highly dynamic mole-

cule switching from a lower-activity open conformation to

a higher-activity closed conformation [65]. This conforma-

tional transition is induced by the substrate upon binding

to a regulatory site neighbouring the catalytic domain [63].

Through a mechanism named ‘molecular ruler’, whereby

the enzyme itself acts as a peptide-length template, ERAP1

trims peptides of 9–16 residues very efficiently while spar-

ing shorter peptides [66–68]. The substrate specificity of

ERAP1 is dictated by the N- and C-terminal residues of the

peptide as well as by the internal sequence [67,69–71].

ERAP1 shows preferences for hydrophobic residues, while

basic and acidic amino acids are poor substrates; finally,

Pro is never hydrolyzed [69,70]. The trimming activity of
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ERAP2 is complementary to that of ERAP1 for both N-

terminal substrate specificity and peptide length. Indeed,

ERAP2 cleaves positively charged residues preferentially

and its activity is maximal on octameric substrates and

lower on longer peptides [63,72–74]. Therefore, the two

aminopeptidases would operate in a concerted manner,

ensuring an efficient generation and/or destruction of

MHC class I epitopes for a proper functioning and regula-

tion of the adaptive immunity.

ERAP1 and ERAP2 have been shown to form heterodi-

meric complexes having an allosteric effect on ERAP1 that

acquires an enhanced in vitro trimming activity due to a

higher substrate binding affinity [75,76]. However, less

than 30% of each enzyme is engaged in the heterodimers

[75]. Recently, it has also been shown that the ERAP1/

ERAP2 dimer could work as a peptide editor by trimming

‘on MHC I’ substrates until the correct length enabling the

MHC groove to reach a closed conformation [77].

ERAP1 is a highly polymorphic gene. The most common

protein variants, reported as ERAP1 allotypes, are encoded by

haplotypes created by missense variant combinations of SNPs

harboured in an ancestral haplotype found in humans as well

as in primates [78]. The most investigated ERAP1 allotypes

(from 10 to 13) [78,79] are distinguished by enzymatic func-

tions with both qualitative (substrate preferences) and quan-

titative (high, intermediate and low activity variants) effects

[5,64,80–82]. Interestingly, some non-synonymous SNPs

influence the gene expression level of ERAP1 [83].

ERAP2, instead, displays poor polymorphism. In the

worldwide population, evolution under balancing selection

has maintained two main ERAP2 haplotypes: one express-

ing the protein and the other ERAP2-deficient, because the

G allelic variant of SNP rs2248374 induces a truncated

form that goes through non-sense-mediated decay [84].

The two haplotypes are almost equally frequent in the dif-

ferent ethnic groups, so that 25% of individuals, being

homozygous for the second haplotype, do not express

ERAP2. Moreover, a non-synonymous SNP (rs2549782)

encoding for the amino acid substitution N392K affects

both enzymatic activity and substrate specificity [72]. This

functional variant is in strong linkage with SNP rs2248374.

Apart from specific ethnic peculiarities, the N392 allelic

variant is almost absent in the human populations because

of its co-inheritance with the rs2248374 null-allele [84,85].

HLA-B27 and ERAP1/2 as players in ankylosing
spondylitis

In 2007, a genome wide association study (GWAS) revealed

the association between five ERAP1 SNPs and an increased

risk to develop AS [86]. In particular, two of these SNPs,

rs30187 (Arg528Lys) and rs27044 (Glu730Gln), reached high

statistical significance for AS, as the minor alleles were

robustly more frequent in AS patients than controls. After-

wards, several studies replicated these genetic associations,

imputed ERAP1 haplotypes and found further associations

with other SNPs mapping in the coding, UTR or intronic

regions [2,78,87]. In 2011, it was proved that the association

of ERAP1 with AS occurred exclusively in HLA-B27-positive

patients, pointing at a gene–gene epistatic interaction [5].

Hence, the obvious effort has been to understand the impact

of AS-risk ERAP1 polymorphisms on the B27 peptidome

and, consequently, on the putative B27 pathogenic functions.

Apart from a few exceptions, a higher enzymatic activity

marks individual ERAP1 polymorphisms or the entire hap-

lotypes associated with increased risk of AS (Table 1)

[2,5,78–80]. Several studies agree to indicate the high trim-

ming Met349/Lys528/Asp575/Arg725/Gln730 haplotype as

being associated most strongly with AS risk, while the low

trimming Val349/Arg528/Asn575/Gln725/Glu730 haplo-

type as the most protective [2,78,88]. In contrast, a report

has suggested that rare hyperactive or hypoactive allotype

Table 1. Single nucleotide polymorphisms (SNPs) in Endoplasmic Reticulum Aminopeptidase (ERAP)1 and ERAP2 associated with ankylosing

spondylitis (AS)

Amino acid

position

Major/minor allele

amino acid (nucleotide)

AS-risk allele

amino acid (nucleotide) Effects

ERAP1 SNPs

rs2287987 349 Met (A)/Val (G) Met (A) Trimming activity

(substrate-dependent)

rs30187 528 Arg (G)/Lys (A) Lys (A) Expression level,

trimming activity,

Substrate specificity

rs10050860 575 Asp (G)/Asn (A) Asp (G) Trimming activity

rs17482078 725 Arg (G)/Gln (A) Arg (G) Trimming activity

rs27044 730 Glu (G)*/Gln (C) Gln (C) Substrate length preference,

Trimming activity

ERAP2 SNPs

rs2549782 392 Asn (T)/Lys (G) Lys (G) Trimming activity

rs2248374 null-allele (G)/expressing allele (A) expressing allele (A) Presence/absence

*This SNP is also present in an AS-predisposing haplotype [78].

HLA-B27 and ERAP1/2 aminopeptidases
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pair combinations found in AS patients could explain the

involvement of ERAP1 in the disease [79]. However, such

study suffered from low statistical power due to the small

cohorts analysed.

Seminal work from Lopez de Castro’s group has outlined

how the B27 peptidome is influenced by ERAP allotypes

[89,90]. The effect impacts mainly the P1 residue and, to a

lesser extent, the remaining peptide sequence, the peptide

length, the amount of specific ligands and the B27 affinity

and thermostability of the overall peptide/B27 complexes.

It is noteworthy that another study has shown that ERAP1

silencing, as expected, decreased the amount of B27-bound

nonamer peptides and, interestingly, increased the number

of longer ligands, especially with extended C-terminus

[91].

A key point which is still the subject of debate is the rela-

tionship between the enzymatic activity of ERAP1 variants

and the amount of cell surface B27 aberrant FHC/dimeric/

oligomeric forms. A correlation between AS-protective

Arg528 and Glu730 ERAP1 variants and a decreased sur-

face expression of B27 FHC on monocytes from AS

patients as well as on B27-expressing cell lines has been

reported [92]. In contrast, a previous study documented a

higher level of FHC induced by the AS-protective Glu730

ERAP1 variant, while no effect was attributed to Arg528Lys

polymorphism [93].

There are also conflicting results on the impact of

ERAP1 down-regulation, which was found to correlate

with a lower expression of surface B27 FHC and, conse-

quently, with a lower Th17 expansion [92]. Another report

showed an opposite effect with a selective increase of FHC

for AS-associated B*2705 and B*2704 subtypes but not for

non-AS-associated B*2706 and B*2709 alleles on C1R

transfectants [93]. Similarly, Tran and co-workers have

observed an accumulation of disulphide-linked HLA-B27

dimers on U937 monocytic cell lines following ERAP1

knock-down, while levels of HLA-B18 and HLA-B51 were

unaffected [94].

Current data do not allow to establish a link between

ERAP1 trimming activity, intracellular B27 aberrant forms,

cellular stress and disease. Dendritic cells derived from

HLA-B27 patients with AS exhibited ERAP1 over-

expression in comparison with healthy controls, but this

did not parallel with an altered amount of overall HLA

class I dimers [95]. Another study performed in HLA-B27-

positive and HLA-B27-negative AS patients, in the presence

of risk or protective ERAP1 variants, did not show signifi-

cant differences in the expression of ER stress markers nor

of proinflammatory cytokines, ruling out the ER stress as

cause of disease [96].

A very recent work analysed the HLA-B27 peptidome

from spleen cells of HLA-B27 transgenic rats in conditions

of heterozygous or homozygous deletion of ERAP1 [97].

Interestingly, the knock-out genotype of ERAP1 altered

approximately one-third of the B27 peptidome, but was

still disease-permissive [97].

Unlike ERAP1, the association of ERAP2 with AS is

independent from HLA-B27, occurring in both B27-

positive and -negative carriers [98,99]. This finding allows

speculation of a role for the two aminopeptidases not nec-

essarily converging on the same mechanism. Notably, the

ERAP2 null-variant rs2248374 is strongly protective for AS

(Table 1) [99]. Hence, ERAP2 could be involved in the AS

acting at two levels; that is, coupled or uncoupled with

ERAP1. Accordingly, ERAP2 has been shown to influence

directly the B*2705 peptidome, destroying some ligands

with N-terminal basic residues and, indirectly, increasing

the amount of nonamers through the enhancement of

ERAP1 activity [100]. The latest work has demonstrated

that the effects of ERAP2 on B27 peptidome could change

depending on the amount of ERAP1 trimming [101]. The

net consequence of ERAP2 presence/absence on HLA-B27

conformations remains to be determined. In one report,

the presence of ERAP2 did not influence significantly the

expression of folded and unfolded HLA-B27 molecules, ER

stress markers and proinflammatory cytokines in patients

versus controls [102]. In contrast, another study reported

that the loss of ERAP2 induced an increase of FHC B27

level as well as up-regulation of the UPR pathway [103].

Overall, the molecular mechanisms underlying the influ-

ence of ERAP2 on AS risk are far from being understood.

HLA-B27 and ERAP1/2 interplay in the anti-viral
immunity

One of the first studies investigating the role of aminopep-

tidases in anti-viral defence reported a genetic association

of ERAP2 with natural resistance to HIV [104]. The notion

that the relevance of ERAP is within the framework of HLA

antigen presentation has been clearly supported by an

in vivo study performed in a flu-infected murine model

based on HLA-B27/ERAP–/– or HLA-B7/ERAP–/– trans-

genic mice that, unlike humans, express only one ERAP

gene (ERAAP) [105]. Interestingly, the analysis of cytotoxic

T cell responses directed against two influenza nucleopro-

tein immunodominant peptides restricted for HLA-B27

(NP) 383–391 and HLA-B7 (NP) 418–426, a protective

allele for AS [106], demonstrated that only the HLA-B27-

restricted response was ERAP-dependent and its absence

led to the reduction of HLA-B27 molecules on the cell sur-

face as well as of NP 383–391-reactive CD81 T cells [105].

In humans, studies performed in vitro on N-terminally

extended precursors of naturally processed HLA-B27 anti-

gens from human respiratory syncytial virus (HRSV) have

shown that the two aminopeptidases operate in a concerted

manner, each using the digestion products of the other as

substrate for a further N-terminal cleavage [107].

Seregin and co-workers observed, using an in vitro cell-

based antigen presentation system, that the high AS-risk
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ERAP1 allotype (Met349/Lys528/Asp575/Arg725/Gln730)

compared with the low AS-risk allotype (Val349/Arg528/

Asn575/Gln725/Glu730) influenced antigen presentation

by destroying more rapidly the majority of HLA-B27 pep-

tides, whether from viral, bacterial or self-origin [108].

Hence, the authors speculated that the co-existence of B27

molecules and ERAP1 allotypes with enhanced enzymatic

activity alters the normal presentation of microbial and

self-peptides to the adaptive immune system setting the

conditions to autoimmunity [108].

Another study has reported that the silencing of ERAP1

as well as the AS-protective allelic variant Arg528 reduced

the presentation of the HIV-Gag immunodominant HLA-

B27 epitope, KK10 [91]. Interestingly, the decreased CTL

recognition of the cells expressing the Arg528 ERAP1 vari-

ant or the minigenes containing KK10 precursors was

reversed by the combination Arg528/730Glu, supporting

the concept that the global ERAP1 haplotype modulates

the fine enzymatic specificity [91].

It is evident from the above that we still have a frag-

mented view of the role of ERAP1 and 2 in the HLA-B27-

mediated adaptive immunity. It would be most interesting

to assess whether the more effective protection against spe-

cific viral infections conferred by the HLA-B27 comes from

a synergic interplay with particular ERAP1 and 2 haplo-

types (Fig. 1).

Closing remarks

It is amazing that after so many decades of intense studies,

the role of HLA-B27, the gene associated more strongly

with AS pathogenesis, remains uncertain. The new entries,

ERAP1 and ERAP2, point strongly at the shaping of the

B27 peptidome as a crucial event. Genetic association stud-

ies suggest that ERAP1 allotypes with high trimming activ-

ity, together with the presence of ERAP2, are strong

predisposing factors for AS. However, we still do not know

whether or not they contribute directly by destroying the

‘normal peptidome’ or by generating harmful peptides.

Alternatively, their activity can impact upon the B27 com-

plex stability and, consequently, on the chance to form

dimers or oligomeric structures. A deeper knowledge of the

interplay between HLA-B27 and ERAP1/2 in tuning the

antiviral response would certainly help in the understand-

ing of their interconnection in autoimmune diseases.
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